Расчёт напора воды. Движение жидкости по трубам

Зачем нужны подобные расчеты

При составлении плана по возведению большого коттеджа, имеющего несколько ванных комнат, частной гостиницы, организации пожарной системы, очень важно обладать более-менее точной информацией о транспортирующих возможностях имеющейся трубы, беря в учет ее диаметр и давление в системе. Все дело в колебаниях напора во время пика потребления воды: такие явления довольно серьезно влияют на качество предоставляемых услуг.


Кроме того, если водопровод не оснащен водосчетчиками, то при оплате за услуги коммунальных служб в расчет берется т.н. «проходимость трубы». В таком случае вполне логично выплывает вопрос о применяемых при этом тарифах.

При этом важно понимать, что второй вариант не касается частных помещений (квартир и коттеджей), где при отсутствии счетчиков при начислении оплаты учитывают санитарные нормы: обычно это до 360 л/сутки на одного человека.

От чего зависит проходимость трубы

От чего же зависит расход воды в трубе круглого сечения? Складывается впечатление, что поиск ответа не должен вызывать сложностей: чем большим сечением обладает труба, тем больший объем воды она сможет пропустить за определенное время. При этом вспоминается также давление, ведь чем выше водяной столб, тем с большей скоростью вода будет продавливаться внутри коммуникации. Однако практика показывает, что это далеко не все факторы, влияющие на расход воды.

Кроме них, в учет приходится брать также следующие моменты:

  1. Длина трубы . При увеличении ее протяженности вода сильнее трется об ее стенки, что приводит к замедлению потока. Действительно, в самом начале системы вода испытывает воздействие исключительно давлением, однако важно и то, как быстро у следующих порций появится возможность войти внутрь коммуникации. Торможение же внутри трубы зачастую достигает больших значений.
  2. Расход воды зависит от диаметра в куда более сложной степени, чем это кажется на первый взгляд. Когда размер диаметра трубы небольшой, стенки сопротивляются водному потоку на порядок больше, чем в более толстых системах. Как результат, при уменьшении диаметра трубы снижается ее выгода в плане соотношения скорости водного потока к показателю внутренней площади на участке фиксированной длины. Если сказать по-простому, толстый водопровод гораздо быстрее транспортирует воду, чем тонкий.
  3. Материал изготовления . Еще один важный момент, напрямую влияющий на быстроту движения воды по трубе. К примеру, гладкий пропилен способствует скольжению воды в гораздо больше мере, чем шероховатые стальные стенки.
  4. Продолжительность службы . Со временем на стальных водопроводах появляется ржавчина. Кроме этого для стали, как и для чугуна, характерно постепенно накапливать известковые отложения. Сопротивляемость водному потоку трубы с отложениями гораздо выше, чем новых стальных изделий: эта разница иногда доходит до 200 раз. Кроме того, зарастание трубы приводит к уменьшению ее диаметра: даже если не брать в расчет возросшее трение, проходимость ее явно падает. Важно также заметить, что изделия из пластика и металлопластика подобных проблем не имеют: даже спустя десятилетия интенсивной эксплуатации уровень их сопротивляемости водным потокам остается на первоначальном уровне.
  5. Наличие поворотов, фитингов, переходников, вентилей способствует дополнительному торможению водных потоков.

Все вышеперечисленные факторы приходится учитывать, ведь речь идет не о каких-то маленьких погрешностях, а о серьезной разнице в несколько раз. В качестве вывода можно сказать, что простое определение диаметра трубы по расходу воды едва ли возможно.

Новая возможность расчетов расхода воды

Если использование воды осуществляется посредством крана, это значительно упрощает задачу. Главное в таком случае, чтобы размеры отверстия излияния воды были намного меньше диаметра водопровода. В таком случае применима формула расчета воды по сечению трубы Торричелли v^2=2gh, где v - быстрота протекания сквозь небольшое отверстие, g - ускорение свободного падения, а h - высота столба воды над краном (отверстие, имеющее сечение s, за единицу времени пропускает водный объем s*v). При этом важно помнить, что термин «сечение» применяется не для обозначения диаметра, а его площади. Для ее расчета используют формулу pi*r^2.


Если столб воды имеет высоту в 10 метров, а отверстие – диаметр 0,01 м, расход воды через трубу при давлении в одну атмосферу вычисляется таким образом: v^2=2*9.78*10=195,6. После извлечения квадратного корня выходит v=13,98570698963767. После округления, чтобы получить более простой показатель скорости, получается 14м/с. Сечение отверстия, имеющее диаметр 0,01 м, вычисляется так: 3,14159265*0,01^2=0,000314159265 м2. В итоге выходит, что максимальный расход воды через трубу соответствует 0,000314159265*14=0,00439822971 м3/с (немного меньше, чем 4,5 литра воды/секунду). Как можно увидеть, в данном случае расчет воды по сечению трубы провести довольно просто. Также в свободном доступе имеются специальные таблицы с указанием расходы воды для самых популярных сантехнических изделий, при минимальном значении диаметра водопроводной трубы.


Как уже можно понять, универсального несложного способа, чтобы вычислить диаметр трубопровода в зависимости от расхода воды, не существует. Однако определенные показатели для себя вывести все-же можно. Особенно это касается случаев, если система обустроена из пластиковых или металлопластиковых труб, а потребление воды осуществляется кранами с малым сечением выхода. В отдельных случаях такой метод расчета применим на стальных системах, но речь идет прежде всего о новых водопроводах, которые не успели покрыться внутренними отложениями на стенках.

Нередко случается так, что давление воды на точках водоразбора в квартире – явно недостаточное. Это приводит к неудобствам при пользовании сантехническими приборами, к «зависанию» или полной остановке бытовой техники, подключенной к водопроводу, к некорректной работе современных устройств (душевых кабинок, джакузи, биде и т.п.), требующих определенного напора воды. Естественно, такая ситуация требует принятия мер административного характера (которые помогают, увы, не всегда), или установки специальных повышающих насосов или насосных станций.

Чтобы предъявить претензии или спланировать установку дополнительного оборудования, желательно заранее знать, какое же давление преимущественно держится в водопроводе, то есть насколько оно отличается от нормативного. Если есть манометр, то снять показания — труда не составит. Но что делать, если такого прибора нет? Не беда, существует простой и точный экспериментальный способ, под который и составлен расположенный ниже калькулятор расчета давления воды в водопроводе.

Описание проведения замеров и расчетов – в текстовой части ниже калькулятора.

Введите результаты двух замеров и нажмите кнопку "Рассчитать давление в водопроводе"

Атмосферное

Ho - высота воздушного столба до открытия крана , мм

Hэ - высота воздушного столба при полностью открытом кране , мм

Как провести опытные замеры и вычисления?

Для самостоятельного измерения давления потребуется отрезок прозрачного шланга (трубки) длиной порядка 2 метров. Диаметр в данном случае никакого решающего значения не имеет – главное, чтобы была возможность герметично надеть шланг на смеситель или любой другой патрубок, оснащенный запорным краном.

  • Шланг надевается на смеситель или патрубок, герметично, чтобы не просачивались ни вода, ни воздух. Лучше всего – обтянуть обычным хомутом.
  • В шланг запускается небольшое количество воды, затем он понимается вертикально и фиксируется в таком положении. Уровень воды в нижней петле должен приходиться примерно на высоту крана (патрубка). Это наглядно показано на иллюстрации слева. После этого замеряют начальную длину воздушного столба ho в миллиметрах. Значение записывают.
  • Далее, шланг сверху герметично закупоривают какой-нибудь пробкой, а затем открывают кран полностью. Вода своим давлением сожмет воздух в трубке и поднимется на определенную высоту. Главное – ни в коем случае не допустить просачивания воздуха сверху.
  • После того как уровень стабилизируется, делают еще один промер высоты воздушного столба (на рисунке справа) – hэ.

Эти две величины и являются исходными для внесения в калькулятор и получения значения давления воды в водопроводе. Результат будет выдан в технических атмосферах (бар) и в метрах водяного столба – как кому удобнее.

Расчёт потерь напора воды в трубопроводе выполняется очень просто, далее мы подробно рассмотрим варианты расчёта.

Для гидравлического расчета трубопровода вы можете воспользоваться калькулятором гидравлического расчета трубопровода .

Вам посчастливилось пробурить скважину прямо около дома? Замечательно! Теперь вы сможете обеспечить себя и свой дом или дачу чистой водой, которая не будет зависеть от центрального водоснабжения. А это значит никакого сезонного отключения воды и бегания с вёдрами и тазиками. Нужно только установить насос и готово! В настоящей статье мы поможем вам рассчитать потери напора воды в трубопроводе , и уже с этими данными можно смело покупать насос и наслаждать, наконец, своей водой из скважины.

Из школьных уроков физики понятно, что вода, текущая по трубам, в любом случае испытывает сопротивление. Величина этого сопротивления зависит от скорости потока, диаметра трубы и гладкости её внутренней поверхности. Сопротивление тем меньше, чем меньше скорость потока и больше диаметр и гладкость трубы. Гладкость трубы зависит от материала, из которого она изготовлена. Трубы из полимеров более гладкие, чем стальные трубы , а также они не ржавеют и, что немаловажно, дешевле других материалов, не уступая при этом в качестве. Вода будет испытывать сопротивление, двигаясь даже по полностью горизонтальной трубе. Однако чем длиннее сама труба, тем менее значительны будут потери напора. Что ж, приступим к расчету.

Потери напора на прямых участках трубы.

Чтобы подсчитать потери напора воды на прямых участках труб использует уже готовую таблицу, представленную ниже. Значения в этой таблице указаны для труб, изготовленных их полипропилена, полиэтилена и других слов, начинающихся с «поли» (полимеров). Если же вы собираетесь установить стальные трубы, то необходимо умножить приведённые в таблице значения на коэффициент 1,5.

Данные приведены на 100 метров трубопровода, потери указаны в метрах водного столба.

Расход

Внутренний диаметр трубы, мм

Как пользоваться таблицей : Например, в горизонтальном водопроводе с диаметром трубы 50 мм и расходом 7 м 3 /ч потери будут составлять 2,1 метра водного столба для трубы из полимера и 3,15 (2,1*1,5) для трубы из стали. Как видите, всё довольно просто и понятно.

Потери напора на местных сопротивлениях.

К сожалению, трубы бывают абсолютно прямыми только в сказке. В реальной же жизни всегда есть различные изгибы, заслонки и вентиля, которые нельзя не учитывать при расчёте потерь напора воды в трубопроводе. В таблице приведены значения потерь напора в самых часто встречающихся местных сопротивлениях: колене в 90 градусов, скруглённом колене и клапане.

Потери указаны в сантиметрах водного столба на единицу местного сопротивления.

Скорость потока, м/с

Колено 90 градусов

Скруглённое колено

Клапан

Для определения v - скорости потока необходимо Q - расход воды (в м 3 /с) разделить на S - площадь поперечного сечения (в м 2).

Т.е. при диаметре трубы 50 мм (π*R 2 =3,14*(50/2) 2 =1962,5 мм 2 ; S=1962,5/1 000 000=0,0019625 м 2) и расходе воды 7 м 3 /ч (Q=7/3600=0,00194 м 3 /с) скорость потока
v=Q/S=0,00194/0,0019625=0,989 м/с

Как видно из приведённых выше данных, потери напора на местных сопротивлениях совсем незначительны. Основные потери всё-таки происходят на горизонтальных участках труб, поэтому для их уменьшения следует тщательно продумать выбор материала трубы и их диаметра. Напомним, чтобы минимизировать потери следует выбирать трубы из полимеров с максимальным диаметром и гладкостью внутренней поверхности самой трубы.

В этом параграфе мы применим закон сохранения энергии к движению жидкости или газа по трубам. Движение жидкости по трубам часто встречается в технике и быту. По трубам водопровода подается вода в городе в дома, к местам ее потребления. В машинах по трубам поступает масло для смазки, топливо в двигатели и т. д. Движение жидкости по трубам нередко встречается и в природе. Достаточно сказать, что кровообращение животных и человека - это течение крови по трубкам - кровеносным сосудам. В какой-то мере течение воды в реках тоже является разновидностью течения жидкости по трубам. Русло реки - это своеобразная труба для текущей воды.

Как известно, неподвижная жидкость в сосуде согласно закону Паскаля передает внешнее давление по всем направлениям и во все точки объема без изменения. Однако, когда жидкость течет без трения по трубе, площадь поперечного сечения которой на разных участках различна, давление оказывается неодинаковым вдоль трубы. Выясним, почему давление в движущейся жидкости зависит от площади поперечного сечения трубы. Но сначала ознакомимся с одной важной особенностью всякого потока жидкости.

Предположим, что жидкость течет по горизонтально расположенной трубе, сечение которой в разных местах различное, например по трубе, часть которой показана на рисунке 207.

Если бы мы мысленно провели несколько сечений вдоль трубы, площади которых соответственно равны и измерили бы количество жидкости, протекающей через каждое из них за какой-то промежуток времени то мы обнаружили бы, что через каждое сечение протекло одно и то же количество жидкости. Это значит, что вся та жидкость, которая за время проходит через первое сечение, за такое же время проходит и через третье сечение, хотя оно по площади значительно меньше, чем первое. Если бы это было не так и через сечение площадью за время проходило, например, меньше жидкости, чем через сечение площадью то избыток жидкости должен был бы где-то накапливаться. Но жидкость заполняет всю трубу, и накапливаться ей негде.

Как же может жидкость, протекшая через широкое сечение, успеть за такое же время «протиснуться» через узкое? Очевидно, что для этого при прохождении узких частей трубы скорость движения должна быть больше, и как раз во столько раз, во сколько раз площадь сечения меньше.

Действительно, рассмотрим некоторое сечение движущегося столба жидкости, совпадающее в начальный момент времени с одним из сечений трубы (рис. 208). За время эта площадка переместится на расстояние которое равно где - скорость течения жидкости. Объем V жидкости, протекшей через сечение трубы, равен произведению площади этого сечения на длину

В единицу же времени протекает объем жидкости -

Объем жидкости, протекающей в единицу времени через сечение трубы, равен произведению площади поперечного сечения трубы на скорость течения.

Как мы только что видели, этот объем должен быть одним и тем же в разных сечениях трубы. Поэтому, чем меньше сечение трубы, тем больше скорость движения.

Сколько жидкости проходит через одно сечение трубы за некоторое время, столько же ее должно пройти за такое

же время через любое другое сечение.

При этом мы считаем, что данная масса жидкости всегда имеет один и тот же объем, что она не может сжаться и уменьшить свой объем (о жидкости говорят, что она несжимаема). Хорошо известно, например, что в узких местах реки скорость течения воды больше, чем в широких. Если обозначить скорость течения жидкости в сечениях площадями через то можно написать:

Отсюда видно, что при переходе жидкости с участка трубы с большей площадью сечения на участок с меньшей площадью сечения скорость течения увеличивается, т. е. жидкость движется с ускорением. А это по второму закону Ньютона означает, что на жидкость действует сила. Что это за сила?

Этой силой может быть только разность между силами давления в широком и узком участках трубы. Таким образом, в широком участке давление жидкости должно быть больше, чем в узком участке трубы.

Это же следует из закона сохранения энергии. Действительно, если в узких местах трубы увеличивается скорость движения жидкости, то увеличивается и ее кинетическая энергия. А так как мы приняли, что жидкость течет без трения, то этот прирост кинетической энергии должен компенсироваться уменьшением потенциальной энергии, потому что полная энергия должна оставаться постоянной. О какой же потенциальной энергии здесь идет речь? Если труба горизонтальна, то потенциальная энергия взаимодействия с Землей во всех частях трубы одна и та же и не может измениться. Значит, остается только потенциальная энергия упругого взаимодействия. Сила давления, которая заставляет жидкость течь по трубе, - это и есть упругая сила сжатия жидкости. Когда мы говорим, что жидкость несжимаема, то имеем лишь в виду, что она не может быть сжата настолько, чтобы заметно изменился ее объем, но очень малое сжатие, вызывающее появление упругих сил, неизбежно происходит. Эти силы и создают давление жидкости. Вот это сжатие жидкости и уменьшается в узких частях трубы, компенсируя рост скорости. В узких местах труб давление жидкости должно быть поэтому меньше, чем в широких.

В этом состоит закон, открытый петербургским академиком Даниилом Бернулли:

Давление текущей жидкости больше в тех сечениях потока, в которых скорость ее движения меньше, и,

наоборот, в тех сечениях, в которых скорость больше, давление меньше.

Как это ни покажется странным, но когда жидкость «протискивается» через узкие участки трубы, то ее сжатие не увеличивается, а уменьшается. И опыт хорошо это подтверждает.

Если трубу, по которой течет жидкость, снабдить впаянными в нее открытыми трубками - манометрами (рис. 209), то можно будет наблюдать распределение давления вдоль трубы. В узких местах трубы высота столба жидкости в манометрической трубке меньше, чем в широких. Это означает, что в этих местах давление меньше. Чем меньше сечение трубы, тем больше в ней скорость течения и меньше давление. Можно, очевидно, подобрать такое сечение, в котором давление равно внешнему атмосферному давлению (высота уровня жидкости в манометре будет тогда равна нулю). А если взять еще меньшее сечение, то давление жидкости в нем будет меньше атмосферного.

Такой поток жидкости можно использовать для откачки воздуха. На этом принципе действует так называемый водоструйный насос. На рисунке 210 изображена схема такого насоса. Струю воды пропускают через трубку А с узким отверстием на конце. Давление воды у отверстия трубы меньше атмосферного. Поэтому

газ из откачиваемого объема через трубку В втягивается к концу трубки А и удаляется вместе с водой.

Все сказанное о движении жидкости по трубам относится и к движению газа. Если скорость течения газа не слишком велика и газ не сжимается настолько, чтобы изменялся его объем, и если, кроме того, пренебречь трением, то закон Бернулли верен и для газовых потоков. В узких частях труб, где газ движется быстрее, давление его меньше, чем в широких частях, и может стать меньше атмосферного. В некоторых случаях для этого даже не требуется трубы.

Можно проделать простой опыт. Если дуть на лист бумаги вдоль его поверхности, как показано на рисунке 211, можно увидеть, что бумага станет подниматься вверх. Это происходит из-за понижения давления в струе воздуха над бумагой.

Такое же явление имеет место при полете самолета. Встречный поток воздуха набегает на выпуклую верхнюю поверхность крыла летящего самолета, и за счет этого происходит понижение давления. Давление над крылом оказывается меньше, чем давление под крылом. Именно поэтому возникает подъемная сила крыла.

Упражнение 62

1. Допустимая скорость течения нефти по трубам равна 2 м/сек. Какой объем нефти проходит через трубу диаметром 1 м в течение 1 ч?

2. Измерьте количество воды, вытекающей из водопроводного крана за определенное время Определите скорость течения воды, измерив диаметр трубы перед краном.

3. Каким должен быть диаметр трубопровода, по которому должно протекать воды в час? Допустимая скорость течения воды 2,5 м/сек.

В некоторых случаях приходится сталкиваться с необходимостью расчета расхода воды через трубу. Этот показатель говорит о том, сколько воды может пропустить труба, измеряется в м³/с.

  • Для организаций, не поставивших счетчик на воду, начисление платы происходит из учета проходимости трубы. Важно знать, насколько точно эти данные просчитаны, за что и по какому тарифу надо платить. Физических лиц это не касается, для них, при отсутствии счетчика, количество прописанных человек умножается на потребление воды 1 человеком по санитарным нормам. Это достаточно большой объем, а с современными тарифами гораздо выгоднее поставить счетчик. Точно также в наше время часто выгоднее самому греть воду колонкой, чем платить коммунальным службам за их горячую воду.
  • Огромную роль расчет проходимости трубы играет при проектировании дома, при подведении к дому коммуникаций .

Важно увериться, что каждое ответвление водопровода сможет получить свою долю из основной трубы даже в часы пикового расхода воды. Водопровод создан для комфорта, удобства, облегчения человеку труда.

Если каждый вечер до жителей верхних этажей вода будет практически не доходить, о каком комфорте может идти речь? Как можно пить чай, мыть посуду, купаться? А все пьют чай и купаются, поэтому тот объем воды, который смогла предоставить труба, распределился по нижним этажам. Совсем плохую роль эта проблема может сыграть при пожаротушении. Если пожарники подключатся к центральной трубе, а в ней нет напора.

Иногда расчет расхода воды через трубу может пригодиться, если после ремонта водопровода горе-мастерами, замены части труб, напор сильно упал.

Гидродинамические расчеты непростое дело, обычно осуществляются квалифицированными специалистами. Но, допустим, вы занимаетесь частным строительством, проектируете свой уютный просторный дом.

Как рассчитать расход воды через трубу самому?

Казалось бы, достаточно знать диаметр отверстия трубы, чтобы получить, может, и округленные, но в целом справедливые цифры. Увы, этого очень мало. Другие факторы способны изменять результат вычислений в разы. Что же влияет на максимальный расход воды через трубу?

  1. Сечение трубы . Очевидный фактор. Отправная точка гидродинамических вычислений.
  2. Давление в трубе . При увеличении давления через трубу с тем же сечением проходит больше воды.
  3. Изгибы, повороты, изменение диаметра, разветвления тормозят движение воды по трубе. Разные варианты в разной степени.
  4. Протяженность трубы . По более длинным трубам будет проходить меньше воды за единицу времени, чем по коротким. Весь секрет в силе трения. Подобно тому, как она задерживает движение привычных для нас объектов (автомобилей, велосипедов, саней и т. д.), сила трения препятствует водяному потоку.
  5. У трубы с меньшим диаметром оказывается больше площади соприкосновения воды с поверхностью трубы по отношению к объему водяного потока. А от каждой точки соприкосновения появляется сила трения. Так же, как и в более длинных трубах, в более узких трубах скорость движения воды становится меньше.
  6. Материал труб . Очевидно, что степень шероховатости материала влияет величину силы трения. Современные пластиковые материалы (полипропилен, ПВХ, металлопласт и т. д.) оказываются очень скользкими по сравнению с традиционной сталью и позволяют двигаться воде быстрее.
  7. Длительность эксплуатации трубы . Известковые отложения, ржавчина сильно ухудшают пропускные возможности водопровода. Это самый каверзный фактор, ведь степень засоренности трубы, ее новый внутренний рельеф и коэффициент трения весьма сложно просчитать с математической точностью. К счастью, расчет расхода воды чаще всего требуется для нового строительства и свежих, не использовавшихся ранее материалов. А с другой стороны, подключаться эта система будет к уже существующим, много лет существующим коммуникациям. И как она сама себя поведет через 10, 20, 50 лет? Новейшие технологии значительно улучшили эту ситуацию. Пластиковые трубы не ржавеют, их поверхность практически не портится со временем.

Расчет расхода воды через кран

Объем вытекаемой жидкости находится путем умножения сечения отверстия трубы S на скорость вытекания V. Сечение это площадь определенной части объемной фигуры, в данном случае, площадь круга. Находится по формуле S = πR2 . R будет радиусом отверстия трубы, не путать с радиусом трубы. π постоянная величина, отношение длины окружности к ее диаметру, приблизительно равняется 3,14.

Скорость вытекания находится по формуле Торричелли: . Где g ускорение свободного падения, на планете Земля равное приблизительно 9,8 м/с. h высота водяного столба, который стоит над отверстием.

Пример

Рассчитаем расход воды через кран с отверстием диаметром 0,01 м и высотой столба 10 м.

Сечение отверстия = πR2 = 3,14 х 0,012 = 3,14 х 0,0001 = 0,000314 м².

Скорость вытекания = √2gh = √2 х 9,8 х 10 = √196 = 14 м/с.

Расход воды = SV =0,000314 х 14 = 0,004396 м³/с.

В переводе на литры получается, что из заданной трубы способно вытекать 4,396 л в секунду.