Вода из воздуха: Как работают генераторы атмосферной воды. Как спасти крым от засухи, гидробур, вода из воздуха

Воду надо ценить и не лить почём зря. В современном мире об этом знают даже дети. Городскому жителю проще всего оценить всю значимость этого суждения, если представить себя в пустыне, где воду можно достать только лишь из-под земли и из воздуха. И то при определённой сноровке. Но мы расскажем не о способах сбора чистой воды в экстремальных обстоятельствах, а об устройствах, которые облегчают жизнь людей, добывая её из воздуха.

Сколько раз уже говорилось, что чистая, пригодная к употреблению вода – основа всей жизни на Земле и с каждым годом становится всё более и более редкой. Что в скором времени войны будут разворачиваться не из-за нефти и прочих полезных ископаемых, а именно из-за неё родимой?..

Уже сейчас примерно один человек из пяти испытывает трудности с нехваткой питьевой воды. И даже горожанам, привыкшим к комфорту, предоставляемому современными системами водоснабжения, не стоит об этом забывать.

Как там говорили на уроках географии? «Большая часть поверхности Земли покрыта водой…» А это примерно 326 миллионов кубических миль воды. 97% из них – солёная из морей и океанов, и лишь 3% — пресная. Но и из этой части 99,3% находятся в виде льда, а половина того, что осталось, – под землёй.

Круговорот воды в природе и участие в нём генераторов воды из воздуха (иллюстрация AirWater Corporation).

К 2025 году девять миллиардов человек на планете будут делить всё то же количество доступной воды. Большинство из них будут жить в больших перенаселённых городах, оказывая гигантское давление на местные водные ресурсы.

А если вспомнить о том, что городские водопроводы постоянно приходится чинить, латать и обновлять, то будущее кажется совсем уж чёрным и незавидным.

Так где же взять чистую воду? В воздухе содержится, по разным оценкам, от 12 до 16 тысяч кубических километров влаги (или 0,000012% всей воды на Земле). Этот объём можно сравнить с количеством воды в Великих озёрах Северной Америки (самом крупном природном хранилище пресной воды в мире).

Между тем во многих даже самых бедных и густонаселённых странах мира воздух настолько влажный и тёплый, что воду можно было бы конденсировать прямо из него.

Кубический метр воздуха содержит (в зависимости от влажности) от 4 до 25 граммов водяных паров. Существующие ныне установки могут собрать в среднем около 20-30% от этого количества. Самые лучшие условия для них (высокие влажность и температура) – в странах, расположенных в пределах 30 градусов широты от экватора.

Так как природа постоянно пополняет запасы воды в воздухе, устройства, производящие ценную жидкость из воздуха, не могут ничем навредить окружающей среде (даже если их будет установлено очень много в каком-то определённом месте). Получается, процесс может идти бесконечно и работа аппаратов ограничена лишь сроком их службы.

Поговорим о том, как работают генераторы атмосферной воды (AWG – Atmospheric water generator). Первые системы, поставляющие воду из воздуха, были разработаны ещё в 1990-х.

По сути они были похожи на систему, что используется для дегидратации воздуха в холодильниках (ещё можно вспомнить про дождь из-под кондиционеров в современном мегаполисе). Компрессор заставляет хладагент проходить через хитросплетение трубок, в то же время вентилятор прогоняет над трубками воздух. Если температура охлаждающих спиралей чуть ниже точки росы, около 40% жидкости из воздуха будет конденсироваться на них, стекая в специальный контейнер. Если же трубки будут слишком холодными, то на их поверхности будет образовываться лёд (что, конечно же, отразится на функциональности аппарата).


Карта доступности воды Gleick 1998 (иллюстрация Water Master).

Но то в холодильнике, а в генераторах воды из атмосферы также присутствуют специальные воздушные фильтры, ультрафиолетовые стерилизаторы и угольные фильтры для собранной воды, приборы, обогащающие её кислородом, датчики уровня воды в контейнере.

Оптимальные параметры работы установок: температура выше 15,5 °С и относительная влажность (RH) выше 40%, а также не слишком большая высота над уровнем моря (не выше 1200 метров). Хотя в большинстве инструкций говорится о 20-40 °С и RH 60-100%.

Понятно, что установка таких генераторов предполагает наличие входа воздуха извне помещения. Тут целый букет факторов: как это ни удивительно, атмосферный воздух намного чище «домашнего», а «офисный» уже высушен кондиционерами. Да и собирать влагу из помещения вредно: люди и так страдают от его низкой влажности. Хотя самые маленькие установки при наличии хорошей вентиляции можно поставить на кухне или в ванной.

Где может пригодиться такой дегидратор? Начинали мы с пустыни – там он пригодится жителям далёких поселений, для которых подвоз бутилированной воды дорог или невозможен, военным, ведущим боевые действия вдали от источников воды, и представителям гуманитарных и спасательных миссий (в том числе врачам).

AWG могут быть использованы для домашних и сельскохозяйственных нужд, в офисных помещениях, школах, отелях, на кораблях, совершающих круизные путешествия, в спортивных центрах и прочих общественных местах.

В коммерческих целях некоторые производители предлагают даже вариант розлива воды из воздуха в бутылки!

А теперь попробуем рассказать об основных предлагаемых продуктах на рынке добычи воды из воздуха.

Element four

Air2Water

Устройства , разработанные компанией Air2Water, дают от 3 до 38 литров воды в сутки, то есть являются не столь уж большими.

Принцип работы этих машин соответствует всем остальным, хотя есть и некоторые отличия: поначалу воздух проходит электростатические фильтры, которые задерживают около 93% взвешенных частиц. Конденсированная вода проходит освещение ультрафиолетовой лампой в течение 30 минут (на этом этапе умирает 99,9% микробов и бактерий), затем отделяется осадок, на угольных фильтрах задерживается около 99,9% вредных летучих органических веществ, а микропористая мембрана отделяет вирусы. Но и это ещё не всё – каждый час воду в контейнере снова обрабатывают ультрафиолетом.

Основное производство аппаратов сосредоточено в Китае и Сингапуре, хотя доставка осуществляется по всему миру.

Aquair – американское дочернее предприятие RG Global Lifestyles , появившееся на свет в 2004 году. Её конёк, пожалуй, в том, что кроме просто высасывания влаги из воздуха она специализируется ещё и на системах очистки питьевой воды (результат – пятиступенчатый фильтр).

Предлагаю Вашему вниманию интересную статью на которую случайно наткнулся и выкладываю сюда. Сайт с которого он был сохранен назывался магов.нет, но у меня он туда так и не зашел. Поэтому выкладываю текст статьи и схемки:
"Проблема воды на приусадебном участке, на даче, в кооперативе не является редкостью. Прокладка водопровода или бурение скважины не всегда может себе позволить даже кооператив. Копание колодца вряд ли дешевле и целесообразней.
Есть ли выход из этого положения?
Есть и довольно простой и надёжный.
Насыпается пирамида из щебня на бетонном основании. Днём в тёплое время года щебёнка прогревается прямыми солнечными лучами и потоками тёплого воздуха. Ночью водяные пары, содержащиеся в атмосфере, конденсируются на остывшей щебёнке и вода стекает в углубление фундамента и далее по отводной трубе - в место сбора.
Высота пирамиды выбирается от потребности воды.
Ориентировочно, при высоте 2,5 м. за сутки такая конструкция может дать, в зависимости от влажности воздуха и суточных перепадов температуры, от 150 до 350 литров воды, что практически обеспечит любой приусадебный или дачный участок.

Для насыпки пирамиды лучше брать крупную щебёнку (гравий) размером 5-7 см. т.к. тогда вся конструкция свободно будет продуваться тёплым воздухом.
Щебень из гранита можно считать пределом мечтаний.

Для насыпки щебня на основание в форме пирамиды используется металлический каркас, который устанавливается на фундамент и по нему выравниваются грани.
После окончания формовки сверху можно натянуть металлическую оцинкованную сетку для предотвращения сползания щебня.
Высота фундамента выбирается по желанию и материальным возможностям владельца. Однако, он должен быть достаточно прочным, чтобы выдержать вес щебня.
Чтобы фундамент не делать высоким для стока воды, лучше всего пирамиду строить на пригорке, если на участке или рядом такой имеется.

Ориентированная по краям света пирамида помимо конденсации воды будет оздоравливать и нормализовать всё окружающее пространство.

Если есть биопатогенные зоны, то они будут нейтрализованы;
вода, полученная в пирамиде, будет целебной и для человека, и для растений, и для животных;
Если вода из этого конденсатора будет использоваться для питья и приготовления пищи, что весьма желательно, то перед насыпкой пирамиды, основание фундамента и весь щебень следует хорошо промыть водой, а полученную воду пропускать через механический фильтр.

Чтобы эта конструкция приносила максимальную пользу, строить её следует с соблюдением всех пропорций, которые даны в таблице 1 для наиболее вероятных размеров пирамиды.
Если у кого-либо появится желание и возможность рядом с пирамидой построить бассейн, куда будет стекать вода, то переоценить такой комплекс будет практически невозможно.
Утренняя ванна, принятая в воде, пропитанной энергией пирамиды, на всю жизнь заменит всех врачей и лекарства.
В качестве бассейна можно использовать обыкновенную ванну, установленную с северной стороны пирамиды.

Саму пирамиду весьма желательно строить с южной стороны по отношению к дому или дачной постройки.

В целях экономии средств, материалов, времени постройки и площади, пирамиду можно построить одну на несколько участков.

Чтобы дождевая вода не попадала на конструкцию, над ней желательно сделать навес из прозрачного материала (стеклопластик, плёнка, стекло)

Изобретение относится к водолазной технике и может быть использовано при создании аппаратов для автономного подводного плавания. Способ извлечения воздуха из воды путем газообмена между водой и газовой средой полой камеры, ограниченной пленкой-мембраной, отличается тем, что в качестве пленки-мембраны применяют пористый материал со сквозными порами диаметром до 100 мкм. Газообмен осуществляют при давлении воздуха в полой камере, превышающем суммарное давление атмосферы и гидростатического столба погружения камеры. Достигается увеличение скорости газообмена между воздухом камеры и водой и снижение количества используемой пленки-мембраны. 4 з.п. ф-лы.

Изобретение относится к области проведения подводных работ и может быть использовано при создании аппаратов для автономного подводного плавания с практически неограниченным временем пребывания под водой, а также для жизнеобеспечения людей под водой и их деятельности. В настоящее время для этих целей используют акваланги или замкнутые, герметичные устройства типа подводных лодок. В первом случае для дыхания под водой используют баллоны со сжатым или сжиженным газом, в состав которого входит кислород, а во втором случае, как правило, используют регенерационные химические элементы для сорбции углекислого газа и восстановления кислорода (патент РФ 2138421, B 63 С, 11/00, 11/36, опубл. 1999 г.). Недостатками известных решений являются сложность и дороговизна, а время пребывания под водой ограничивается запасом газа в баллоне или объемом регенерационных элементов. Наиболее близким к предлагаемому способу по своей сущности является способ, основанный на извлечении кислорода из воды и выводе углекислого газа через полую камеру, выполненную из селективных пленочных пластмассовых мембран, который нами принят за прототип ("Наука и жизнь", 1965 г., 3, с.139; "Наука и жизнь", 1967 г., 2, с. 86). Однако существенным недостатком способа является то, что скорость газообмена между воздухом и водой, зависящая от величины скорости диффузии кислорода и углекислого газа через мембрану, при небольшой движущей силе (определяемой разницей парциальных давлений кислорода внутри камеры и снаружи над водой) является весьма низкой, вследствие чего для обеспечения человека кислородом требуется мембрана площадью 6 м 2 , что весьма дорого, требует сложной конструкции камеры и применения дефицитных пластмассовых материалов. Задачей предлагаемого изобретения является существенное увеличение скорости газообмена между воздухом камеры и водой и снижение количества используемой пленки-мембраны. Поставленная задача решается за счет того, что в способе извлечения воздуха из воды путем газообмена между водой и газовой средой полой камеры, пленкой-мембраной, при этом в качестве пленки-мембраны применяют пористый материал со сквозными порами диаметром до 100 мкм, причем газообмен осуществляется при давлении воздуха в полой камере, превышающем суммарное давление атмосферы и гидростатического столба погружения камеры. Кроме того, давление воздуха в камере ниже давления, необходимого для преодоления сил поверхностного натяжения воды на границе раздела газовой и жидкой фаз в порах пленки мембраны. Кроме того, давление воздуха в камере поддерживают путем принудительной подачи газа. В качестве газа используют воздух или кислород, или азот, или гелий, или их смеси. В качестве пленки-мембраны применяют тканые или нетканые полимерные, хлопчатобумажные, шерстяные, синтетические материалы. В настоящем изобретении используются силы поверхностного натяжения на границе раздела фаз (в данном случае воздух-вода); силы поверхностного натяжение воды позволяют поддерживать избыточное давление воздуха. Граница раздела фаз при этом находится в порах используемой мембраны. Таким образом, в порах мембраны устанавливается непосредственный контакт между газовой средой и водой и газообмен осуществляется непосредственно, минуя диффузию через вещество мембраны, что значительно увеличивает его скорость, а это, в свою очередь, позволяет снизить площадь мембраны. Достаточно всего 10-50 мм водяного столба избыточного давления, чтобы исключить попадание воды внутрь камеры, хотя газообмен в целом и газообмен по отдельным газовым компонентам проходит и при значительно больших значениях избыточного давления. Интенсивность газообмена зависит от разницы парциальных давлений газовых компонентов внутри камеры и над соприкасающейся с мембраной водой. Выбор материала и размера пор мембран для создания полой камеры проводился на специальном стенде-камере. Сверху камеры устанавливался образец пористой мембраны диаметром 50 мм и укреплялся сверху нижней полой герметичной части стенда. Нижняя часть стенда снабжена манометром для замера давления воздуха. Кроме того, к нижней части стенда подведена подача воздуха. При установлении сухой пористой мембраны воздух практически беспрепятственно проходит через поры мембраны. При погружении стенда в воду ее сопротивление многократно увеличивается, так как на границе раздела фаз воздух-вода в порах мембраны силы поверхностного натяжения воды препятствует свободному прохождению воздуха. Сопротивление полой мембраны обратно пропорционально диаметру отверстий пор и изменяется от 5 мм водяного столба при диаметре пор 100 мкм до нескольких атмосфер избыточного давления при диаметре пор менее 0,01 мкм. При дальнейшем погружении стенда под воду сопротивление мембраны дополнительно возрастает на величину гидростатического давления столба воды и зависит от глубины погружения. Проверка газообмена между водой и полой камерой осуществлялась на специально созданных аппаратах. Результаты испытаний приведены в нижеследующих примерах, которые иллюстрируют, но не ограничивают возможность использования предлагаемого изобретения. Пример 1. Испытатель через загубник с патрубком, соединенным с полой камерой объемом около 100 л, образованной путем обтяжки смоченной водой хлопчатобумажной тканью двух колец диаметром по 800 мм с размером сквозных пор до 100 мкм при расстоянии между кольцами 200 мм, опускался под воду на глубину от 0,3 до 1,5 м. Давление внутри камеры было на 30-50 мм водяного столба больше суммарного давления атмосферы и гидростатического столба, которое изменялось от 1,03 до 1,15 ата. При опускании камеры в воду к ней подвешивался груз для преодоления выталкивающей силы воды. При этом дыхание осуществлялось только воздухом, находящимся внутри камеры. Выдох осуществлялся также внутрь камеры. Время, проведенное испытателем под водой, составляло 50 мин. Вдох и выдох через камеру осуществлялся без заметных усилий. В отсутствие газообмена между воздухом камеры и водой испытатель мог бы дышать данным объемом воздуха не более 10 мин, после чего из-за исчерпывания кислорода и накопления СО 2 дыхание оказалось бы невозможным. Следовательно, газообмен между воздухом камеры и водой осуществлялся нормально. Пример 2. Способ осуществляют аналогично примеру 1, но в качестве пористых мембран применяют "ядерные" фильтры на основе полиэтилентерефталата с диаметром пор 0,01 мкм. Испытатель провел под водой 40 мин. Пример 3. Способ осуществляют аналогично примеру 1, но в качестве пористых мембран применяют комбинированную ткань на основе шерстяных и синтетических волокон. Диаметр пор материала находится в пределах от 15 до 80 мкм. Испытатель провел под водой 2,0 ч, опускаясь на глубину до 2,6 м. Давление внутри камеры было на 90 мм водяного столба больше суммарного давления атмосферы и гидростатического столба, составлявшего 1,26 ата. Пример 4. Способ осуществляют аналогично примеру 1, но погружение проводят на глубину 7,0 м при давлении внутри камеры на 70 мм водяного столба выше значения 1,7 ата. При этом за счет гидростатического давления камера сжималась и объем ее уменьшался приблизительно до 58 л. Для восстановления объема камеры из баллона со сжатым воздухом через специальное устройство была проведена подпитка воздуха до восстановления объема камеры 100 л. Дыхание не вызывало затруднений у испытателя. Опыт продолжался 30 мин. Пример 5. Способ осуществляют аналогично примеру 4, но подпитку для восстановления объема проводят смесью гелий - кислород с 20 об.% кислорода. В течение 45 мин испытатель дышал этой смесью без заметных затруднений при вдохе и выдохе. При этом часть подаваемого газа выходила из камеры через наиболее крупные поры мембраны. Давление внутри камеры было на 220 мм водяного столба выше значения 1,7 ата. Пример 6. Из материала на основе вискозы и стеклоткани с диаметром пор менее 70 мкм был изготовлен купол объемом 50 л. Купол помещают под воду и заполняют его объем азотом. После 5 ч нахождения купола под водой отбирают пробу газа на содержания кислорода. Анализ показал присутствие кислорода под куполом в количестве 18,7 об.%, что свидетельствует о диффузии кислорода из воды. Как видно из представленных примеров, предложенный способ позволяет работать под водой в течение длительного времени (до двух и более часов) на различных глубинах, при этом за счет извлечения воздуха (кислорода) из воды концентрация кислорода поддерживается постоянной даже при значительно меньшей (около 1,5 м 2) поверхности мембраны.

Формула изобретения

1. Способ извлечения воздуха из воды путем газообмена между водой и газовой средой полой камеры, ограниченной пленкой-мембраной, отличающийся тем, что в качестве пленки-мембраны применяют пористый материал со сквозными порами диаметром до 100 мкм, причем газообмен осуществляют при давлении воздуха в полой камере, превышающем суммарное давление атмосферы и гидростатического столба погружения камеры.2. Способ по п.1, отличающийся тем, что давление воздуха в камере ниже давления, необходимого для преодоления сил поверхностного натяжения воды на границе раздела газовой и жидкой фаз в порах пленки-мембраны.3. Способ по п.1 или 2, отличающийся тем, что давление воздуха в камере поддерживают путем принудительной подачи газа.4. Способ по п.3, отличающийся тем, что в качестве газа используют воздух, или кислород, или азот, или гелий, или их смеси.5. Способ по любому из пп.1-4, отличающийся тем, что в качестве пленки-мембраны применяют тканые или нетканые полимерные, хлопчатобумажные, шерстяные, шелковые, синтетические материалы.

NF4A Восстановление действия патента СССР или патента Российской Федерации на изобретение

«Если бы я раньше знала, когда только начинались проблемы со здоровьем, что стоит в первую очередь начинать с воды, возможно, не было бы серьезных последствий…»
«Вода - это жизнь и не стоит забывать употреблять ее в чистом виде»

Статья « » вызвала самые разные отзывы, большинство из которых сходятся в одном: только чистая питьевая вода полезна для здоровья.

Проблема получения пригодной для питья воды в современном мире, становится все более острой: качество подземных вод, городских водопроводов, а значит и воды в кранах ухудшается; бутилированная вода признана еще более вредной, чем водопроводная.

Приветствую Вас, дорогие друзья, на сайте о качестве жизни, здоровье, явлении сна.
В сегодняшней статье:
инновационная технология получения воды из воздуха, преимущества атмосферной воды, отзыв о генераторе (личный опыт).

Немного страшилок о качестве воды, которую мы пьем

Водопроводная вода . Основной источник питьевой воды в настоящее время - центральный водопровод. Технология дезинфекции воды хлорированием применяется уже более 100 лет во всем мире. Хлор весьма токсичен для живых микроорганизмов и для человека в том числе.

Исследователи утверждают, что на протяжении жизни человек потребляет хлора до 15 кг. Хлор пагубно воздействует на здоровье, происходит преждевременное старение организма. При кипячении хлор образует канцерогенные соединения, провоцирующие онкологические заболевания.

Помимо этого, «жесткая» вода (с высоким уровнем солей магния и кальция), образующая накипь в чайнике, а на хромированной поверхности белые известковые отложения, поражает стенки такими же пятнами и накипью.

Бутилированная вода часто является еще хуже, чем водопроводная. Средняя цена одного литра бутилированной воды - 7 рублей. Какое качество можно получить за эти деньги?

Производители используют для очистки воды технологию обратного осмоса, прогоняя через фильтр обычную воду. При большом потоке фильтры вряд ли меняются по регламенту. А чтобы вода не помутнела и в ней не образовалась плесень при длительном хранении, в нее добавляются консерванты.

К тому же, пластик, из которого изготавливаются бутыли, содержит опасные для здоровья вещества, попадающие в воду. Исследования показали, что вода из пластиковой бутылки часто оказывается более вредной для человека, чем водопроводная. Химические элементы, консерванты, гетеротрофные бактерии, бисфенол-А, содержащиеся в такой воде приводят к генным мутациям и гормональным сбоям.

Любая вода , водопроводная или бутилированная, обладает информационной (гомеопатической) памятью, приобретенной в загрязненных реках, старых канализационных трубах.

Вода, даже тщательно очищенная, все равно помнит о ядах, которые в ней содержались, и является «больной». Поэтому, очищение воды фильтрами недостаточно. Ее нужно лечить, восстанавливая первоначальную структуру путем конденсации-испарения или замораживания-оттаивания, как это происходит в Природе. В атмосферном генераторе вода «оживает» благодаря процессу конденсации.

Предыстория

Впервые с атмосферным генератором я «познакомилась» у своей подруги Виктории Омад, которая не уставала мне расхваливать свою покупку: не нужен кулер, бутылки, не нужен водопровод, а только розетка на 220 вольт (совсем как в рекламе), что вода очень вкусная и полезная и прочее и прочее…

Признаться, меня очень удивил и заинтриговал сам способ получения воды из воздуха, да еще и полезной во всех отношениях. Мы с мужем посовещались и решили тоже приобрести такой удивительный аппарат.

Перед важной покупкой, посетили офис продаж, где консультанты нам подробно рассказали о новой технологии, показали генератор и его внутренности, мы попробовали воду на вкус, изучили все «за» и «против». Своими открытиями делюсь с вами.

Инновационная технология

Атмосферный генератор выполняет 7 функций одновременно :

1 . Производит воду наивысшего качества.

2 . Очищает воду , обеззараживает и реструктурирует ее.

3 . Очищает воздух от пыли и запахов. Окружающая среда становится благоприятной для здоровья.

4 . Удаляет избыточную влагу из воздуха.

5 . Охлаждает воду до +5 градусов. В жару для этой цели не нужен холодильник.

6 . Нагревает воду до +95 градусов, что позволяет обходиться без чайника.

7 . Электронный измеритель показывает влажность воздуха в помещении.
.

Принцип работы генератора. Этапы фильтрации

Схема размещена с разрешения правообладателя, компании Yummy Aqua.

1 этап: воздух, проходит электростатический фильтр (1), очищается от пыли, взвешенных частиц, бактерий.

2 этап: очищенный воздух охлаждается конденсатором до точки Росы: влага воздуха превращается в воду (2).

3 этап: вода из конденсатора стекает в лоток (3) и собирается в нижнем накопительном баке, где очищается гранулированным фильтром (содержит активированный уголь и природный кристаллический цеолит) от марганца, железа, аммония и стерилизуется ультрафиолетом.

4 этап: насосом высокого давления (4) вода прокачивается через блок фильтров (5):

Пре-карбоновый фильтр грубой очистки: очищает воду от нерастворенных микрочастиц, катионов металлов (тяжелых и переходных), высокомолекулярной органики, коллоидных веществ.

Пост-карбоновый фильтр тонкой очистки задерживает ионы тяжелых металлов, хлор, аммиак, запахи, пестициды (размер 2-3 мкм).

Мембрану обратного осмоса - очень важный этап фильтрации, обеспечивает практически полное 99,9% очищение и стерилизацию воды. Мембрана этого фильтра задерживает мельчайшие молекулы, размер которых больше 0,3 нанометров, это обеспечивает уникальную чистоту воды. К примеру, у молекул вирусов размер от 20 до 500 нанометров.

ТЦР-карбоновый фильтр тонкой очистки обогащает воду необходимыми минералами и микроэлементами в физиологических пропорциях, повышает pH-уровень, делает воду «живой».

5 этап: вода, поступившая в верхний накопительный бак (6), повторно стерилизуется ультрафиолетом.

6 этап: из верхнего накопительного бака вода распределяется в баки с холодной и горячей водой.

7 этап: на выходе из бака холодной воды установлена третья УФ лампа (7) для 100%-ного обеззараживания воды.

8 этап: генератор каждые двадцать минут повторно прокачивает воду по всему большому кругу очищения. Благодаря этому исключено застаивание воды, на выходе мы имеем чистую и свежую воду в любой момент.

Преимущества атмосферной воды

Премиум качество: генератор вырабатывает «живую» воду благодаря мощной 14-ти ступенчатой системе фильтрации. Бактериологические и химические свойства атмосферной воды соответствуют и даже превосходят нормы СанПин 2.1.4.1074-01 (питьевого стандарта).

«Живая» вода: процесс испарения-конденсации, который проходит вода в генераторе, восстанавливает первозданную структуру воды, «стирает» ее больную информационную память. Вода буквально «оживает».

Восстановить природную структуру воды, вылечить ее больную память можно только путем испарения-конденсации или замораживания-размораживания, то есть переводом молекул воды в другое фазовое состояние. Именно так происходит в Природе: испаряясь из океанов, морей, рек, затем конденсируясь и выпадая росой, дождем, снегом, вода избавляется от экологической памяти о тех ядах и загрязнениях, которые в ней содержались.

pH 8.5: обогащенная минералами и кислородом, структурированная вода с pH 8,5 - идеальное питье для будущих мамочек и малышей, по свойствам схожа с талой водой горных ледников. Именно этим объясняется ее благотворное влияние на организм (о силе талой воды знают все).

Эликсир здоровья: атмосферная вода, обогащенная минералами и микроэлементами в строго выверенных физиологических соотношениях, легко проникает через мембраны клеток, служит мощным антиоксидантом, нормализует метаболизм, повышает энергетику.

Всегда свежая: вода через каждые 40 минут прогоняется по всем этапам фильтрации, что исключает ее застаивание, обеспечивает свежесть и чистоту, необходимый pH-уровень.

Чистый воздух: генератор очищает воздух от пыли, запахов, взвешенных частиц, что важно для людей, страдающих от аллергии.

В быту: «живую» воду можно использовать для приготовления пищи, полива домашних цветов, рассады. По собственному опыту отмечу: цветы стали лучше расти. Если чудо-водой ополоснуть зелень, овощи или фрукты, они хранятся дольше.

Для экологии: самое главное преимущество получения воды из воздуха - это отказ от пластика, который, как известно, сжигать нельзя, а естественный срок разложения превышает 500 лет. Использование атмосферных генераторов бережет планету от загрязнения пластиковыми отходами.

Где используются атмосферные генераторы

Генератор воды из воздуха вырабатывает воду в любом месте, главное условие - наличие источника электроэнергии. А потому, они эффективны даже на даче, если там нет водопровода (мы с мужем уже решили, что когда летом поедем на дачу, то обязательно возьмем генератор с собой) или яхте, к примеру.