Электростатическое поле и его характеристики. Свойства силовых линий электрического поля

В пространстве, окружающем заряд, который является источником, прямо пропорционально количеству этого заряда и обратно квадрату расстояние от этого заряда. Направление электрического поля согласно принятым правилам всегда от положительного заряда в сторону отрицательного заряда. Это можно представить как если поместить пробный заряд в область пространства электрического поля источника и этот пробный заряд будет либо отталкиваться, либо притягиваться (в зависимости от знака заряда). Электрическое поле характеризуется напряженностью , которое являясь векторной величиной может быть представлено графически в виде стрелки имеющей длину и направление. В любом месте направление стрелки указывает направление напряженности электрического поля E , или просто - направление поля, а длина стрелки пропорциональна численной величине напряженности электрического поля в этом месте. Чем дальше область пространства от источника поля (заряда Q ), тем меньше длина вектора напряженности. Причем длина вектора уменьшается при удалении в n раз от некоего места в n 2 раз, то есть обратно пропорционально квадрату.

Более полезным средством визуального представления векторного характера электрического поля является использование такого понятия как , или просто - силовые линии. Вместо того, чтобы изображать бесчисленные векторных стрелки в пространстве, окружающие заряд-источник, оказалось полезным объединить их в линии, где сами вектора являются касательными к точкам на таких линиях.

В итоге с успехом для представления векторной картины электрического поля применяют силовые линии электрического поля , которые выходят из зарядов положительного знака и заходят в заряды отрицательного знака, а также простираются до бесконечности в пространстве. Такое представление позволяет увидеть умом невидимое человеческому глазу электрическое поле . Впрочем, такое представление удобно также и для гравитационных сил и любых других бесконтактных дальнодействующих взаимодействий.

Модель электрических силовых линий включает в себя бесконечное их количество, но слишком высокая плотность изображения силовых линий снижает возможность чтения узоров поля, поэтому их число ограничивается удобочитаемостью.

Правила рисования силовых линий электрического поля

Есть множество правил составления таких моделей электрических силовых линий. Все эти правила созданы для того, чтобы сообщить наибольшую информативность при визуализации (рисовании) электрического поля . Один из способов - это изображение силовых линий. Один из самых распространенных способов - это окружить более заряженные объекты большим количеством линий, то есть большей плотностью линий. Объекты с большим зарядом создают более сильные электрические поля и потому плотность (густота) линий вокруг них больше. Чем ближе к заряду источнику, тем выше плотность силовых линий, и чем больше величина заряда, тем гуще вокруг него линии.

Второе правило для рисования линий электрического поля включает в себя изображение линий другого типа, таких, которые пересекают первые силовые линии перпендикулярно . Такой тип линий именуется эквипотенциальными линиями , а при объемном представлении следует говорить об эквипотенциальных поверхностях. Этот тип линий образует замкнутые контуры и каждая точка на такой эквипотенциальной линии имеет одинаковое значение потенциала поля. Когда какая либо заряженная частица пересекает такие перпендикулярные силовым линиям линии (поверхности), то говорят о совершении зарядом работы. Если же заряд будет двигаться по эквипотенциальным линиям (поверхностям), то хотя он и движется, но работы при этом никакой не совершается. Заряженная частица, оказавшись в электрическом поле другого заряда начинает двигаться, но в статическом электричестве рассматриваются только неподвижные заряды. Движение зарядов называется электрическим током, при этом носителем заряда может совершатся работа.

Важно помнить, что силовые линии электрического поля не пересекаются, а линии другого типа - эквипотенциальные, образуют замкнутые контуры. В том месте, где имеет место пересечение линий двух типов, касательные к этим линиям взаимно перпендикулярны. Таким образом получается нечто вроде искривленной координатной сетки, или решетки, ячейки которой, а также точки пересечения линий разных типов характеризуют электрическое поле .

Пунктирные линии - эквипотенциальные. Линии со стрелками - силовые линии электрического поля

Электрическое поле состоящее из двух и более зарядов

Для уединенных отдельно взятых зарядов силовые линии электрического поля представляют собой радиальные лучи выходящие из зарядов и идущие в бесконечность. Какова будет конфигурация силовых линий для двух и более зарядов? Для выполнения такого узора необходимо помнить, что мы имеем дело с векторным полем, то есть с векторами напряженности электрического поля . Чтобы изобразить рисунок поля, нам необходимо выполнить сложение векторов напряженности от двух и более зарядов. Результирующие векторы будут представлять собой суммарное поле нескольких зарядов. Как в этом случае можно построить силовые линии? Важно помнить, что каждая точка на силовой линии - это единственная точка соприкосновения с вектором напряженности электрического поля. Это следует из определения касательной в геометрии. Если от начала каждого вектора построить перпендикуляр в виде длинных линий, тогда взаимное пересечение многих таких линий изобразит ту самую искомую силовую линию.

Для более точного математического алгебраического изображения силовых линий необходимо составить уравнения силовых линий, а вектора в этом случае будут представлять первые производные, линии первого порядка, которые и есть касательные. Такая задача порой является чрезвычайно сложной и требует компьютерных вычислений.

В первую очередь важно помнить, что электрическое поле от многих зарядов представлено суммой векторов напряженности от каждого источника заряда. Это основа для выполнения построения силовых линий для того чтобы визуализировать электрическое поле.

Каждый внесенный в электрическое поле заряд приводит к изменению, пусть даже незначительному, узора силовых линий. Такие изображения бывают порой очень привлекательными.

Силовые линии электрического поля как способ помочь уму увидеть реальность

Понятие электрического поля возникло когда ученые пытались объяснить дальнодействие, которое происходит между заряженными объектами. Представление об электрическом поле было впервые введено физиком 19-го века Майклом Фарадеем . Это был результат восприятия Майклом Фарадеем невидимой реальности в виде картины силовых линий характеризующих дальнодействие. Фарадей не стал размышлять в рамках одного заряда, а пошел дальше и расширил границы ума. Он предположил, что заряженный объект (или масса в случае с гравитацией) влияют на пространство и ввел понятие поля такого влияния. Рассматривая такие поля он смог объяснить поведение зарядов и тем самым раскрыл многие секреты электричества.

Мыслителям прошлого трудно было принять концепцию «действия на расстоянии». И правда, как может один заряд действовать на другой, если они не соприкасаются?
Даже Ньютону, применившему эту идею в теории всемирного тяготения, нелегко было свыкнуться с нею. Как мы видели, однако, эти трудности можно преодолеть с помощью понятия поля, которое ввел английский ученый Майкл Фарадей (1791-1867). Согласно Фарадею, от каждого заряда исходит электрическое поле, пронизывающее все пространство. Когда к одному заряду подносят другой, он испытывает действие силы, которая обусловлена электрическим полем первого заряда. Электрическое поле в точке, где находится второй заряд, влияет непосредственно на этот заряд, создавая действующую на него силу. Следует подчеркнуть, что поле не является некой разновидностью вещества; правильнее сказать, это - чрезвычайно полезная концепция.

Поле, создаваемое одним или несколькими зарядами, можно исследовать с помощью небольшого положительного пробного заряда, измеряя действующую на него силу. Под пробным зарядом мы понимаем достаточно малый заряд, собственное поле которого не меняет существенно распределения остальных зарядов, создающих исследуемое поле. Силы, действующие на малый пробный заряд q в окрестности уединенного положительного заряда Q , показаны на рис. 22.13. Сила в точке b меньше, чем в a, из-за большего расстояния между зарядами (закон Кулона); в точке с сила еще меньше. Во всех случаях сила направлена радиально от заряда Q .
По определению напряженность электрического поля , (или просто электрическое поле ) E в любой точке пространства равна отношению силы F , действующей на малый положительный пробный заряд q , к величине этого заряда:

Из вышеописанного определения следует, что направление напряженности электрического поля в любой точке пространства совпадает с направлением силы, действующей в этой точке на положительный пробный заряд. Напряженность электрического поля представляет собой силу, действующую на единицу заряда; она измеряется в ньютонах на кулон (Н/Кл).

Более строго Е определяется как предел отношения F/q при q , стремящемся к нулю.

Напряженность электрического поля Е определяется через отношение F/q , чтобы исключить зависимость поля Е от величины пробного заряда q . Иначе говоря, Е учитывает только те заряды, которые создают рассматриваемое в данной точке электрическое поле. Поскольку Е - векторная величина, электрическое поле является векторным полем.

Силовые линии

Коль скоро электрическое поле является векторным, его можно изображать в различных точках стрелками, как это сделано на рис. 22.13. Направления векторов Еа , Еb , Ес совпадали бы с направлениями показанных на этом рисунке сил и лишь длина их была бы уже иной в результате деления на q . Отношение длин векторов Еа , Еb , Ес сохранится прежним, так как мы делим на один и тот же заряд. Однако изображать электрическое поле таким образом неудобно, поскольку при большом числе точек весь рисунок будет испещрен стрелками. Поэтому пользуются другим способом изображения поля-методом силовых линий.

Для наглядного представления электрического поля его изображают семейством линий, указывающих направление напряженности поля в каждой точке пространства.
Эти так называемые силовые линии проводятся так, чтобы указывать направление силы, действующей в данном поле на положительный пробный заряд. Силовые линии точечного положительного заряда показаны на рис. 22.20, а, отрицательного - на рис. 22.20,6.
В первом случае линии радиально расходятся от заряда, во втором они радиально сходятся к заряду. Именно в таком направлении будут действовать силы на положительный пробный заряд. Конечно, силовые линии можно нанести и в промежутках между изображенными на рисунке. Но мы условимся наносить силовые линии с таким расчетом, чтобы число линий, исходящих от положительного заряда или заканчивающихся на отрицательном заряде, было пропорционально величине этого заряда.
Обратим внимание на то, что вблизи заряда, где сила максимальна, линии расположены более тесно. Это общее свойство силовых линий: чем теснее расположены силовые линии, тем сильнее электрическое поле в этой области. Вообще говоря, можно всегда изображать силовые линии таким образом, чтобы число линий, пересекающих единичную площадку, перпендикулярную направлению поля Е , было пропорционально напряженности электрического поля. Например, для уединенного точечного заряда (рис. 22.20) напряженность электрического поля убывает как 1/r 2 ; так же будет уменьшаться с расстоянием и число равномерно распределенных силовых линий, пересекающих единичную площадку: ведь общее число силовых линий остается постоянным, а площадь поверхности, через которую они проходят, растет как 4πr 2 (поверхность сферы радиусом г). Соответственно число силовых линий на единицу площади пропорционально 1/r 2 .

На рис. 22.21, а показаны силовые линии поля, создаваемого двумя зарядами противоположных знаков. Здесь силовые линии искривлены и направлены от положительного заряда к отрицательному. Поле в любой точке направлено по касательной к силовой линии, как показано стрелкой в точке Р.
На рис. 22.21,6 и в показаны силовые линии электрического поля двух положительных зарядов и поля между двумя параллельными противоположно заряженными пластинами. Заметим, что силовые линии поля между пластинами параллельны и расположены на равном расстоянии друг от друга, исключая область вблизи краев.

Таким образом, в центральной области напряженность электрического поля во всех точках одинакова, и мы можем написать:
Е = const (между близко расположенными параллельными пластинами).
Хотя вблизи краев это не так (силовые линии изгибаются), часто этим можно пренебречь, особенно если расстояние между пластинами мало по сравнению с их размерами. [Сравните этот результат со случаем уединенного точечного заряда, где поле изменяется обратно пропорционально квадрату расстояния].

Итак, силовые линии обладают следующими свойствами:

1. Силовые линии указывают направление напряженности электрического поля: в любой точке напряженность поля направлена по касательной к силовой линии.

2. Силовые линии проводятся так, чтобы напряженность электрического поля Е была пропорциональна числу линий, проходящих через единичную площадку, перпендикулярную линиям.

3. Силовые линии начинаются только на положительных зарядах и заканчиваются только на отрицательных зарядах; число линий, выходящих из заряда или входящих в него, пропорционально величине заряда.

Можно также сказать, что силовая линия электрического поля - это траектория, по которой следовал бы помещенный в поле малый пробный заряд. (Строго говоря, это верно лишь в том случае, если пробный заряд не обладает инерцией или движется медленно, например вследствие трения.)
Силовые линии никогда не пересекаются. (Если бы они пересекались, это означало бы, что в одной и той же точке напряженность электрического поля имеет два различных направления, что лишено смысла.)

Электрические поля и проводники

В статическом случае (т.е. когда заряды покоятся) электрическое поле внутри хорошего проводника отсутствует. Если бы в проводнике существовало электрическое поле, то на внутренние свободные электроны действовала бы сила, вследствие чего электроны пришли бы в движение и двигались до тех пор, пока не заняли бы такое положение, при котором, напряженность электрического поля, а стало быть, и действующая на них сила обратились бы в нуль. Из этого рассуждения вытекают любопытные следствия. В частности, если проводник обладает результирующим зарядом, то этот заряд распределяется по внешней поверхности проводника. Этот факт можно объяснить с иной точки зрения. Если, например, проводник заряжен отрицательно, то мы легко можем представить, что отрицательные заряды отталкивают друг друга и устремляются к поверхности проводника, чтобы расположиться как можно дальше друг от друга. Другое следствие состоит в следующем. Пусть положительный заряд Q помещен в центр полого изолированного проводника в форме сферической оболочки (рис. 22.22).
Поскольку внутри проводника электрического поля быть не может, силовые линии, идущие от положительного заряда, должны заканчиваться на отрицательных зарядах на внутренней поверхности металлической сферы. В результате на внутренней поверхности сферического проводника будет индуцирован соответствующий отрицательный заряд -Q , а равный по величине положительный заряд +Q распределится по внешней поверхности сферы (поскольку в целом оболочка нейтральна). Таким образом, хотя внутри проводника электрическое поле отсутствует, снаружи сферы существует электрическое поле (рис. 22.22), как если бы металлической сферы вовсе не было.

С этим связано также и то обстоятельство, что силовые линии электрического поля всегда перпендикулярны поверхности проводника. Действительно, если бы вектор напряженности электрического поля Е имел компоненту, параллельную поверхности проводника, то электроны под действием силы двигались бы до тех пор, пока не заняли положение, в котором на них не действует сила, т. е. пока вектор напряженности электрического поля не будет перпендикулярен поверхности.

Все сказанное относится только к проводникам. В изоляторах, у которых нет свободных электронов, может существовать электрическое поле и силовые линии не обязательно перпендикулярны поверхности.

Продолжение следует. Коротко о следующей публикации:

Замечания и предложения принимаются и приветствуются!

«Физика - 10 класс»

Что является посредником, осуществляющим взаимодействие зарядов?
Как определить какое из двух полей более сильное? Предложите пути сравнения полей.


Напряжённость электрического поля.


Электрическое поле обнаруживается по силам, действующим на заряд. Можно утверждать, что мы знаем о поле всё, что нам нужно, если будем знать силу, действующую на любой заряд в любой точке поля. Поэтому надо ввести такую характеристику поля, знание которой позволит определить эту силу.

Если поочерёдно помещать в одну и ту же точку поля небольшие заряженные тела и измерять силы, то обнаружится, что сила, действующая на заряд со стороны поля, прямо пропорциональна этому заряду. Действительно, пусть поле создаётся точечным зарядом q 1 . Согласно закону Кулона (14.2) на точечный заряд q действует сила, пропорциональная заряду q. Поэтому отношение силы, действующей на помещаемый в данную точку поля заряд, к этому заряду для каждой точки поля не зависит от заряда и может рассматриваться как характеристика поля.

Отношение силы, действующей на помещаемый в данную точку поля точечный заряд, к этому заряду, называется напряжённостью электрического поля .

Подобно силе, напряжённость поля - векторная величина ; её обозначают буквой :

Отсюда сила, действующая на заряд q со стороны электрического поля, равна:

Q. (14.8)

Направление вектора совпадает с направлением силы, действующей на положительный заряд, и противоположно направлению силы, действующей на отрицательный заряд.

Единица напряжённости в СИ - Н/Кл.


Силовые линии электрического поля.


Электрическое поле не действует на органы чувств. Его мы не видим. Однако мы можем получить некоторое представление о распределении поля, если нарисуем векторы напряжённости поля в нескольких точках пространства (рис. 14.9, а). Картина будет более наглядной, если нарисовать непрерывные линии.


Линии, касательная в каждой точке которых совпадает с вектором напряжённости электрического поля, называют силовыми линиями или линиями напряжённости поля (рис. 14.9, б).

Направление силовых линий позволяет определить направление вектора напряжённости в различных точках поля, а густота (число линий на единицу площади) силовых линий показывает, где напряжённость поля больше. Так, на рисунках 14 10-14.13 густота силовых линий в точках А больше, чем в точках В. Очевидно, что А > B .

Не следует думать, что линии напряжённости существуют в действительности вроде растянутых упругих нитей или шнуров, как предполагал сам Фарадей. Линии напряжённости помогают лишь наглядно представить распределение поля в пространстве. Они не более реальны, чем меридианы и параллели на земном шаре.

Силовые линии можно сделать видимыми. Если продолговатые кристаллики изолятора (например, хинина) хорошо перемешать в вязкой жидкости (например, в касторовом масле) и поместить туда заряженные тела, то вблизи этих тел кристаллики выстроятся в цепочки вдоль линий напряжённости.

На рисунках приведены примеры линий напряжённости: положительно заряженного шарика (см. рис. 14.10), двух разноимённо заряженных шариков (см. рис. 14.11), двух одноимённо заряженных шариков (см. рис. 14.12), двух пластин, заряды которых равны по модулю и противоположны по знаку (см. рис. 14.13). Последний пример особенно важен.

На рисунке 14.13 видно, что в пространстве между пластинами силовые линии в основном параллельны и находятся на равных расстояниях друг от друга: электрическое поле здесь одинаково во всех точках.

Электрическое поле, напряжённость которого одинакова во всех точках, называется однородным .

В ограниченной области пространства электрическое поле можно считать приближённо однородным, если напряжённость поля внутри этой области меняется незначительно.

Силовые линии электрического поля не замкнуты, они начинаются на положительных зарядах и оканчиваются на отрицательных. Силовые линии непрерывны и не пересекаются, так как пересечение означало бы отсутствие определённого направления напряжённости электрического поля в данной точке.

    Электри́ческий заря́д (коли́чество электри́чества ) - это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Впервые электрический заряд был введён в законе Кулона в 1785 году.

Единица измерения заряда в Международной системе единиц (СИ) - кулон - электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 А за время 1 с. Заряд в один кулон очень велик. Если бы два носителя заряда (q 1 = q 2 = 1 Кл) расположили в вакууме на расстоянии 1 м, то они взаимодействовали бы с силой 9·10 9 H, то есть с силой, с которой гравитация Земли притягивала бы предмет с массой порядка 1 миллиона тонн. Электрический заряд замкнутой системы сохраняется во времени и квантуется - изменяется порциями, кратными элементарному электрическому заряду, то есть, другими словами, алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе.

Взаимодействие зарядов Самое простое и повседневное явление, в котором обнаруживается факт существования в природе электрических зарядов, - этоэлектризация тел при соприкосновении . Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется существованием двух различных видов зарядов . Один вид электрического заряда называют положительным, а другой - отрицательным. Разноимённо заряженные тела притягиваются, а одноимённо заряженные - отталкиваются друг от друга.

При соприкосновении двух электрически нейтральных тел в результате трения заряды переходят от одного тела к другому. В каждом из них нарушается равенство суммы положительных и отрицательных зарядов, и тела заряжаются разноимённо.

При электризации тела через влияние в нём нарушается равномерное распределение зарядов. Они перераспределяются так, что в одной части тела возникает избыток положительных зарядов, а в другой - отрицательных. Если две эти части разъединить, то они будут заряжены разноимённо.

Закон сохранения эл. Заряда В рассматриваемой системе могут образовываться новые электрически заряженные частицы, например, электроны - вследствие явления ионизации атомов или молекул, ионы - за счёт явления электролитической диссоциации и др. Однако, если система электрически изолирована, то алгебраическая сумма зарядов всех частиц, в том числе и вновь появившихся в такой системе, всегда равна нулю.

Закон сохранения электрического заряда - один из основополагающих законов физики. Он был впервые экспериментально подтверждён в 1843 году английским учёным Майклом Фарадеем и считается на настоящее время одним из фундаментальных законов сохранения в физике (подобно законам сохранения импульса иэнергии). Всё более чувствительные экспериментальные проверки закона сохранения заряда, продолжающиеся и поныне, пока не выявили отклонений от этого закона.

. Электрический заряд и его дискретность . Закон сохранения заряда. Закон сохранения электрического заряда гласит, что алгебраическая сумма зарядов электрически замкнутой системы сохраняется. q, Q, e – обозначения электрического заряда. Единицы заряда в СИ [q]=Кл (Кулон). 1мКл = 10-3 Кл; 1 мкКл = 10-6 Кл; 1нКл = 10-9 Кл; е = 1,6∙10-19 Кл – элементарный заряд. Элементарный заряд, е – минимальный заряд, встречающийся в природе. Электрон: qe = - e - заряд электрона; m = 9,1∙10-31 кг – масса электрона и позитрона. Позитрон, протон: qp = + e – заряд позитрона и протона. Любое заряженное тело содержит целое число элементарных зарядов: q = ± Ne; (1) Формула (1) выражает принцип дискретности электрического заряда, где N = 1,2,3…- целое положительное число. Закон сохранения электрического заряда: заряд электрически изолированной системы с течением времени не изменяется: q = const. Закон Кулона – один из основных законов электростатики, определяющий силу взаимодействия между двумя точечными электрическими зарядами.

Закон установлен в 1785 году Ш.Кулоном с помощью изобретенных им крутильных весов. Кулон интересовался не столько электричеством, сколько изготовлением, приборов. Изобретя чрезвычайно чувствительный прибор для измерения силы – крутильные весы он искал возможности его применения.

Для подвеса Кулон использовал шелковую нить длиной 10 см, которая поворачивалась на 1° при силе 3*10 -9 гс. С помощью этого прибора он и установил, что сила взаимодействия между двумя электрическими зарядами и между двумя полюсами магнитов обратно пропорциональна квадрату расстояния между зарядами или полюсами.

Два точечных заряда взаимодействуют друг с другом в вакууме с силой F , величина которой пропорциональна произведению зарядов е 1 и е 2 и обратно пропорциональна квадрату рассторасстояния r между ними:

Коэффициент пропорциональности k зависит от выбора системы единиц измерений (в системе единиц Гаусса k = 1, в СИ

ε 0 – электрическая постоянная).

Сила F направлена по прямой, соединяющей заряды, и соответствует притяжению для разноименных зарядов и отталкиванию для одноименных.

Если взаимодействующие заряды находятся в однородном диэлектрике, с диэлектрической проницаемостью ε , то сила взаимодействия уменьшается в ε раз:

Законом Кулона называется также закон, определяющий силу взаимодействия двух магнитных полюсов:

где m 1 и m 2 – магнитные заряды,

μ – магнитная проницаемость среды,

f – коэффициент пропорциональности, зависящий от выбора системы единиц.

    Электрическое поле – отдельная форма проявления (наряду с магнитным полем) электромагнитного поля.

В процессе развития физики существовало два подхода к объяснению причин взаимодействия электрических зарядов.

По первой версии, силовое действие между отдельными заряженными телами объяснялось присутствием промежуточных звеньев, передающих это действие, т.е. наличием окружающей тела среды, в которой действие передается от точки к точке с конечной скоростью. Эта теория получила название теории близкодействия .

Согласно второй версии, действие передается мгновенно на любые расстояния, при этом промежуточная среда может отсутствовать вовсе. Один заряд мгновенно «ощущает» присутствие другого, при этом никаких изменений в окружающем пространстве не происходит. Эту теорию назвали теорией дальнодействия .

Понятие «электрическое поле» было введено М. Фарадеем в 30-х годах XIX века.

Согласно Фарадею, каждый покоящийся заряд создает в окружающем пространстве электрическое поле. Поле одного заряда действует на другой заряд и на оборот (концепция близкодействия).

Электрическое поле, создаваемое неподвижными зарядами и не изменяющееся со временем, называется электростатическим . Электростатическое поле характеризует взаимодействие неподвижных зарядов.

Напряжённость электри́ческого по́ля - векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный точечныйзаряд, помещённый в данную точку поля, к величине этого заряда :

Из этого определения видно, почему напряжённость электрического поля иногда называется силовой характеристикой электрического поля (действительно, всё отличие от вектора силы, действующей на заряженную частицу, только в постоянном множителе).

В каждой точке пространства в данный момент времени существует своё значение вектора (вообще говоря - разное в разных точках пространства), таким образом, -- этовекторное поле. Формально это выражается в записи

представляющей напряжённость электрического поля как функцию пространственных координат (и времени, так как может меняться со временем). Это поле вместе с полемвектора магнитной индукции представляет собой электромагнитное поле , и законы, которым оно подчиняется, есть предмет электродинамики.

Напряжённость электрического поля в Международной системе единиц (СИ) измеряется в вольтах на метр [В/м] или в ньютонах на кулон [Н/Кл].

Сила, с которой действует электромагнитное поле на заряженные частицы [

Полная сила, с которой электромагнитное поле (включающее вообще говоря электрическую и магнитную составляющие) действует на заряженную частицу, выражается формулой силы Лоренца:

где q - электрический заряд частицы, - её скорость,- вектормагнитной индукции (основная характеристика магнитного поля), косым крестом обозначеновекторное произведение. Формула приведена в единицах СИ.

Заряды, создающие электростатическое поле, можно распределить в пространстве либо дискертно, либо непрерывно. В первом случае напряженность поля: n E = Σ Ei₃ i=t, где Ei – напряженность в определенной точке пространства поля, создаваемого одним i-м зарядом системы, а n – суммарное число дискертных зарядов, которые входят в состав системы. Пример решения задачи, в основу которого положен принцип суперпозиции электрических полей. Так для определения напряженности электростатического поля, которое создается в вакууме неподвижными точечными зарядами q₁, q₂, …, qn, используем формулу: n E = (1/4πε₀) Σ (qi/r³i)ri i=t, где ri – радиус-вектор, проведенный из точечного заряда qi в рассматриваемую точку поля. Приведем еще один пример. Определение напряженности электростатического поля, которое создается в вакууме электрическим диполем. Электрическое диполе - система из двух одинаковых по абсолютной величине и, при этом, противоположных по знаку зарядов q>0 и –q, расстояние I между которыми относительно мало в сравнении с расстоянием рассматриваемых точек. Плечом диполя будет называться вектор l, который направлен по оси диполя к положительному заряду от отрицательного и численно равен расстоянию I между ними. Вектор pₑ = ql - электрический момент диполя.

Напряженность Е поля диполя в любой точке: Е = Е₊ + Е₋, где Е₊ и Е₋ являются напряженностями полей электрических зарядов q и –q. Таким образом, в точке А, которая расположена на оси диполя, напряженность поля диполя в вакууме будет равна E = (1/4πε₀)(2pₑ/r³) В точке В, которая расположена на перпендикуляре, восстановленном к оси диполя из его середины: E = (1/4πε₀)(pₑ/r³) В произвольной точке М, достаточно удаленной от диполя (r≥l), модуль напряженности его поля равен E = (1/4πε₀)(pₑ/r³)√3cosϑ + 1 Кроме того, принцип суперпозиции электрических полей состоит из двух утверждений: Кулоновская сила взаимодействия двух зарядов не зависит от присутствия других заряженных тел. Предположим, что заряд q взаимодействует с системой зарядов q1, q2, . . . , qn. Если каждый из зарядов системы действует на заряд q с силой F₁, F₂, …, Fn соответственно, то результирующая сила F, приложенная к заряду q со стороны данной системы, равна векторной сумме отдельных сил: F = F₁ + F₂ + … + Fn. Таким образом, принцип суперпозиции электрических полей позволяет прийти к одному важному утверждению.

Силовые линии электрического поля

Электрическое поле изображают с помощью силовых линий.

Силовые линии указывают направление силы, действующей на положительный заряд в данной точке поля.

Свойства силовых линий электрического поля

    Силовые линии электрического поля имеют начало и конец. Они начинаются на положительных зарядах и заканчиваются на отрицательных.

    Силовые линии электрического поля всегда перпендикулярны поверхности проводника.

    Распределение силовых линий электрического поля определяет характер поля. Поле может быть радиальным (если силовые линии выходят из одной точки или сходятся в одной точке), однородным (если силовые линии параллельны) и неоднородным (если силовые линии не параллельны).

Плотность заряда - это количество заряда, приходящееся на единицу длины, площади или объёма, таким образом определяются линейная, поверхностная и объемная плотности заряда, которые измеряются в системе СИ: в Кулонах на метр (Кл/м), в Кулонах на квадратный метр (Кл/м²) и в Кулонах на кубический метр (Кл/м³), соответственно. В отличие от плотности вещества, плотность заряда может иметь как положительные, так и отрицательные значения, это связано с тем, что существуют положительные и отрицательные заряды.

Линейная, поверхностная и объемная плотности заряда, обозначаются обычно функциями ,и, соответственно, где- эторадиус-вектор. Зная эти функции мы можем определить полный заряд:

§5 Поток вектора напряженности

Определим поток вектора через произвольную поверхность dS,- нормаль к поверхности.α - угол между нормалью и силовой линией вектора. Можно ввести вектор площади.ПОТОКОМ ВЕКТОРА называется скалярная величина Ф Е равная скалярному произведению вектора напряженности на вектор площади

Для однородного поля

Для неоднородного поля

где - проекцияна,- проекцияна.

В случае криволинейной поверхности S ее нужно разбить на элементарные поверхности dS , рассчитать поток через элементарную поверхность, а общий поток будет равен сумме или в пределе интегралу от элементарных потоков

где - интеграл по замкнутой поверхности S (например, по сфере, цилиндру, кубу и т.д.)

Поток вектора является алгебраической величиной: зависит не только от конфигурации поля, но и от выбора направления. Для замкнутых поверхностей за положительное направление нормали принимается внешняя нормаль, т.е. нормаль, направленная наружу области, охватываемой поверхностью.

Для однородного поля поток через замкнутую поверхность равен нуля. В случае неоднородного поля

3. Напряженность электростатического поля, создаваемого равномерно заряженной сферической поверхностью.

Пусть сферическая поверхность радиуса R (рис. 13.7) несет на себе равномерно распределенный заряд q, т.е. поверхностная плотность заряда в любой точке сферы будет одинакова.

    Заключим нашу сферическую поверхность в симметричную поверхность S с радиусом r>R. Поток вектора напряженности через поверхность S будет равен

По теореме Гаусса

Следовательно

Сравнивая это соотношение с формулой для напряженности поля точечного заряда, можно прийти к выводу, что напряженность поля вне заряженной сферы такова, как если бы весь заряд сферы был сосредоточен в ее центре.

2. Электростатическое поле шара.

Пусть имеем шар радиуса R, равномерно заряженный с объемной плотностью.

В любой точке А, лежащей вне шара на расстоянии r от его центра (r>R), его поле аналогично полю точечного заряда , расположенного в центре шара. Тогда вне шара

а на его поверхности (r=R)

Мы получим некоторое представление о распределении поля, если нарисуем векторы напряженности поля в нескольких точках пространства (рис. 102). Картина будет более наглядной, если нарисовать непрерывные линии, касательные к которым в каждой

точке, через которую они проходят, совпадают с вектором напряженности. Эти линии называют силовыми линиями электрического поля или линиями напряженности (рис. 103).

Не следует думать, что линии напряженности - это существующие в действительности образования вроде растянутых упругих нитей или шнуров, как предполагал сам Фарадей. Они лишь помогают наглядно представить распределение поля в пространстве и не более реальны, чем меридианы и параллели на земном шаре.

Однако силовые линии можно сделать «видимыми». Если продолговатые кристаллики изолятора (например, хинина лекарства от малярии) хорошо перемешать в вязкой жидкости (например, в касторовом масле) и поместить туда заряженные тела, то вблизи этих тел кристаллики «выстроятся» в цепочки вдоль линий напряженности.

На рисунках приведены примеры линий напряженности: положительно заряженного шарика (рис. 104); двух разноименно заряженных шариков (рис. 105); двух одноименно заряженных шариков (рис. 106); двух пластин, заряды которых равны по модулю и противоположны по знаку (рис. 107). Последний пример особенно важен. На рисунке 107 видно, что в пространстве между пластинами вдали от краев пластин силовые линии параллельны: электрическое поле здесь одинаково во всех точках.

Электрическое поле,

напряженность которого одинакова во всех точках пространства, называется однородным. В ограниченной области пространства электрическое поле можно считать приблизительно однородным, если напряженность поля внутри этой области меняется незначительно.

Силовые линии электрического поля не замкнуты; они начинаются на положительных зарядах и оканчиваются на отрицательных. Линии непрерывны и не пересекаются, так как их пересечение означало бы отсутствие определенного направления напряженности электрического поля в данной точке. Так как силовые линии начинаются или оканчиваются на заряженных телах, а затем расходятся в разные стороны (рис. 104), то густота линий больше вблизи заряженных тел. где напряженность поля также больше.

I. В чем состоит отличие теории близкодействия от теории действия на расстоянии? 2. Перечислите основные свойства электростатического поля.

3. Что называют напряженностью электрического поля? 4. Чему равна напряженность поля точечного заряда? 5. Сформулируйте принцип суперпозиции. 6. Что называют силовыми линиями электрического поля?

7. Нарисуйте Силовые линии однородного электрического поля.