Характерные химические свойства кислорода. Нахождение кислорода в природе

ОПРЕДЕЛЕНИЕ

Кислород - восьмой по счету элемент Периодической таблицы. Относится к неметаллам. Расположен во втором периоде VI группы A подгруппы.

Порядковый номер равен 8. Заряд ядра равен +8. Атомный вес - 15,999а.е.м. В природе встречаются три изотопа кислорода: 16 O, 17 O и 18 O, из которых наиболее распространенным является 16 O (99,762 %).

Электронное строение атома кислорода

Атом кислорода имеет две оболочки, как и все элементы, расположенные во втором периоде. Номер группы -VI (халькогены) - свидетельствует о том, что на внешнем электронном уровне атома азота находится 6 валентных электронов. Обладает высокой окислительной способностью (выше только у фтора).

Рис. 1. Схематичное изображение строения атома кислорода.

Электронная конфигурация основного состояния записывается следующим образом:

1s 2 2s 2 2p 4 .

Кислород - элемент p-семейства. Энергетическая диаграмма для валентных электронов в невозбужденном состоянии выглядит следующим образом:

У кислорода есть 2 пары спаренных электронов и два неспаренных электрона. Во всех своих соединениях кислород проявляет валентность II.

Рис. 2. Пространственное изображение строения атома кислорода.

Примеры решения задач

ПРИМЕР 1

КИСЛОРОД (латинский Oxygenium), О, химический элемент VI группы короткой формы (16-й группы длинной формы) периодической системы, относится к халькогенам; атомный номер 8, атомная масса 15,9994. Природный кислород состоит из трёх изотопов: 16 О (99,757%), 17 О (0,038%) и 18 О (0,205%). Преобладание в смеси изотопов наиболее лёгкого 16 О связано с тем, что ядро атома 16 О состоит из 8 протонов и 8 нейтронов. Равное число протонов и нейтронов обусловливает высокую энергию их связи в ядре и наибольшую стабильность ядер 16 О по сравнению с остальными. Искусственно получены радиоизотопы с массовыми числами 12-26.

Историческая справка. Кислород получили в 1774 году независимо К. Шееле (путём прокаливания нитратов калия КNО 3 и натрия NaNO 3 , диоксида марганца MnO 2 и других веществ) и Дж. Пристли (при нагревании тетраоксида свинца Pb 3 О 4 и оксида ртути HgO). Позднее, когда было установлено, что кислород входит в состав кислот, А. Лавуазье предложил название oxygène (от греческого όχύς - кислый и γεννάω - рождаю, отсюда и русское название «кислород»).

Распространённость в природе. Кислород - самый распространённый химический элемент на Земле: содержание химически связанного кислорода в гидросфере составляет 85,82% (главным образом в виде воды), в земной коре -49% по массе. Известно более 1400 минералов, в состав которых входит кислород. Среди них преобладают минералы, образованные солями кислородсодержащих кислот (важнейшие классы - карбонаты природные, силикаты природные, сульфаты природные, фосфаты природные), и горные породы на их основе (например, известняк, мрамор), а также различные оксиды природные, гидроксиды природные и горные породы (например, базальт). Молекулярный кислород составляет 20,95% по объёму (23,10% по массе) земной атмосферы. Кислород атмосферы имеет биологическое происхождение и образуется в зелёных растениях, содержащих хлорофилл, из воды и диоксида углерода при фотосинтезе. Количество кислорода, выделяемое растениями, компенсирует количество кислорода, расходуемое в процессах гниения, горения, дыхания.

Кислород - биогенный элемент - входит в состав важнейших классов природных органических соединений (белков, жиров, нуклеиновых кислот, углеводов и др.) и в состав неорганических соединений скелета.

Свойства . Строение внешней электронной оболочки атома кислорода 2s 2 2р 4 ; в соединениях проявляет степени окисления -2, -1, редко +1, +2; электроотрицательность по Полингу 3,44 (наиболее электроотрицательный элемент после фтора); атомный радиус 60 пм; радиус иона О 2 -121 пм (координационное число 2). В газообразном, жидком и твёрдом состояниях кислород существует в виде двухатомных молекул О 2 . Молекулы О 2 парамагнитны. Существует также аллотропная модификация кислорода - озон, состоящая из трёхатомных молекул О 3 .

В основном состоянии атом кислорода имеет чётное число валентных электронов, два из которых не спарены. Поэтому кислород, не имеющий низкой по энергии вакантной d-opбитали, в большинстве химических соединений двухвалентен. В зависимости от характера химической связи и типа кристаллической структуры соединения координационное число кислорода может быть разным: О (атомарный кислород), 1 (например, О 2 , СО 2), 2 (например, Н 2 О, Н 2 О 2), 3 (например, Н 3 О +), 4 (например, оксоацетаты Be и Zn), 6 (например, MgO, CdO), 8 (например, Na 2 О, Cs 2 О). За счёт небольшого радиуса атома кислород способен образовывать прочные π-связи с другими атомами, например с атомами кислорода (О 2 , О 3), углерода, азота, серы, фосфора. Поэтому для кислорода одна двойная связь (494 кДж/моль) энергетически более выгодна, чем две простые (146 кДж/моль).

Парамагнетизм молекул О 2 объясняется наличием двух неспаренных электронов с параллельными спинами на дважды вырожденных разрыхляющих π*-орбиталях. Поскольку на связывающих орбиталях молекулы находится на четыре электрона больше, чем на разрыхляющих, порядок связи в О 2 равен 2, т. е. связь между атомами кислорода двойная. Если при фотохимическом или химическом воздействии на одной π*-орбитали оказываются два электрона с противоположными спинами, возникает первое возбуждённое состояние, по энергии расположенное на 92 кДж/моль выше основного. Если при возбуждении атома кислорода два электрона занимают две разные π*-орбитали и имеют противоположные спины, возникает второе возбуждённое состояние, энергия которого на 155 кДж/моль больше, чем основного. Возбуждение сопровождается увеличением межатомных расстояний О-О: от 120,74 пм в основном состоянии до 121,55 пм для первого и до 122,77 пм для второго возбуждённого состояния, что, в свою очередь, приводит к ослаблению связи О-О и к усилению химической активности кислорода. Оба возбуждённых состояния молекулы О 2 играют важную роль в реакциях окисления в газовой фазе.

Кислород - газ без цвета, запаха и вкуса; t пл -218,3 °С, t кип -182,9 °С, плотность газообразного кислорода 1428,97 кг/дм 3 (при 0 °С и нормальном давлении). Жидкий кислород - бледно-голубая жидкость, твёрдый кислород - синее кристаллическое вещество. При 0 °С теплопроводность 24,65-10 -3 Вт/(мК), молярная теплоёмкость при постоянном давлении 29,27 Дж/(моль·К), диэлектрическая проницаемость газообразного кислорода 1,000547, жидкого 1,491. Кислород плохо растворим в воде (3,1% кислорода по объёму при 20°С), хорошо растворим в некоторых фторорганических растворителях, например перфтордекалине (4500% кислорода по объёму при 0 °С). Значительное количество кислорода растворяют благородные металлы: серебро, золото и платина. Растворимость газа в расплавленном серебре (2200% по объёму при 962 °С) резко понижается с уменьшением температуры, поэтому при охлаждении на воздухе расплав серебра «закипает» и разбрызгивается вследствие интенсивного выделения растворённого кислорода.

Кислород обладает высокой реакционной способностью, сильный окислитель: взаимодействует с большинством простых веществ при нормальных условиях, в основном с образованием соответствующих оксидов (многие реакции, протекающие медленно при комнатной и более низких температурах, при нагревании сопровождаются взрывом и выделением большого количества теплоты). Кислород взаимодействует при нормальных условиях с водородом (образуется вода Н 2 О; смеси кислорода с водородом взрывоопасны - смотри Гремучий газ), при нагревании - с серой (серы диоксид SO 2 и серы триоксид SO 3), углеродом (углерода оксид СО, углерода диоксид СО 2), фосфором (фосфора оксиды), многими металлами (оксиды металлов), особенно легко со щелочными и щёлочноземельными (в основном пероксиды и надпероксиды металлов, например пероксид бария ВаО 2 , надпероксид калия КО 2). С азотом кислород взаимодействует при температуре выше 1200 °С или при воздействии электрического разряда (образуется монооксид азота NO). Соединения кислорода с ксеноном, криптоном, галогенами, золотом и платиной получают косвенным путём. Кислород не образует химических соединений с гелием, неоном и аргоном. Жидкий кислород также является сильным окислителем: пропитанная им вата при поджигании мгновенно сгорает, некоторые летучие органические вещества способны самовоспламеняться, когда находятся на расстоянии нескольких метров от открытого сосуда с жидким кислородом.

Кислород образует три ионные формы, каждая из которых определяет свойства отдельного класса химических соединений: О 2 - супероксидов (формальная степень окисления атома кислорода -0,5), О 2 - - пероксидных соединений (степень окисления атома кислорода -1, например водорода пероксид Н 2 О 2), О 2- - оксидов (степень окисления атома кислорода -2). Положительные степени окисления +1 и +2 кислород проявляет во фторидах О 2 F 2 и OF 2 соответственно. Фториды кислорода неустойчивы, являются сильными окислителями и фторирующими реагентами.

Молекулярный кислород является слабым лигандом и присоединяется к некоторым комплексам Fe, Со, Mn, Cu. Среди таких комплексов наиболее важен железопорфирин, входящий в состав гемоглобина - белка, который осуществляет перенос кислорода в организме теплокровных.

Биологическая роль . Кислород как в свободном виде, так и в составе различных веществ (например, ферментов оксидаз и оксидоредуктаз) принимает участие во всех окислительных процессах, протекающих в живых организмах. В результате выделяется большое количество энергии, расходуемой в процессе жизнедеятельности.

Получение . В промышленных масштабах кислород производят путём сжижения и фракционной перегонки воздуха (смотри в статье Воздуха разделение), а также электролизом воды. В лабораторных условиях кислород получают разложением при нагревании пероксида водорода (2Р 2 О 2 = 2Н 2 О + О 2), оксидов металлов (например, оксида ртути: 2HgO = 2Hg + О 2), солей кислородсодержащих кислот-окислителей (например, хлората калия: 2КlO 3 = 2KCl + 3О 2 , перманганата калия: 2KMnO 4 = К 2 MnO 4 + MnO 2 + О 2), электролизом водного раствора NaOH. Газообразный кислород хранят и транспортируют в стальных баллонах, окрашенных в голубой цвет, при давлении 15 и 42 МПа, жидкий кислород - в металлических сосудах Дьюара или в специальных цистернах-танках.

Применение . Технический кислород используют как окислитель в металлургии (смотри, например, Кислородно-конвертерный процесс), при газопламенной обработке металлов (смотри, например, Кислородная резка), в химической промышленности при получении искусственного жидкого топлива, смазочных масел, азотной и серной кислот, метанола, аммиака и аммиачных удобрений, пероксидов металлов и др. Чистый кислород используют в кислородно-дыхательных аппаратах на космических кораблях, подводных лодках, при подъёме на большие высоты, проведении подводных работ, в лечебных целях в медицине (смотри в статье Оксигенотерапия). Жидкий кислород применяют как окислитель ракетных топлив, при взрывных работах. Водные эмульсии растворов газообразного кислорода в некоторых фторорганических растворителях предложено использовать в качестве искусственных кровезаменителей (например, перфторан).

Лит.: Saunders N. Oxygen and the elements of group 16. Oxf., 2003; Дроздов А. А., Зломанов В. П., Мазо Г. Н., Спиридонов Ф. М. Неорганическая химия. М., 2004. Т. 2; Шрайвер Д., Эткинс П. Неорганическая химия. М., 2004. Т. 1-2.

Одним из важнейших элементов на нашей планете является кислород. Химические свойства этого вещества позволяют ему участвовать в биологических процессах, а повышенная активность делает кислород значимым участником всех известных химических реакций. В свободном состоянии это вещество имеется в атмосфере. В связанном состоянии кислород входит в состав минералов, горных пород, сложных веществ, из которых состоят различные живые организмы. Общее количество кислорода на Земле оценивается в 47% общей массы нашей планеты.

Обозначение кислорода

В периодической системе кислород занимает восьмую ячейку этой таблицы. Его международное название oxigenium. В химических записях он обозначается латинской литерой «О». В естественной среде атомарный кислород не встречается, его частички соединяются, образуя парные молекулы газа, молекулярная масса которого равна 32 г/моль.

Воздух и кислород

Воздух представляет смесь нескольких распространенных на Земле газов. Больше всего в воздушной массе азота - 78,2% по объему и 75,5 % по массе. Кислород занимает лишь второе место по объему - 20,9%, а по массе - 23,2%. Третье место закреплено за благородными газами. Остальные примеси - углекислый газ, водяной пар, пыль и прочее - занимают лишь доли процента в общей воздушной массе.

Вся масса естественного кислорода является смесью трех изотопов - 16 О, 17 О, 18 О. Процентное содержание этих изотопов в общей массе кислорода равно 99,76%, 0,04% и 0,2% соответственно.

Физические и химические свойства кислорода

Один литр воздуха при нормальных условиях весит 1,293 г. При понижении температуры до -140⁰С воздух становится бесцветной прозрачной жидкостью. Несмотря на низкую температуру кипения воздух можно сохранять в жидком состоянии даже при комнатной температуре. Для этого жидкость нужно поместить в так называемый сосуд Дьюара. Погружение в жидкий кислород коренным образом меняет обычные свойства предметов.

Этиловый спирт и многие газы становятся твердыми предметами, ртуть приобретает твердость и ковкость, а резиновый мячик теряет свою упругость и рассыпается при малейшем ударе.

Кислород растворяется в воде, хотя и в небольших количествах - морская вода содержит 3-5% кислорода. Но даже такое небольшое количество этого газа положило начало существованию рыб, моллюсков и различных морских организмов, которые получают кислород из воды для поддержания процессов собственного жизнеобеспечения.

Строение атома кислорода

Описанные свойства кислорода в первую очередь объясняются внутренним строением этого элемента.

Кислород относится к главной подгруппе шестой группы элементов периодической системы. Во внешнем электронном облаке элемента находятся шесть электронов, четыре из которых занимают p-орбитали, а оставшиеся два располагаются на s-орбиталях. Такое внутреннее строение обуславливает большие энергетические затраты, направленные на разрывание электронных связей - атому кислорода проще заимствовать два недостающих электрона на внешнюю орбиталь, чем отдать свои шесть. Поэтому ковалентность кислорода в большинстве случаев равна двум. Благодаря двум свободным электронам кислород легко образует двухатомные молекулы, которые характеризуются высокой прочностью связи. Лишь при прилагаемой энергии свыше 498 Дж/моль молекулы распадаются, и образуется атомарный кислород. Химические свойства этого элемента позволяют ему вступать в реакции со всеми известными веществами, исключая гелий, неон и аргон. Скорость взаимодействия зависит от температуры реакции и от природы вещества.

Химические свойства кислорода

С различными веществами кислород вступает в реакции образования оксидов, причем эти реакции характерны и для металлов, и для неметаллов. Соединения кислорода с металлами называют основными оксидами - классическим примером служит оксид магния и оксид кальция. Взаимодействие оксидов металлов с водой приводит к образованию гидроксидов, подтверждающих активные химические свойства кислорода. С неметаллами это вещество образует кислотные оксиды - например, триоксид серы SO 3. При взаимодействии этого элемента с водой получается серная кислота.

Химическая активность

С подавляющим большинством элементов кислород взаимодействует непосредственно. Исключение составляют золото, галогены и платина. Взаимодействие кислорода с некоторыми веществами значительно ускоряется при наличии катализаторов. Например, смесь водорода и кислорода в присутствии платины вступает в реакцию даже при комнатной температуре. С оглушительным взрывом смесь превращается в обычную воду, важной составной частью которой является кислород. Химические свойства и высокая активность элемента объясняют выделение большого количества света и теплоты, поэтому химические реакции с кислородом часто называются горением.

Горение в чистом кислороде происходит гораздо интенсивнее, чем в воздухе, хотя количество теплоты, выделяемой при реакции, будет приблизительно одинаковым, но процесс из-за отсутствия азота протекает гораздо быстрее, а температура горения становится выше.

Получение кислорода

В 1774 году английский ученый Д. Пристли выделил неизвестный газ из реакции разложения оксида ртути. Но ученый не связал выделенный газ с уже известным веществом, входящим в состав воздуха. Лишь несколько лет спустя великий Лавуазье изучил физико-химические свойства кислорода, полученного в данной реакции, и доказал его идентичность с газом, входящим в состав воздуха. В современном мире кислород получают из воздуха. В лабораториях использую промышленный кислород, который поставляется баллонами под давлением около 15 Мпа. Чистый кислород можно получить и в лабораторных условиях, стандартным способом его получения является термическое разложение перманганата калия, которое протекает по формуле:

Получение озона

Если через кислород или воздух пропустить электричество, то в атмосфере появится характерный запах, предвещающий появление нового вещества - озона. Озон можно получить и из химически чистого кислорода. Образование этого вещества можно выразить формулой:

Данная реакция самостоятельно протекать не может - для ее успешного завершения необходима внешняя энергия. Зато обратное превращение озона в кислород происходит самопроизвольно. Химические свойства кислорода и озона разнятся во многом. Озон отличается от кислорода плотностью, температурой плавления и кипения. При нормальных условиях этот газ имеет голубой цвет и обладает характерным запахом. Озон обладает большей электропроводностью и лучше растворяется в воде, чем кислород. Химические свойства озона объясняются процессом его распада - при разложении молекулы этого вещества образуется двухатомная молекула кислорода плюс один свободный атом этого элемента, который агрессивно реагирует с другими веществами. Например, известна реакция взаимодействия озона и кислорода: 6Ag+O 3 =3Ag 2 O

А вот обычный кислород не соединяется с серебром даже при высокой температуре.

В природе активный распад озона чреват образованием так называемых озоновых дыр, которые подвергают угрозе жизненные процессы на нашей планете.

Кислород образует пероксиды со степенью окисления −1.
— Например, пероксиды получаются при сгорании щелочных металлов в кислороде:
2Na + O 2 → Na 2 O 2

— Некоторые окислы поглощают кислород:
2BaO + O 2 → 2BaO 2

— По принципам горения, разработанным А. Н. Бахом и К. О. Энглером, окисление происходит в две стадии с образованием промежуточного пероксидного соединения. Это промежуточное соединение можно выделить, например, при охлаждении пламени горящего водорода льдом, наряду с водой, образуется перекись водорода:
H 2 + O 2 → H 2 O 2

Надпероксиды имеют степень окисления −1/2, то есть один электрон на два атома кислорода (ион O 2 -). Получают взаимодействием пероксидов с кислородом при повышенных давлениям и температуре:
Na 2 O 2 + O 2 → 2NaO 2

Озониды содержат ион O 3 - со степенью окисления −1/3. Получают действием озона на гидроксиды щелочных металлов:
КОН(тв.) + О 3 → КО 3 + КОН + O 2

Ион диоксигенил O 2 + имеет степень окисления +1/2. Получают по реакции:
PtF 6 + O 2 → O 2 PtF 6

Фториды кислорода
Дифторид кислорода , OF 2 степень окисления +2, получают пропусканием фтора через раствор щелочи:
2F 2 + 2NaOH → OF 2 + 2NaF + H 2 O

Монофторид кислорода (Диоксидифторид ), O 2 F 2 , нестабилен, степень окисления +1. Получают из смеси фтора с кислородом в тлеющем разряде при температуре −196 °C.

Пропуская тлеющий разряд через смесь фтора с кислородом при определенных давлении и температуре получаются смеси высших фторидов кислорода O 3 F 2 , О 4 F 2 , О 5 F 2 и О 6 F 2 .
Кислород поддерживает процессы дыхания, горения, гниения. В свободном виде элемент существует в двух аллотропных модификациях:O 2 и O 3 (озон).

Применение кислорода

Широкое промышленное применение кислорода началось в середине XX века, после изобретения турбодетандеров — устройств для сжижения и разделения жидкого воздуха.

В металлургии

Конвертерный способ производства стали связан с применением кислорода.

Сварка и резка металлов

Кислород в баллонах широко используется для газопламенной резки и сварки металлов.

Ракетное топливо

В качестве окислителя для ракетного топлива применяется жидкий кислород, пероксид водорода, азотная кислота и другие богатые кислородом соединения. Смесь жидкого кислорода и жидкого озона — один из самых мощных окислителей ракетного топлива (удельный импульс смеси водород — озон превышает удельный импульс для пары водород-фтор и водород-фторид кислорода).

В медицине

Кислород используется для обогащения дыхательных газовых смесей при нарушении дыхания, для лечения астмы, в виде кислородных коктейлей, кислородных подушек и т. д.

В пищевой промышленности

В пищевой промышленности кислород зарегистрирован в качестве пищевой добавки E948 , как пропеллент и упаковочный газ.

Биологическая роль кислорода

Живые существа дышат кислородом воздуха. Широко используется кислород в медицине. При сердечно-сосудистых заболеваниях, для улучшения обменных процессов, в желудок вводят кислородную пену («кислородный коктейль»). Подкожное введение кислорода используют при трофических язвах, слоновости, гангрене и других серьёзных заболеваниях. Для обеззараживания и дезодорации воздуха и очистки питьевой воды применяют искусственное обогащение озоном. Радиоактивный изотоп кислорода 15 O применяется для исследований скорости кровотока, лёгочной вентиляции.

Токсические производные кислорода

Некоторые производные кислорода (т. н. реактивные формы кислорода), такие как синглетный кислород, перекись водорода, супероксид, озон и гидроксильный радикал, являются высокотоксичными продуктами. Они образуются в процессе активирования или частичного восстановления кислорода. Супероксид (супероксидный радикал), перекись водорода и гидроксильный радикал могут образовываться в клетках и тканях организма человека и животных и вызывают оксидативный стресс.

Изотопы кислорода

Кислород имеет три устойчивых изотопа: 16 О, 17 О и 18 О, среднее содержание которых составляет соответственно 99,759 %, 0,037% и 0,204% от общего числа атомов кислорода на Земле. Резкое преобладание в смеси изотопов наиболее легкого из них 16 О связано с тем, что ядро атома 16 О состоит из 8 протонов и 8 нейтронов. А такие ядра, как следует из теории строения атомного ядра, обладают особой устойчивостью.

Имеются радиоактивные изотопы 11 О, 13 О, 14 О (период полураспада 74 сек), 15 О (Т 1/2 =2,1 мин), 19 О (Т 1/2 =29,4 сек), 20 О (противоречивые данные по периоду полураспада от 10 мин до 150 лет).

Дополнительная информация

Соединения кислорода
Жидкий кислород
Озон

Кислород, Oxygenium, O (8)
Открытие кислорода (Oxygen, франц. Oxygene, нем. Sauerstoff) ознаменовало начало современного периода развития химии. С глубокой древности было известно, что для горения необходим воздух, однако многие века процесс горения оставался непонятным. Лишь в XVII в. Майов и Бойль независимо друг от друга высказали мысль, что в воздухе содержится некоторая субстанция, которая поддерживает горение, но эта вполне рациональная гипотеза не получила тогда развития, так как представление о горении, как о процессе соединения горящего тела с некой составной частью воздуха, казалось в то время противоречащим столь очевидному акту, как то, что при горении имеет место разложение горящего тела на элементарные составные части. Именно на этой основе на рубеже XVII в. возникла теория флогистона, созданная Бехером и Шталем. С наступлением химико-аналитического периода развития химии (вторая половина XVIII в.) и возникновением «пневматической химии» — одной из главных ветвей химико-аналитического направления — горение, а также дыхание вновь привлекли к себе внимание исследователей. Открытие различных газов и установление их важной роли в химических процессах явилось одним из главных стимулов для систематических исследований процессов горения веществ, предпринятых Лавуазье. Кислород был открыт в начале 70-х годов XVIII в.

Первое сообщение об этом открытии было сделано Пристлеем на заседании Английского королевского общества в 1775 г. Пристлей, нагревая красную окись ртути большим зажигательным стеклом, получил газ, в котором свеча горела более ярко, чем в обычном воздухе, а тлеющая лучина вспыхивала. Пристлей определил некоторые свойства нового газа и назвал его дефлогистированным воздухом (daphlogisticated air). Однако двумя годами ранее Пристлея (1772) Шееле тоже получал кислород разложением окиси ртути и другими способами. Шееле назвал этот газ огненным воздухом (Feuerluft). Сообщение же о своем открытии Шееле смог сделать лишь в 1777 г.

В 1775 г. Лавуазье выступил перед Парижской академией наук с сообщением, что ему удалось получить «наиболее чистую часть воздуха, который нас окружает», и описал свойства этой части воздуха. Вначале Лавуазье называл этот «воздух» эмпирейным, жизненным (Air empireal, Air vital) основанием жизненного воздуха (Base де l"air vital). Почти одновременное открытие кислорода несколькими учеными в разных странах вызвало споры о приоритете. Особенно настойчиво признания себя первооткрывателем добивался Пристлей. По существу споры эти не окончились до сих пор. Подробное изучение свойств кислорода и его роли в процессах горения и образования окислов привело Лавуазье к неправильному выводу о том, что этот газ представляет собой кислотообразующее начало. В 1779 г. Лавуазье в соответствии с этим выводом ввел для кислорода новое название — кислото образующий принцип (principe acidifiant ou principe oxygine). Фигурирующее в этом сложном названии слово oxygine Лавуазье произвел от греч.- кислота и «я произвожу».

Элементы, расположенные в главной подгруппе VI группы периодической системы элементов Д. И. Менделеева.

Распределение электронов по энергетическим уравнениям атомов элементов группы кислородаТаблица 13

Элемент

Заряд ядра

Энергетические уровни

Радиус атома Å

K

L

M

N

O

0,60

1,04

1,16

1,43

Рассмотрение атомных структур элементов главной подгруппы VI группы показывает, что все они имеют шестиэлектронную структуру внешнего слоя (табл. 13) и в связи с этим обладают сравнительно высокими значениями электроотрицательности. Наибольшей электроотрицательностью обладает , наименьшей - , что объясняется изменением величины атомного радиуса. Особое место кислорода в этой группе подчеркивается тем, что , и теллур могут непосредственно соединяться с кислородом, но не могут соединяться между собой.

Элементы группы кислорода также принадлежат к числу р -элементов, так как у них достраивается р -оболочка. Для всех элементов семейства, кроме самого кислорода, валентными являются 6 электронов внешнего слоя.
В окислительно-восстановительных реакциях элементы группы кислорода часто проявляют окислительные свойства. Наиболее сильно окислительные свойства выражены у кислорода.
Для всех элементов главной подгруппы VI группы характерна отрицательная степень окисления -2. Однако для серы, селена и теллура наряду с этим возможны и положительные степени окисления (максимальная +6).
Молекула кислорода, как всякого простого газа, двухатомна, построена по типу ковалентной связи, образованной посредством двух электронных пар. Следовательно, кислород двухвалентен при образовании простого .
Сера - твердое вещество. В состав молекулы входит 8 атомов серы (S8), но они соединены в своеобразное кольцо, в котором каждый атом серы соединен лишь с двумя соседними атомами ковалентной связью

Таким образом, каждый атом серы, имея с двумя соседними атомами по одной общей электронной паре, сам по себе является двухвалентным. Сходные молекулы образуют селен (Se8) и теллур (Te8).

1. Составьте рассказ о группе кислорода по следующему плану: а) положение в периодической системе; б) заряды ядер и. число нейтронов в ядре; в) электронные конфигурации; г) структура кристаллической решетки; д) возможные степени окисления кислорода и всех остальных элементов этой группы.
2. В чем сходство и различие атомных структур и электронных конфигураций атомов элементов главных подгрупп VI и VII групп?
3. Сколько валентных электронов имеется у элементов главной подгруппы VI группы?
4. Как должны себя вести элементы главной подгруппы VI группы в окислительно-восстановительных реакциях?
5. Какой из элементов главной подгруппы VI группы является наиболее электроотрицательным?

При рассмотрении элементов главной подгруппы VI группы мы впервые встречаемся с явлением аллотропии. Один и тот же элемент в свободном состоянии может образовывать два или несколько простых веществ. Такое явление называется аллотропией, а сами называются аллотропными видоизменениями.

Запишите эту формулировку в тетрадь.

Например, элемент кислород способен образовывать два простых - кислород и озон.
Формула простого кислорода O2, формула простого вещества озона O3. Построены их молекулы по разному:


Кислород и озон - аллотропные видоизменения элемента кислорода.
Сера также может образовывать несколько аллотропных видоизменений (модификаций). Известна ромбическая (октаэдрическая), пластическая и моноклиническая сера. Селен и теллур также образуют несколько аллотропных видоизменений. Следует заметить, что явление аллотропии характерно для многих элементов. Различия в свойствах разных аллотропных видоизменений мы рассмотрим при изучении элементов.

6. В чем отличие структуры молекулы кислорода от структуры молекулы озона?

7. Какого типа связь в молекулах кислорода и озона?

Кислород. Физические свойства, физиологическое действие, значение кислорода в природе

Кислород - наиболее легкий элемент главной подгруппы VI группы. Атомный вес кислорода 15,994. 31,988. Атом кислорода имеет самый малый радиус из элементов этой подгруппы (0,6 Å). Электронная конфигурация атома кислорода: ls 2 2s 2 2p 4 .

Распределение электронов по орбиталям второго слоя указывает на , что кислород имеет на р-орбиталях два непарных электрона, которые могут быть легко использованы на образование химической связи между атомами. Характерная степень окисления кислорода.
Кислород представляет собой газ, не имеющий цвета и запаха. Он тяжелее воздуха, при температуре -183° превращается в жидкость голубого цвета, а при температуре -219° затвердевает.

Плотность кислорода равна 1,43 г/л. Кислород плохо растворим в воде: в 100 объемах воды при 0° растворяются 3 объема кислорода. Поэтому кислород можно держать в газометре (рис. 34) - приборе для хранения газов, нерастворимых и малорастворимых в воде. Чаще всего в газометре хранят кислород.
Газометр состоит из двух главных частей: сосуда 1, служащего для хранения газа, и большой воронки 2 с краном и с длинной трубкой, доходящей почти до дна сосуда 1 и служащей для подачи воды в прибор. Сосуд 1 имеет три тубуса: в тубус 3 с притертой внутренней поверхностью вставляют, воронку 2 с краном, в тубус 4 вставляют газоотводную трубку, снабженную краном; тубус 5 внизу служит для выпуска воды из прибора при его зарядке и разрядке. В заряженном газометре сосуд 1 заполнен кислородом. На дне сосуда находится , в которую опущен конец трубки воронки 2.

Рис. 34.
1 - сосуд для хранения газа; 2 - воронка для подачи воды; 3 - тубус с притертой поверхностью; 4 - тубус для выведения газа; 5 - тубус для выпуска воды при зарядке аппарата.

Если нужно получить из газометра кислород, сначала открывают кран воронки, и слегка сжимает кислород, находящийся в газометре. Затем открывают кран на газоотводной трубке, через который выходит кислород, вытесняемый водой.

В промышленности кислород хранят в стальных баллонах в сжатом состоянии (рис. 35, а), или в жидком виде в кислородных «танках» (рис. 36).

Рис. 35. Кислородный баллон

Выпишите из текста названия приборов, предназначенных для хранения кислорода.
Кислород является наиболее распространенным элементом. Он составляет почти 50% веса всей земной коры (рис. 37). Человеческий организм содержит 65% кислорода, входящего в состав различных органических веществ, из которых построены ткани и органы. В воде около 89% кислорода. В атмосфере на кислород приходится 23% по весу и 21% по объему. Кислород входит в состав самых разнообразных горных пород (например, известняка, мела, мрамора CaCO3, песка SiO2), руд различных металлов (магнитного железняка Fe3O4, бурого железняка 2Fe2O3 · nH2O, красного железняка Fe2O3, боксита Аl2O3 · nН2O и т. д.). Кислород входит в состав большинства органических веществ.

Физиологическое значение кислорода огромно. Это единственный газ, который живые организмы могут использовать для дыхания. Отсутствие кислорода вызывает остановку жизненных процессов и гибель организма. Без кислорода человек может прожить всего несколько минут. При дыхании поглощается кислород, который принимает участие в окислительно-восстановительных процессах, происходящих в организме, а выделяются продукты окисления органических веществ - , двуокись углерода и другие вещества. Как наземные, так и водные живые организмы дышат кислородом: наземные - свободным кислородом атмосферы, а водные - кислородом, растворенным в воде.
В природе происходит своеобразный круговорот кислорода. Кислород из атмосферы поглощается животными, растениями, человеком, расходуется на процессы горения топлива, гниение и прочие окислительные процессы. Двуокись углерода и вода, образующиеся в процессе окисления, потребляются зелеными растениями, в которых с помощью хлорофилла листьев и солнечной энергии осуществляется процесс фотосинтеза, т. е. синтеза органических веществ из двуокиси углерода и воды, сопровождающегося выделением кислорода.
Для обеспечения кислородом одного человека нужны кроны двух больших деревьев. Зеленые растения поддерживают постоянный состав атмосферы.

8. Каково значение кислорода в жизни живых организмов?
9. Как пополняется запас кислорода в атмосфере?

Химические свойства кислорода

Свободный кислород, вступая в реакции с простыми и сложными веществами, ведет себя обычно как .

Рис. 37.

Степень окисления, которую он приобретает при этом, всегда -2. В непосредственное взаимодействие с кислородом вступают многие элементы, за исключением благородных металлов, элементов с близкими к кислороду значениями электроотрицательности () и инертных элементов.
В результате соединения кислорода с простыми и сложными веществами образуются . Многие горят в кислороде, хотя на воздухе либо не горят, либо горят очень слабо. сгорает в кислороде ярко-желтым пламенем; при этом образуется перекись натрия (рис. 38):
2Na + O2 =Na2O2,
Сера горит в кислороде ярко-голубым пламенем с образованием сернистого ангидрида:
S + O2 = SO2
Древесный уголь на воздухе едва тлеет, а в кислороде сильно раскаляется и сгорает с образованием двуокиси углерода (рис. 39):
С + O2 = СO2

Рис. 36.

Горит в кислороде белым, ослепительно ярким пламенем, причем образуется твердая белая пятиокись фосфора:
4Р + 5O2 = 2Р2O5
горит в кислороде, разбрасывая искры и образуя железную окалину (рис. 40).
Горят в кислороде и органические вещества, например метан СН4, входящий состав природного газа: СH4 + 2O2 = CO2 + 2H2O
Горение в чистом кислороде происходит гораздо интенсивнее, чем на воздухе, и позволяет получить Значительно более высокие температурь. Это явление используют для интенсификации ряда химических процессов и более эффективного сжигания топлива.
В процессе дыхания кислород, соединяясь с гемоглобином крови, образует оксигемоглобин, который, являясь весьма нестойким соединением, легко разлагается в тканях с образованием свободного кислорода, идущего на окисление. Гниение, также являются окислительными процессами, протекающими с участием кислорода.
Распознают чистый кислород, внося в сосуд, где предполагается его наличие, тлеющую лучинку. Она ярко вспыхивает - это и является качественной пробой на кислород.

10. Каким образом, имея в своем распоряжении лучинку, можно распознать находящиеся в разных сосудах кислород, двуокись углерода? 11. Какой объем кислорода пойдет на сжигание 2 кг каменного угля, содержащего в сечем составе 70% углерода, 5% водорода, 7% , кислорода, остальное- негорючие компоненты?

Рис. 38. Горение натрия Рис. 39. Горение угля Рис. 40. Горение железа в кислороде.

12. Хватит ли 10 л кислорода для сжигания 5 г фосфора?
13. 1 м3 газовой смеси, содержащей 40% окиси углерода, 20% азота, 30% водорода н 10% двуокиси углерода сожгли в кислороде. Какой объем кислорода был израсходован?
14. Можно ли сушить кислород, пропуская его через: а) серную кислоту, б) хлорид кальция, в) фосфорный ангидрид, г) металлический ?
15. Как освободить двуокись углерода от примеси кислорода и наоборот, как освободить кислород от примеси двуокиси углерода?
16. 20 л кислорода, содержащего примесь двуокиси углерода пропустили через 200 мл 0,1 н. раствора бария. В результате катион Ва 2+ был полностью осажден. Сколько двуокиси углерода (в процентах) содержал исходный кислород?

Получение кислорода

Получают кислород несколькими способами. В лаборатории кислород получают из Кислородсодержащих веществ, которые могут легко его отщеплять, например из перманганата калия КМnO4 (рис. 41) или из бертолетовой соли КСlO3:
2КМnО4 = K2MnO4 + МnО2 + O2

2КСlO3 = 2КСl + O2
При получении кислорода из бертолетовой соли для ускорения реакции должен присутствовать катализатор - двуокись марганца. Катализатор ускоряет разложение и делает его более равномерным. Без катализатора может

Рис. 41. Прибор для получения кислорода лабораторный способом из перманганата калия. 1 - перманганат калия; 2 - кислород; 3 - вата; 4 - цилиндр - сборник.

произойти взрыв, если бертолетова соль взята в большом количестве и особенно если она загрязнена органическими веществами.
Из перекиси водорода кислород получают также в присутствии катализатора - двуокиси марганца МnО2 по уравнению:
2Н2O2[МnО2] = 2Н2O + О2

■ 17. Зачем при разложении бертолетовой соли добавляют МnО2?
18. Образующийся при разложении КМnO4 кислород можно собирать над водой. Отразите это в схеме прибора.
19. Иногда при отсутствии в лаборатории двуокиси марганца вместо нее в бертолетову соль добавляют немного остатка после прокаливания перманганата калия. Почему возможна такая замена?
20. Какой объем кислорода выделится при разложении 5 молей бертолетовой соли?

Кислород может быть получен также разложением Нитратов при нагревании выше температуры плавления:
2KNO3 = 2KNO2 + О2
В промышленности кислород получают в основном из жидкого воздуха. Переведенный в жидкое состояние воздух подвергают испарению. Сначала улетучивается (его температура кипения - 195,8°), а кислород остается (его температура кипения -183°). Этим способом кислород получается почти в чистом виде.
Иногда при наличии дешевой электроэнергии кислород получают электролизом воды:
Н2O ⇄ Н + + OН —
Н + + е — → Н 0
на катоде
2ОН — — е — → H2O + О; 2О = О2
на аноде

■ 21. Перечислите известные вам лабораторные и промышленные способы получения кислорода. Запищите их в тетрадь, сопровождая каждый способ уравнением реакции.
22. Являются ли реакции, используемые для получения кислорода, окислительно-восстановительными? Дайте обоснованный ответ.
23. Взято по 10 г следующих веществ; перманганата калия, бертолетовой соли, нитрата калия. В каком случае удастся получить наибольший объем кислорода?
24. В кислороде, полученном при нагревании 20 г перманганата калия, сожгли 1 г угля. Какой процент перманганата подвергся разложению?

Кислород - самый распространенный элемент в природе. Он широко применяется в медицине, химии, промышленности и т. д. (рис. 42).

Рис. 42. Применение кислорода.

Летчики на больших высотах, люди, работающие в атмосфере вредных газов, занятые на подземных и подводных работах, пользуются кислородными приборами (рис. 43).

В тех случаях, когда затруднено вследствие того или иного заболевания, человеку дают дышать чистым кислородом из кислородной подушки или помещают его в кислородную палатку.
В настоящее время для интенсификации металлургических процессов широко применяют воздух, обогащенный кислородом, или чистый кислород. Кислородно-водородная и кислородно-ацетиленовая горелки применяются для сварки и резки металлов. Пропитывая жидким кислородом горючие вещества: древесные опилки, угольный порошок и пр., получают взрывчатые смеси, называемые оксиликвитами.

■ 25. Начертите таблицу в тетради и заполните её.

Озон О3

Как уже говорилось, элемент кислород может образовывать еще одно аллотропное видоизменение - озон О3. Озон кипит при -111°, а затвердевает при -250°. В газообразном состоянии он голубого цвета, в жидком - синего. озона в воде гораздо выше, чем кислорода: в 100 объемах воды растворяется 45 объемов озона.

Озон отличается от кислорода тем, что его молекула состоит из трех, а не двух атомов. В связи с этим молекула кислорода намного более стойкая, чем молекула озона. Озон легко распадается по уравнению:
О3 = О2 + [O]

Выделение атомарного кислорода при распаде озона делает его гораздо более сильным окислителем, чем кислород. Озон имеет запах-свежести («озон» в переводе значит «пахучий»). В природе он образуется под действием тихого электрического разряда и в сосновых лесах. Больным с заболеванием легких рекомендуется больше бывать в сосновых лесах. Однако продолжительное пребывание в атмосфере, сильно обогащенной озоном, может оказать отравляющее действие на организм. Отравление сопровождается головокружением, тошнотой, кровотечением из носа. При хрони-ческих отравлениях могут возникнуть сердечные заболевания.
В лаборатории озон получают из кислорода в озонаторах (рис. 44). В стеклянную трубку 1, обмотанную сна- ружи проволокой 2, пропускают кислород. Внутри трубки проходит проволока 3. Обе эти проволоки: соединены с полюсами источника тока, создающего на указанных электродах высокое напряжение. Между электродами происходит тихий электрический разряд, благодаря чему из кислорода образуется озон.

Рис 44; Озонатор. 1 - стеклянный баллон; 2 - наружная обмотка; 3 -проволока внутри трубки; 4 - раствор йодида калия с крахмалом

3О2 = 2О3
Озон является очень сильным окислителем. Он значительно энергичнее, чем кислород, вступает в реакции и вообще намного активнее кислорода. Например, в отличие от кислорода он может вытеснить из йодистого водорода или йодистых солей:
2KI + О3 + Н2О = 2КОН + I2 + O2

Озона в атмосфере очень мало (около одной миллионной доли процента), но он играет существенную, роль в поглощении ультрафиолетовых солнечных лучей, по-этому они попадают на землю в меньшем количестве и не оказывают губительного действия на живые организмы.
Применяется озон в небольшом количестве главным образом для кондиционирования воздуха, а также в химии.

■ 26. Что такое аллотропные видоизменения?
27. Почему йодкрахмальная бумага синеет под действием озона? Дайте обоснованный ответ.
28. Почему молекула кислорода значительно устойчивее молекулы озона? Обоснуйте свой ответ с точки зрения внутримолекулярной структуры.