Как рассчитать тепловую нагрузку на отопление. Расчет тепловой нагрузки на отопление здания снип

В домах, которые сдавались в эксплуатацию в последние годы, обычно данные правила выполнены, поэтому расчет отопительной мощности оборудования проходит на основе стандартных коэффициентов. Индивидуальный расчет может проводиться по инициативе собственника жилья или коммунальной структуру, занимающейся поставкой тепла. Это случается при стихийной замене радиаторов отопления, окон и других параметров.

В квартире, обслуживаемой коммунальным предприятием, расчет тепловой нагрузки может быть проведен только при передаче дома с целью отслеживания параметров СНИП в принимаемом на баланс помещении. В противном случае это делает владелец квартиры, чтобы рассчитать свои теплопотери в холодное время года и устранить недостатки утепления – использовать теплоизолирующую штукатурку, поклеить утеплитель, монтировать на потолках пенофол и установить металлопластиковые окна с пятикамерным профилем.

Расчет тепловых утечек для коммунальной службы с целью открытия спора, как правило, не дает результата. Причина в том, что существуют стандарты теплопотерь. Если дом введен в эксплуатацию, то требования выполнены. При этом приборы отопления соответствуют требованиями СНИП. Замена батарей и отбор большего количества тепла запрещен, так как радиаторы установлены по утвержденным строительным стандартам.

Частные дома отапливаются автономными системами, что при этом расчет нагрузки осуществляется для соблюдения требований СНИП, и коррекции отопительной мощности проводится в совокупности с работами по уменьшению теплопотерь.

Расчеты можно сделать вручную, используя несложную формулу или калькулятор на сайте. Программа помогает рассчитать необходимую мощность системы отопления и утечки тепла, характерные для зимнего периода. Расчеты осуществляются для определенного теплового пояса.

Основные принципы

Методика включает в себя целый ряд показателей, которые в совокупности позволяют оценить уровень утепления дома, соответствие стандартам СНИП, а также мощность котла отопления. Как это работает:

По объекту проводится индивидуальный или усредненный расчет. Основной смысл проведения подобного обследования состоит в том, что при хорошем утеплении и малых утечках тепла в зимний период можно использовать 3 кВт. В здании той же площади, но без утепления, при низких зимних температурах потребляемая мощность составит до 12 кВт. Таким образом, тепловую мощность и нагрузку оценивают не только по площади, но и по теплопотерям.

Основные теплопотери частного дома:

  • окна – 10-55%;
  • стены – 20-25%;
  • дымоход – до 25%;
  • крыша и потолок – до 30%;
  • низкие полы – 7-10%;
  • температурный мост в углах – до 10%

Данные показатели могут варьироваться в лучшую и худшую сторону. Их оценивают в зависимости от типов установленных окон, толщины стен и материалов, степени утепления потолка. Например, в плохо утепленных зданиях теплопотери через стены могут достигать 45% процентов, в этом случае к системе отопления применимо выражение «топим улицу». Методика и
калькулятор помогут оценить номинальные и расчетные значения.

Специфика расчетов

Данную методику еще можно встретить под названием «теплотехнический расчет». Упрощенная формула имеет следующий вид:

Qt = V × ∆T × K / 860, где

V – объем помещения, м³;

∆T – максимальная разница в помещении и вне помещения, °С;

К – оценочный коэффициент тепловых потерь;

860 – коэффициент перехода в кВт/час.

Коэффициент тепловых потерь К зависит от строительной конструкции, толщины и теплопроводности стен. Для упрощенных расчетов можно использовать следующие параметры:

  • К = 3,0-4,0 – без теплоизоляции (неутепленное каркасное или металлическое строение);
  • К = 2,0-2,9 – малая теплоизоляция (кладка в один кирпич);
  • К = 1,0-1,9 – средняя теплоизоляция (кирпичная кладка в два кирпича);
  • К = 0,6-0,9 – хорошая теплоизоляция по стандарту.

Данные коэффициенты усредненные и не позволяют оценить теплопотери и тепловую нагрузку на помещение, поэтому рекомендуем воспользоваться онлайн-калькулятором.

Нет записей по теме.

Тепловая нагрузка подразумевает под собой количество тепловой энергии, необходимое для поддержания комфортной температуры в доме, квартире или отдельной комнате. Под максимальной часовой нагрузкой на отопление подразумевается количество тепла, необходимое для поддержания нормированных показателей в течение часа в самых неблагоприятных условиях.

Факторы, влияющие на тепловую нагрузку

  • Материал и толщина стен. К примеру, стена из кирпича в 25 сантиметров и стена из газобетона в 15 сантиметров способны пропустить разное количество тепла.
  • Материал и структура крыши. Например, теплопотери плоской крыши из железобетонных плит значительно отличаются от теплопотерь утепленного чердака.
  • Вентиляция. Потеря тепловой энергии с отработанным воздухом зависит от производительности вентиляционной системы, наличия или отсутствия системы рекуперации тепла.
  • Площадь остекления. Окна теряют больше тепловой энергии по сравнению со сплошными стенами.
  • Уровень инсоляции в разных регионах. Определяется степенью поглощения солнечного тепла наружными покрытиями и ориентацией плоскостей зданий по отношению к сторонам света.
  • Разность температур между улицей и помещением. Определяется тепловым потоком через ограждающие конструкции при условии постоянного сопротивления теплопередаче.

Распределение тепловой нагрузки

При водяном отоплении максимальная тепловая мощность котла должна равняться сумме тепловой мощности всех устройств отопления в доме. На распределение устройств отопления влияют следующие факторы:

  • Жилые комнаты в середине дома – 20 градусов;
  • Угловые и торцевые жилые комнаты – 22 градуса. При этом за счет более высокой температуры не промерзают стены;
  • Кухня – 18 градусов, поскольку в ней имеются собственные источники тепла – газовые или электрические плиты и пр.
  • Ванная комната – 25 градусов.

При воздушном отоплении тепловой поток, который поступает в отдельное помещение, зависит от пропускной способности воздушного рукава. Зачастую простейшим способом его регулировки является подстройка положения решеток вентиляции с контролем температуры вручную.

При системе отопления, где применяется распределительный источник тепла (конвектора, теплые полы, электрообогреватели и т.д.), необходимый режим температуры устанавливается на термостате.

Методики расчета

Для определения тепловой нагрузки существует несколько способов, обладающие различной сложностью расчета и достоверностью полученных результатов. Далее представлены три наиболее простые методики расчета тепловой нагрузки.

Метод №1

Согласно действующему СНиП, существует простой метод расчета тепловой нагрузки. На 10 квадратных метров берут 1 киловатт тепловой мощности. Затем полученные данные умножаются на региональный коэффициент:

  • Южные регионы имеют коэффициент 0,7-0,9;
  • Для умеренно-холодного климата (Московская и Ленинградская области) коэффициент равен 1,2-1,3;
  • Дальний Восток и районы Крайнего Севера: для Новосибирска от 1,5; для Оймякона до 2,0.

Расчет на примере:

  1. Площадь здания (10*10) равна 100 квадратных метров.
  2. Базовый показатель тепловой нагрузки 100/10=10 киловатт.
  3. Это значение умножается на региональный коэффициент, равный 1,3, в итоге получается 13 кВт тепловой мощности, которые требуются для поддержания комфортной температуры в доме.

Обратите внимание! Если использовать эту методику для определения тепловой нагрузки, то необходимо еще учесть запас мощности в 20 процентов, чтобы компенсировать погрешности и экстремальные холода.

Метод №2

Первый способ определения тепловой нагрузки имеет много погрешностей:

  • Разные строения имеют разную высоту потолков. Учитывая то, что обогревается не площадь, а объем, этот параметр очень важен.
  • Через двери и окна проходит больше тепла, чем через стены.
  • Нельзя сравнивать городскую квартиру с частным домом, где снизу, сверху и за стенами не квартиры, а улица.

Корректировка метода:

  • Базовый показатель тепловой нагрузки равняется 40 ватт на 1 кубический метр объема помещения.
  • Каждая дверь, ведущая на улицу, добавляет к базовому показателю тепловой нагрузки 200 ватт, каждое окно – 100 ватт.
  • Угловые и торцевые квартиры многоквартирного дома имеют коэффициент 1,2-1,3, на который влияет толщина и материал стен. Частный дом обладает коэффициентом 1,5.
  • Региональные коэффициенты равны: для Центральных областей и Европейской части России – 0,1-0,15; для Северных регионов – 0,15-0,2; для Южных регионов – 0,07-0,09 кВт/кв.м.

Расчет на примере:

Метод №3

Не стоит обольщаться – второй способ расчета тепловой нагрузки также весьма несовершенен. В нем весьма условно учтено тепловое сопротивление потолка и стен; разность температур между наружным воздухом и воздухом внутри.

Стоит отметить, чтобы поддерживать внутри дома постоянную температуру необходимо такое количество тепловой энергии, которое будет равняться всем потерям через вентиляционную систему и ограждающие устройства. Однако, и в этом методе расчеты упрощены, так как невозможно систематизировать и измерить все факторы.

На теплопотери влияет материал стен – 20-30 процентов потери тепла. Через вентиляцию уходит 30-40 процентов, через крышу – 10-25 процентов, через окна – 15-25 процентов, через пол на грунте – 3-6 процентов.

Чтобы упростить расчеты тепловой нагрузки, подсчитываются тепловые потери через ограждающие устройства, а затем это значение просто умножается на 1,4. Дельта температур измеряется легко, но взять данные про термическое сопротивление можно только в справочниках. Ниже приведены некоторые популярные значения термического сопротивления:

  • Термическое сопротивление стены в три кирпича равно 0,592 м2*С/Вт.
  • Стены в 2,5 кирпича составляет 0, 502.
  • Стены в 2 кирпича равно 0,405.
  • Стены в один кирпич (толщина 25 см) равно 0,187.
  • Бревенчатого сруба, где диаметр бревна 25 см – 0,550.
  • Бревенчатого сруба, где диаметр бревна 20 сантиметров – 0,440.
  • Сруба, где толщина сруба 20 см – 0,806.
  • Сруба, где толщина 10 см – 0,353.
  • Каркасной стены, толщина которой 20 см, утепленной минеральной ватой – 0,703.
  • Стены из газобетона, толщина которой 20 см – 0,476.
  • Стены из газобетона, толщина которой 30 см – 0,709.
  • Штукатурки, толщина которой 3 см – 0,035.
  • Потолочного или чердачного перекрытия – 1,43.
  • Деревянного пола – 1,85.
  • Двойной деревянной двери – 0,21.

Расчет по примеру:

Вывод

Как видно из расчетов, способы определения тепловой нагрузки обладают существенными погрешностями . К счастью, избыточный показатель мощности котла не навредит:

  • Работа газового котла на уменьшенной мощности осуществляется без падения коэффициента полезного действия, а работа конденсационных устройств при неполной нагрузке осуществляется в экономичном режиме.
  • То же относится и к соляровым котлам.
  • Показатель коэффициента полезного действия электрического нагревательного оборудования равен 100 процентам.

Обратите внимание! Работа твердотопливных котлов на мощности меньше номинального значения мощности противопоказана.

Расчет тепловой нагрузки на отопление является важным фактором, вычисления которого обязательно необходимо выполнять перед началом создания системы отопления. В случае подхода к процессу с умом и грамотного выполнения всех работ гарантируется безотказная работа отопления, а также существенно экономятся деньги на лишних затратах.

Главная > Документ

РАСЧЕТ

тепловых нагрузок и годового количества

тепла и топлива для котельной

индивидуального жилого дома

Москва 2005

ООО «ОВК инжениринг»

Москва 2005

Общая часть и исходные данные

Настоящий расчет составлен для определения годового расхода тепла и топлива, необходимого для котельной, предназначенной для отопления и ГВС индивидуального жилого дома. Расчет тепловых нагрузок выполнен в соответствии со следующими нормативными документами:
    МДК 4-05.2004 «Методика определения потребности в топливе, электрической энергии и воде при производстве и передаче тепловой энергии и теплоносителей в системах коммунального теплоснабжения» (Госстрой РФ 2004 год); СНиП 23-01-99 «Строительная климатология»; СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование»; СНиП 2.04.01-85* «Внутренний водопровод и канализация зданий».

Характеристика здания:

    Строительный объем здания – 1460 м Общая площадь – 350,0 м² Жилая площадь – 107,8 м² Расчетное количество жильцов – 4 человека

Климатол огические данные района строительства:

    Место строительства: РФ, Московская область, г. Домодедово
    Расчетные температуры воздуха:
    Для проектирования системы отопления: t = -28 ºС Для проектирования системы вентиляции: t = -28 ºС В отапливаемых помещениях: t = +18 C
    Поправочный коэффициент α (при -28 С) – 1.032
    Удельная отопительная характеристика здания – q = 0.57 [Ккал/мч С]
    Отопительный период:
    Продолжительность: 214 суток Средняя температура отопительного периода: t = -3,1 ºС Средняя наиболее холодного месяца = -10,2 ºС КПД котла – 90%
    Исходные данные для расчета ГВС:
    Режим работы – 24 часа в сутки Продолжительность работы ГВС в отопительный период – 214 суток Продолжительность работы ГВС в летний период – 136 суток Температура водопроводной воды в отопительный период – t = +5 C Температура водопроводной воды в летний период – t = +15 C Коэффициент изменения расхода горячей воды в зависимости от периода года – β = 0,8 Норма расхода воды на горячее водоснабжение в сутки – 190 л/чел. Норма расхода воды на горячее водоснабжение в час – 10.5 л/чел. КПД бойлера – 90% КПД котла – 86%
    Зона влажности – «нормальная»

Максимально-часовые нагрузки потребителей следующие:

    На отопление - 0,039 Гкал/час На горячее водоснабжение - 0,0025 Гкал/час На вентиляцию - нет
    Общий максимально-часовой расход тепла с учетом тепловых потерь в сетях и на собственные нужды - 0,0415 Гкал/час
    Для отопления жилого дома предусматривается устройство котельной, оборудованной газовым котлом марки «Ишма-50» (производительность 48 кВт). Для горячего водоснабжения предусматривается установка накопительного газового бойлера «Ariston SGA 200» 195 л (производительность 10.1 кВт)
    Мощность бойлера – 0,0087 Гкал/час
    Топливо – природный газ; общий годовой расход натурального топлива (газа) составит 0,0155 млн. нм³ в год или 0,0177 тыс. т.у.т. в год условного топлива.
Расчет составил: Л.А. Альтшулер

ПЕРЕЧЕНЬ

Данных, представляемых областными главными управлениями, предприятиями (объединениями) в Администрацию Московской области вместе с ходатайством об установлении вида топлива для предприятий (объединений) и теплопотребляющих установок.

    Общие вопросы

Вопросы

Ответы

Министерство (ведомство)

Бурлаков В.В.

Предприятие и его местонахождение (область, район, населенный пункт, улица)

Индивидуальный жилой дом

расположенный по адресу:

Московская область, г. Домодедово

ул. Соловьиная, д.1

Расстояние объекта до:- железнодорожной станции- газопровода- базы нефтепродуктов- ближайшего источника теплоснабжения (ТЭЦ, котельная) с указанием его мощности, загруженности и принадлежности
Готовность предприятия к использованию топливно-энергетических ресурсов (действующее, проектируемое, строящееся) с указанием категории

строящееся, жилое

Документы, согласования (заключения), дата, номер, наименование организации:- об использовании природного газа, угля;- о транспортировке жидкого топлива;- о строительстве индивидуальной или расширенной котельной.

Разрешение ПО Мособлгаз

№ _______ от ___________

Разрешение министерства ЖКХ, топлива и энергетики Московской области

№ _______ от ___________

На основании какого документа проектируется, строится, расширяется, реконструируется предприятие
Вид и количество (т.у.т.) используемого в настоящее время топлива и на основании какого документа (дата, номер, установленный расход), для твердого топлива указать его месторождение, а для донецкого угля – его марку

не используется

Вид запрашиваемого топлива, общий годовой расход (т.у.т.) и год начала потребления

природный газ; 0,0155 тыс. т.у.т. в год; 2005 год

Год выхода предприятия на проектную мощность, общий годовой расход (тыс. т.у.т.) топлива в этом году

2005 год; 0,0177 тыс. т.у.т.

    Котельные установки

а) потребность в теплоэнергии

На какие нужды

Присоединенная максимальная тепловая нагрузка (Гкал/час)

Кол-во часов работы в году

Годовая потребность в тепле (Гкал)

Покрытие потребности в тепле (Гкал/год)

Сущест-вующая

руемая, включая

Проек-тируе-мая, включая

Ко-тель-ная

ричные энер-

го ре-сурсы

За счет дру-гих

Горячее водо-

снабже-ние

кие нужды

ние потреби-

ствен-ные

котель-ной

Потери в тепло-вых

Примечание: 1. В графе 4 указать в скобках число часов работы в году технологического оборудования при максимальных нагрузках. 2. В графах 5 и 6 показать отпуск тепла сторонним потребителям.

б) состав и характеристика оборудования котельных, вид и годовой

расход топлива

Тип котлов

по группам

Используемое топливо

Запрашиваемое топливо

Вид основ-

ного (резер-

ный расход

вой расход

Вид основ-

ного (резер-

ный расход

вой расход

Действующиеиз них:демонтируемые
«Ишма-50»«Ariston SGA 200» 0,050

тыс. т.у.т. в год;

Примечание: 1. Годовой расход топлива указать общий по группам котлов. 2. Удельный расход топлива указать с учетом собственных нужд котельной. 3. В графах 4 и 7 указать способ сжигания топлива (слоевой, камерный, в кипящем слое).

    Потребители тепла

Потребители тепла

Максимальные тепловые нагрузки (Гкал/час)

Технология

Отопле-ние

Горячее водо-снабже-ние

Жилой дом
Жилой дом
Итого по жилому дому

    Потребность в тепле на производственные нужды

Потребители тепла

Наименование продукции

продукции

Удельный расход тепла на единицу

продукции

Годовое потребление тепла

    Технологические топливопотребляющие установки

а) мощность предприятия по выпуску основных видов продукции

Вид продукции

Годовой выпуск (указать единицу измерения)

Удельный расход топлива

(кг у.т./един. Продукции)

существующий

проектируемый

фактический

расчетный

б) состав и характеристика технологического оборудования,

вид и годовой расход топлива

Тип техноло-

гического оборудо-вания

Используемое топливо

Запрашиваемое топливо

Годовой расход

(отчетный)

тыс. т.у.т.

Годовой расход

(отчетный)

с какого года

тыс. т.у.т.

Примечание: 1. Кроме запрашиваемого топлива указать другие виды топлива, на которых могут работать технологические установки.

    Использование топливных и тепловых вторичных ресурсов

Топливные вторичные ресурсы

Тепловые вторичные ресурсы

Вид, источ-

тыс. т.у.т.

Количество используемого топлива

(тыс. т.у.т.)

Вид, источ-

тыс. т.у.т.

Количество используемого тепла

(тыс. Гкал/час)

Сущест-вующее

Существу-

РАСЧЕТ

часовых и годовых расходов тепла и топлива

    Максимально-часовой расход тепла на отопление потребителей вычисляется по формуле:

Qот. = Vзд. х qот. х (Твн. - Тр.от.) х α [Ккал/час]

Где: Vзд.(м³) – объем здания; qот. (ккал/час*м³*ºС) – удельная тепловая характеристика здания; α – поправочный коэффициент на изменение величины отопительной характеристики зданий при температуре отличной от -30ºС.

    Максимально-часовой расх од тепла на вентиляцию вычисляется по формуле:

Qвент. = Vн. х qвент. х (Твн. - Тр.в.) [Ккал/час]

Где: qвент. (ккал/час*м³*ºС) – удельная вентиляционная характеристика здания;

    Средний расход тепла за отопительный период на нужды отопления и вентиляции вычисляется по формуле:
на отопление:

Qо.п. = Qот. х (Твн. – Тс.р.от.)/ (Твн. – Тр.от.) [Ккал/час]

На вентиляцию:

Qо.п. = Qвент. х (Твн. – Тс.р.от.)/ (Твн. – Тр.от.) [Ккал/час]

    Годовые расходы тепла по зданию определяются по формуле:

Qот.год. = 24 х Qср.от. х П [Гкал/год]

На вентиляцию:

Qот.год. = 16 х Qср.в. х П [Гкал/год]

    Среднечасовой расход тепла за отопительный период на горячее водоснабжение жилых зданий определяется по формуле:

Q = 1,2 m х a х (55 – Тх.з.)/24 [Гкал/год]

Где: 1,2 – коэффициент, учитывающий теплоотдачу в помещении от трубопровода систем горячего водоснабжения (1+0.2); a – норма расхода воды в литрах при температуре 55ºС для жилых зданий на одного человека в сутки, должна приниматься в соответствии с главой СНиП по проектированию горячего водоснабжения; Тх.з. – температура холодной воды (водопроводной) в отопительный период, принимаемой равной 5ºС.

    Среднечасовой расход тепла на горячее водоснабжение в летний период определяется по формуле:

Qср.оп.г.в. = Q х (55 – Тх.л.)/ (55 – Тх.з.) х В [Гкал/год]

Где: В – коэффициент, учитывающий снижение среднечасового расхода воды на горячее водоснабжение жилых и общественных зданий в летний период по отношению к отопительному, принимается равным 0,8; Тх.л. – температура холодной воды (водопроводной) в летний период, принимаемой равной 15ºС.

    Среднечасовой расход тепла на горячее водоснабжение определяется по формуле:

Qгод г.в. = 24Qо.п.г.вПо + 24Qср.п.г.в*(350 – По)*В =

24Qср.от.г.вПо + 24Qср.от.г.в (55 – Тх.л.)/ (55 – Тх.з.) х В [Гкал/год]

    Общий годовой расход тепла:

Qгод = Qгод от. + Qгод вент. + Qгод г.в. + Qгод втз. + Qгод тех. [Гкал/год]

    Расчет годового расхода топлива определяется по формуле:

Ву.т. = Qгод х 10ˉ 6 /Qр.н. x η

Где: Qр.н. – низшая теплотворная способность условного топлива, равная 7000 ккал/кг у.т.; η – КПД котла; Qгод – общий годовой расход тепла на все виды потребителей.

РАСЧЕТ

тепловых нагрузок и годового количества топлива

    Расчет максимально-часовых нагрузок на отопление:

1.1. Жилой дом: Максимально-часовой расход на отопление:

Qмакс.от. = 0,57 х 1460 х (18 - (-28)) х 1,032= 0,039 [Гкал/час]

Итого по жилому дому: Q макс.от. = 0,039 Гкал/час Итого с учетом собственных нужд котельной: Q макс.от. = 0,040 Гкал/час

    Расчет среднечасовых и годовых расходов тепла на отопление:

2.1. Жилой дом:

Qмакс.от. = 0,039 Гкал/час

Qср.от. = 0,039 х (18 - (-3,1))/(18 - (-28)) = 0,0179 [Гкал/час]

Qгод от. = 0,0179 х 24 х 214 = 91,93 [Гкал/год]

С учетом собственных нужд котельной (2%) Qгод от. = 93,77 [Гкал/год]

Итого по жилому дому:

Среднечасовой расход тепла на отопление Q ср.от. = 0,0179 Гкал/час

Общий годовой расход тепла на отопление Q год от. = 91,93 Гкал/год

Общий годовой расход тепла на отопление с учетом собственных нужд котельной Q год от. = 93,77 Гкал/год

    Расчет максимально-часовых нагрузок на ГВС:

1.1. Жилой дом:

Qмакс.гвс = 1.2 х 4 х 10.5 х (55 - 5) х 10^(-6) = 0,0025 [Гкал/час]

Итого по жилому дому: Q макс.гвс = 0,0025 Гкал/час

    Расчет среднечасовых и год овых расходов тепла на ГВС:

2.1. Жилой дом: Среднечасовой расход тепла на ГВС:

Qср.гвс.з. = 1.2 х 4 х 190 х (55 - 5) х 10^(-6)/24 = 0,0019 [Гкал/час]

Qср.гвс.л. = 0,0019 х 0.8 х (55-15)/(55-5)/24 = 0,0012 [Гкал/час]

Годо вой расход тепла на ГВС: Qгод от. = 0,0019 х 24 х 214 + 0,0012 х 24 х 136 = 13,67 [Гкал/год]Итого на ГВС:

Среднечасовой расход тепла в отопительный период Q ср.гвс = 0,0019 Гкал/час

Среднечасовой расход тепла в летний период Q ср.гвс = 0,0012 Гкал/час

Общий годовой расход тепла Q год гвс = 13,67 Гкал/год

    Расчет годового количества природного газа

и условного топлива :

Q год = ∑ Q год от. + Q год гвс = 107,44 Гкал/год

Годовой расход топлива составит:

Вгод = ∑Qгод х 10ˉ 6 /Qр.н. x η

Годовой расход натурального топлива

(природного газа) для котельной составит:

Котел (КПД=86%) : Вгод нат. = 93.77 х 10ˉ 6 /8000 х 0,86 = 0,0136 млн.нм³ в год Бойлер (КПД=90%): Вгод нат. = 13.67 х 10ˉ 6 /8000 х 0,9 = 0,0019 млн.нм³ в год Итого : 0,0155 млн.нм в год

Годовой расход условного топлива для котельной составит:

Котел (КПД=86%) : Вгод у.т. = 93.77 х 10ˉ 6 /7000 х 0,86 = 0,0155 млн.нм³ в год Бюллетень

Индекс производства электрооборудования, электронного и оптического оборудования в ноябре 2009г. по сравнению с соответствующим периодом предыдущего года составил 84,6%, в январе-ноябре 2009г.

  • Программа Курганской области "Региональная энергетическая программа Курганской области на период до 2010 года" Основания для разработки

    Программа

    В соответствии с пунктом 8 статьи 5 Закона Курганской области "О прогнозах, концепциях, программах социально-экономического развития и целевых программах Курганской области",

  • Пояснительная записка Обоснование проекта генерального плана Генеральный директор

    Пояснительная записка

    Разработка градостроительной документации территориального планирования и Правил землепользования и застройки муниципального образования городское поселение Никель Печенгского района Мурманской области

  • Тема этой статьи — определение тепловой нагрузки на отопление и прочих параметров, нуждающихся в расчете, для . Материал ориентирован прежде всего на владельцев частных домов, далеких от теплотехники и нуждающихся в максимально простых формулах и алгоритмах.

    Итак, в путь.

    Наша задача — научиться рассчитывать основные параметры отопления.

    Избыточность и точный расчет

    Стоит с самого начала оговорить одну тонкость расчетов: абсолютно точные значения потерь тепла через пол, потолок и стены, которые приходится компенсировать системе отопления, вычислить практически невозможно. Можно говорить лишь о той или иной степени достоверности оценок.

    Причина — в том, что на теплопотери влияет слишком много факторов:

    • Тепловое сопротивление капитальных стен и всех слоев отделочных материалов.
    • Наличие или отсутствие мостиков холода.
    • Роза ветров и расположение дома на рельефе местности.
    • Работа вентиляции (которая, в свою очередь, опять-таки зависит от силы и направления ветра).
    • Степень инсоляции окон и стен.

    Есть и хорошие новости. Практически все современные отопительные котлы и системы распределенного отопления (теплые полы, электрические и газовые конвектора и т.д.) снабжаются термостатами, дозирующими расход тепла в зависимости от температуры в помещении.

    С практической стороны это означает, что избыточная тепловая мощность повлияет лишь на режим работы отопления: скажем, 5 КВт*ч тепла будут отданы не за один час непрерывной работы с мощностью 5 КВт, а за 50 минут работы с мощностью 6 КВт. Следующие 10 минут котел или другой нагревательный прибор проведет в режиме ожидания, не потребляя электроэнергию или энергоноситель.

    Следовательно: в случае вычисления тепловой нагрузки наша задача — определить ее минимально допустимое значение.

    Единственное исключение из общего правила связано с работой классических твердотопливных котлов и обусловлено тем, что снижение их тепловой мощности связано с серьезным падением КПД из-за неполного сгорания топлива. Проблема решается установкой в контур теплоаккумулятора и дросселированием отопительных приборов термоголовками.

    Котел после растопки работает на полной мощности и с максимальным КПД до полного прогорания угля или дров; затем накопленное теплоаккумулятором тепло дозировано расходуется на поддержание оптимальной температуры в помещении.

    Большая часть прочих нуждающихся в расчете параметров тоже допускает некоторую избыточность. Впрочем, об этом — в соответствующих разделах статьи.

    Перечень параметров

    Итак, что нам, собственно, предстоит считать?

    • Общую тепловую нагрузку на отопление дома. Она соответствует минимально необходимой мощности котла или суммарной мощности приборов в распределенной системе отопления.
    • Потребность в тепле отдельной комнаты.
    • Количество секций секционного радиатора и размер регистра, соответствующий определенному значению тепловой мощности.

    Обратите внимание: для готовых отопительных приборов (конвекторов, пластинчатых радиаторов и т.д.) производители обычно указывают полную тепловую мощность в сопроводительной документации.

    • Диаметр трубопровода, способного в случае водяного отопления обеспечить необходимый тепловой поток.
    • Параметры циркуляционного насоса, приводящего в движение теплоноситель в контуре с заданными параметрами.
    • Размер расширительного бака, компенсирующего тепловое расширение теплоносителя.

    Перейдем к формулам.

    Один из основных факторов, влияющих на ее значение — степень утепления дома. СНиП 23-02-2003, регламентирующий тепловую защиту зданий, нормирует этот фактор, выводя рекомендованные значения теплового сопротивления ограждающих конструкций для каждого региона страны.

    Мы приведем два способа выполнения подсчетов: для зданий, соответствующих СНиП 23-02-2003, и для домов с ненормированным тепловым сопротивлением.

    Нормированное тепловое сопротивление

    Инструкция по расчету тепловой мощности в этом случае выглядит так:

    • За базовое значение берутся 60 ватт на 1 м3 полного (включая стены) объема дома.
    • Для каждого из окон к этому значению дополнительно добавляется 100 ватт тепла . Для каждой ведущей на улицу двери — 200 ватт.

    • Для компенсации увеличивающихся в холодных регионах потерь используется дополнительный коэффициент.

    Давайте в качестве примера выполним расчет для дома размерами 12*12*6 метров с двенадцатью окнами и двумя дверьми на улицу, расположенного в Севастополе (средняя температура января — +3С).

    1. Отапливаемый объем составляет 12*12*6=864 кубометра.
    2. Базовая тепловая мощность составляет 864*60=51840 ватт.
    3. Окна и двери несколько увеличат ее: 51840+(12*100)+(2*200)=53440.
    4. Исключительно мягкий климат, обусловленный близостью моря, заставит нас использовать региональный коэффициент, равный 0,7. 53440*0,7=37408 Вт. Именно на это значение и можно ориентироваться.

    Ненормированное тепловое сопротивление

    Что делать, если качество утепления дома заметно лучше или хуже рекомендованного? В этом случае для оценки тепловой нагрузки можно использовать формулу вида Q=V*Dt*K/860.

    В ней:

    • Q — заветная тепловая мощность в киловаттах.
    • V — отапливаемый объем в кубометрах.
    • Dt — разница температур между улицей и домом. Обычно берется дельта между рекомендованным СНиП значением для внутренних помещений (+18 — +22С) и средним минимумом уличной температуры в наиболее холодный месяц за последние несколько лет.

    Уточним: рассчитывать на абсолютный минимум в принципе правильнее; однако это будет означать избыточные расходы на котел и отопительные приборы, полная мощность которых будет востребована лишь раз в несколько лет. Цена незначительного занижения расчетных параметров — некоторое падение температуры в помещении в пик холодов, которое несложно компенсировать включением дополнительных обогревателей.

    • К — коэффициент утепления, который можно взять из приведенной ниже таблицы. Промежуточные значения коэффициента выводятся аппроксимацией.

    Давайте повторим вычисления для нашего дома в Севастополе, уточнив, что его стены представляют собой кладку толщиной 40 см из ракушечника (пористой осадочной породы) без внешней отделки, а остекление выполнено однокамерными стеклопакетами.

    1. Коэффициент утепления примем равным 1,2.
    2. Объем дома мы вычислили ранее; он равен 864 м3.
    3. Внутреннюю температуру примем равной рекомендованным СНиП для регионов с нижним пиком температур выше -31С — +18 градусам. Сведения о среднем минимуме любезно подскажет всемирно известная интернет-энциклопедия: он равен -0,4С.
    4. Расчет, таким образом, будет иметь вид Q = 864 * (18 — -0,4) * 1,2 / 860 = 22,2 КВт.

    Как легко заметить, подсчет дал результат, отличающийся от полученного по первому алгоритму в полтора раза. Причина, прежде всего в том, что средний минимум, использованный нами, заметно отличается от абсолютного минимума (около -25С). Увеличение дельты температур в полтора раза ровно во столько же раз увеличит оценочную потребность здания в тепле.

    Гигакалории

    В расчетах количества тепловой энергии, получаемой зданием или помещением, наряду с киловатт-часами используется еще одна величина — гигакалория. Она соответствует количеству тепла, необходимому для нагрева 1000 тонн воды на 1 градус при давлении в 1 атмосферу.

    Как пересчитать киловатты тепловой мощности в гигакалории потребляемого тепла? Все просто: одна гигакалория равна 1162,2 КВт*ч. Таким образом, при пиковой мощности источника тепла в 54 КВт максимальная часовая нагрузка на отопление составит 54/1162,2=0,046 Гкал*час.

    Полезно: для каждого региона страны местными властями нормируется потребление тепла в гигакалориях на квадратный метр площади в течение месяца. Среднее по РФ значение — 0,0342 Гкал/м2 в месяц.

    Комната

    Как подсчитать потребность в тепле для отдельной комнаты? Здесь используются те же схемы расчетов, что для дома в целом, с единственной поправкой. Если к комнате примыкает отапливаемое помещение без собственных отопительных приборов, оно включается в расчет.

    Так, если к комнате размером 4*5*3 метра примыкает коридор размером 1,2*4*3 метра, тепловая мощность отопительного прибора рассчитывается для объема в 4*5*3+1,2*4*3=60+14,4=74,4 м3.

    Отопительные приборы

    Секционные радиаторы

    В общем случае информацию о тепловом потоке на одну секцию всегда можно найти на сайте производителя.

    Если он неизвестен, можно ориентироваться на следующие приблизительные значения:

    • Чугунная секция — 160 Вт.
    • Биметаллическая секция — 180 Вт.
    • Алюминиевая секция — 200 Вт.

    Как всегда, есть ряд тонкостей. При боковом подключении радиатора с 10 и более секциями разброс температур между ближними к подводке и концевыми секциями будет весьма значительным.

    Впрочем: эффект сведется на нет, если подводки подключить диагонально или снизу вниз.

    Кроме того, обычно производители отопительных приборов указывают мощность для вполне конкретной дельты температур между радиатором и воздухом, равной 70 градусам. Зависимость теплового потока от Dt линейна: если батарея на 35 градусов горячее воздуха, тепловая мощность батареи будет ровно вдвое меньше заявленной.

    Скажем, при температуре воздуха в комнате, равной +20С, и температуре теплоносителя в +55С мощность алюминиевой секции стандартного размера будет равна 200/(70/35)=100 ваттам. Для того, чтобы обеспечить мощность в 2 КВт, понадобится 2000/100=20 секций.

    Регистры

    Особняком в списке отопительных приборов стоят самодельные регистры.

    На фото — отопительный регистр.

    Производители по понятным причинам не могут указать их тепловую мощность; однако ее несложно вычислить своими руками.

    • Для первой секции регистра (горизонтальной трубы известных размеров) мощность равна произведению ее наружного диаметра и длины в метрах, дельты температур между теплоносителем и воздухом в градусах и постоянного коэффициента 36,5356.
    • Для последующих секций, находящихся в восходящем потоке теплого воздуха, используется дополнительный коэффициент 0,9.

    Давайте разберем очередной пример — вычислим значение теплового потока для четырехрядного регистра с диаметром секции 159 мм, длиной 4 метра и температурой в 60 градусов в комнате с внутренней температурой +20С.

    1. Дельта температур в нашем случае равна 60-20=40С.
    2. Переводим диаметр трубы в метры. 159 мм = 0,159 м.
    3. Вычисляем тепловую мощность первой секции. Q = 0,159*4*40*36,5356 = 929,46 ватт.
    4. Для каждой последующей секции мощность будет равна 929,46*0,9=836,5 Вт.
    5. Суммарная мощность составит 929,46 + (836,5*3)=3500 (с округлением) ватт.

    Диаметр трубопровода

    Как определить минимальное значение внутреннего диаметра трубы розлива или подводки к отопительному прибору? Не станем лезть в дебри и воспользуемся таблицей, содержащей готовые результаты для разницы между подачей и обраткой в 20 градусов. Именно это значение характерно для автономных систем.

    Максимальная скорость потока теплоносителя не должна превышать 1,5 м/с во избежание появления шумов; чаще ориентируются на скорость в 1 м/с.

    Внутренний диаметр, мм Тепловая мощность контура, Вт при скорости потока, м/с
    0,6 0,8 1
    8 2450 3270 4090
    10 3830 5110 6390
    12 5520 7360 9200
    15 8620 11500 14370
    20 15330 20440 25550
    25 23950 31935 39920
    32 39240 52320 65400
    40 61315 81750 102190
    50 95800 127735 168670

    Скажем, для котла мощностью 20 КВт минимальный внутренний диаметр розлива при скорости потока в 0,8 м/с будет равен 20 мм.

    Обратите внимание: внутренний диаметр близок к ДУ (условному проходу) . Пластиковые и металлопластиковые трубы обычно маркируются наружным диаметром, который на 6-10 мм больше внутреннего. Так, полипропиленовая труба размером 26 мм имеет внутренний диаметр 20 мм.

    Циркуляционный насос

    Нам важны два параметра насоса: его напор и производительность. В частном доме при любой разумной протяженности контура вполне достаточно минимального для наиболее дешевых насосов напора в 2 метра (0,2 кгс/см2): именно это значение перепада обеспечивает циркуляцию системы отопления многоквартирных домов.

    Необходимая производительность вычисляется по формуле G=Q/(1,163*Dt).

    В ней:

    • G — производительность (м3/час).
    • Q — мощность контура, в который устанавливается насос (КВт).
    • Dt — перепад температур между прямым и обратным трубопроводами в градусах (в автономной системе типично значение Dt=20С).

    Для контура, тепловая нагрузка на который составляет 20 киловатт, при стандартной дельте температур расчетная производительность составит 20/(1,163*20)=0,86 м3/час.

    Расширительный бак

    Один из параметров, нуждающихся в расчете для автономной системы — объем расширительного бачка.

    Точный расчет основывается на довольно длинном ряде параметров:

    • Температуре и типе теплоносителя. Коэффициент расширения зависит не только от степени нагрева батарей, но и от того, чем они заполнены: водно-гликолевые смеси расширяются сильнее.
    • Максимально рабочем давлении в системе.
    • Давлении зарядки бачка, зависящем, в свою очередь, от гидростатического давления контура (высоты верхней точки контура над расширительным баком).

    Есть, однако, один нюанс, позволяющий сильно упростить расчет. Если занижение объема бачка приведет в лучшем случае к постоянному срабатыванию предохранительного клапана, а в худшем — к разрушению контура, то его избыточный объем ничем не повредит.

    Именно поэтому обычно берется бак с литражом, равным 1/10 суммарного количества теплоносителя в системе.

    Подсказка: чтобы узнать объем контура, достаточно заполнить его водой и слить ее в мерную посуду.

    Заключение

    Надеемся, что приведенные схемы вычислений упростят жизнь читателю и избавят его от многих проблем. Как обычно, прикрепленное к статье видео предложит его вниманию дополнительную информацию.

    Чтобы выяснить, какой мощностью должно располагать теплосиловое оборудование частного дома, нужно определить общую нагрузку на систему отопления, для чего и выполняется тепловой расчет. В данной статье мы не станем говорить об укрупненной методике подсчетов по площади или объему здания, а представим более точный способ, используемый проектировщиками, только в упрощенном виде для лучшего восприятия. Итак, на систему отопления дома ложится 3 вида нагрузок:

    • компенсация потерь тепловой энергии, уходящей сквозь строительные конструкции (стены, полы, кровлю);
    • нагрев воздуха, потребного для вентиляции помещений;
    • подогрев воды для нужд ГВС (когда в этом задействован котел, а не отдельный нагреватель).

    Определение потерь тепла через наружные ограждения

    Для начала представим формулу из СНиП, по которой производится расчет тепловой энергии, теряемой через строительные конструкции, отделяющие внутреннее пространство дома от улицы:

    Q = 1/R х (tв – tн) х S, где:

    • Q – расход тепла, уходящего через конструкцию, Вт;
    • R – сопротивление передаче тепла сквозь материал ограждения, м2ºС / Вт;
    • S – площадь этой конструкции, м2;
    • tв – температура, которая должна быть внутри дома, ºС;
    • tн – средняя уличная температура за 5 самых холодных дней, ºС.

    Для справки. Согласно методике расчет теплопотерь выполняется отдельно для каждого помещения. С целью упростить задачу предлагается взять здание в целом, приняв приемлемую среднюю температуру 20-21 ºС.

    Площадь для каждого вида наружного ограждения вычисляется отдельно, для чего измеряются окна, двери, стены и полы с кровлей. Так делается, потому что они изготовлены из разных материалов различной толщины. Так что расчет придется делать отдельно для всех видов конструкций, а результаты потом просуммировать. Самую холодную уличную температуру в своем районе проживания вы наверняка знаете из практики. А вот параметр R придется рассчитать отдельно по формуле:

    R = δ / λ, где:

    • λ – коэффициент теплопроводности материала ограждения, Вт/(мºС);
    • δ – толщина материала в метрах.

    Примечание. Значение λ – справочное, его нетрудно отыскать в любой справочной литературе, а для пластиковых окон этот коэффициент вам подскажут производители. Ниже приводится таблица с коэффициентами теплопроводности некоторых стройматериалов, причем для вычислений надо брать эксплуатационные значения λ.

    В качестве примера подсчитаем, сколько тепла потеряет 10 м2 кирпичной стены толщиной 250 мм (2 кирпича) при разнице температур снаружи и в доме 45 ºС:

    R = 0.25 м / 0.44 Вт/(м · ºС) = 0.57 м2 ºС / Вт.

    Q = 1/0.57 м2 ºС / Вт х 45 ºС х 10 м2 = 789 Вт или 0.79 кВт.

    Если стена состоит из разных материалов (конструкционный материал плюс утеплитель), то их тоже надо считать отдельно по приведенным выше формулам, а результаты суммировать. Таким же образом просчитываются окна и кровля, а вот с полами дело обстоит иначе. Первым делом необходимо нарисовать план здания и разбить его на зоны шириной 2 м, как это сделано на рисунке:

    Теперь следует вычислить площадь каждой зоны и поочередно подставить в главную формулу. Вместо параметра R нужно взять нормативные значения для зоны I, II, III и IV, указанные ниже в таблице. По окончании расчетов результаты складываем и получаем общие потери тепла через полы.

    Расход на подогрев вентиляционного воздуха

    Малосведущие люди часто не учитывают, что приточный воздух в доме тоже надо подогревать и эта тепловая нагрузка тоже ложится на отопительную систему. Холодный воздух все равно попадает в дом извне, хотим мы того или нет, и на его нагрев нужно затратить энергию. Больше того, в частном доме должна функционировать полноценная приточно-вытяжная вентиляция, как правило, с естественным побуждением. Воздухообмен создается благодаря наличию тяги в вентиляционных каналах и дымоходе котла.

    Предлагаемая в нормативной документации методика определения тепловой нагрузки от вентиляции достаточно сложна. Довольно точные результаты можно получить, если просчитать эту нагрузку по общеизвестной формуле через теплоемкость вещества:

    Qвент = cmΔt, здесь:

    • Qвент – количество теплоты, потребное для нагрева приточного воздуха, Вт;
    • Δt – разница температур на улице и внутри дома, ºС;
    • m – масса воздушной смеси, поступающей извне, кг;
    • с – теплоемкость воздуха, принимается 0.28 Вт / (кг ºС).

    Сложность расчета этого типа тепловой нагрузки заключается в правильном определении массы нагреваемого воздуха. Выяснить, сколько его попадает внутрь дома, при естественной вентиляции сложно. Поэтому стоит обратиться к нормативам, ведь здания строят по проектам, где заложены потребные воздухообмены. А нормативы говорят, что в большинстве комнат воздушная среда должна меняться 1 раз в час. Тогда берем объемы всех помещений и прибавляем к ним нормы расхода воздуха на каждый санузел – 25 м3/ч и кухонную газовую плиту – 100 м3/ч.

    Чтобы произвести расчет тепловой нагрузки на отопление от вентиляции, полученный объем воздуха надо пересчитать в массу, узнав его плотность при разных температурах из таблицы:

    Предположим, что общее количество приточного воздуха составляет 350 м3/ч, температура снаружи – минус 20 ºС, внутри – плюс 20 ºС. Тогда его масса составит 350 м3 х 1.394 кг/м3 = 488 кг, а тепловая нагрузка на отопительную систему - Qвент = 0.28 Вт / (кг ºС) х 488 кг х 40 ºС = 5465.6 Вт или 5.5 кВт.

    Тепловая нагрузка от нагрева воды для ГВС

    Для определения этой нагрузки можно воспользоваться той же простой формулой, только теперь надо посчитать тепловую энергию, расходуемую на подогрев воды. Ее теплоемкость известна и составляет 4.187 кДж/кг °С или 1.16 Вт/кг °С. Учитывая, что семье из 4 человек на все потребности достаточно 100 л воды на 1 сутки, нагретой до 55 °С, подставляем эти цифры в формулу и получаем:

    QГВС = 1.16 Вт/кг °С х 100 кг х (55 – 10) °С = 5220 Вт или 5.2 кВт теплоты в сутки.

    Примечание. По умолчанию принято, что 1 л воды равен 1 кг, а температура холодной водопроводной воды равна 10 °С.

    Единица мощности оборудования всегда отнесена к 1 часу, а полученные 5.2 кВт – к суткам. Но делить эту цифру на 24 нельзя, ведь горячую воду мы хотим получать как можно скорее, а для этого котел должен располагать запасом мощности. То есть, эту нагрузку надо прибавить к остальным как есть.

    Заключение

    Данный расчет нагрузок на отопление дома даст гораздо более точные результаты, нежели традиционный способ по площади, хотя потрудиться придется. Конечный результат нужно обязательно умножить на коэффициент запаса – 1.2, а то и 1.4 и по рассчитанному значению подбирать котельное оборудование. Еще один способ укрупненного расчета тепловых нагрузок по нормативам показан на видео: