Остывание дымовых газов в трубе формула. Что делать, если возникает обратная тяга в дымоходе частного дома

Двухкамерная трубчатая печь с наклонным сводом.  

Скорость движения дымовых газов в конвекционной камере определяется естественной тягой, создаваемой дымовой трубой высотой 40 - 50 м, и составляет 3 - 4 м / сек.  

Скорость движения дымовых газов составляет 0 5 - 0 7 м / сек.  

Скорость движения дымовых газов в камере конвекции для боль -, шинства печей составляет 3 - 4 м / сек. Трубы в камере конвекции: обычно располагают в шахматном порядке, что обеспечивает турбулентность движения дымовых газов.  

При уменьшении скорости движения дымовых газов в конвекционной камере печи коэфициент теплопередачи понижается. Как следствие, возрастают требуемая поверхность труб и стоимость сооружения конвекпионной камеры. При увеличении скорости движения дымовых газов в конвекционной камере печи повышаются гидравлические сопротивления и, как следствие, требуемая высота дымовой трубы.  

Уменьшение сечения камеры повышает скорость движения дымовых газов, а следовательно, и коэффициент теплоотдачи конвекцией.  

Площади сечения дымоходов-боровов определяются по скорости движения дымовых газов, принимаемой в сборных боровах 3 - 4 м / сек, в боровах, идущих от котлов к сборному борову, 2 - 4 м / сек.  

Коэффициент теплопередачи зависит главным образом от скорости движения дымовых газов в камере конвекции: чем выше эта скорость, тем больше коэффициент теплопередачи. При естественной тяге с увеличением скорости возрастает необходимая высота дымовой трубы и в этом случае не рекомендуется иметь эту скорость выше 6 м / сек. В случае создания принудительной тяги эта скорость может быть увеличена. Однако практически ввиду конструктивных трудностей компактного расположения конвекционных труб скорость дымовых газов в камере конвекции ниже указанной цифры.  

Конвективная теплопередача может быть улучшена путем повышения скорости движения дымовых газов. Однако при камерном и камерно-слоевом сжигании твердого топлива с увеличением скорости дымовых газов усиливается износ поверхностей нагрева летучей золой и уносом топлива. По этой причине желательной является скорость газов не более 9 - 10 м / сек, а в газоходах стальных водяных экономайзеров 8 - 9 м / сек и ниже.  

Эффективность передачи тепла конвекцией обусловлена прежде всего скоростью движения дымовых газов в конвекционной камере. Стремление к большим скоростям, однако, сдерживается допустимыми величинами сопротивления движению газов.  

Схема однокамерной радиантно-конвекционной печи.  

Эффективность передачи тепла конвекцией обусловлена прежде всего скоростью движения дымовых газов в конвекционной камере. Стремление к большим скоростям, однако, сдерживается допустимыми значениями сопротивления движению газов. Для более тесного обтекания труб дымовыми газами и большей турбулизации потока дымовых газов трубы в конвекционных камерах размещают, как правило, в шахматном порядке.  

Сопротивление пучка конвекционных труб главным образом зависит от скорости движения дымовых газов в свободном сечении между трубами (5 - 8 м / с), от числа рядов труб и их диаметра, способа размещения труб (шахматное или коридорное), расстояния между осями труб по горизонтали и вертикали. Для расчета этой величины предложен ряд уравнений или номограмм, приведенных в специальной литературе.  

8.10. Расчет дымовой трубы

Расчет дымовой трубы заключается в правильном выборе ее конструкции и подсчете высоты, обеспечивающей допустимую концентрацию вредных веществ в атмосфере.

Рассчитаем минимальную высоту дымовой трубы.

Диаметр устья дымовой трубы D 0 , м, определяется по формуле:

где N – предполагаемое число дымовых труб (принимаем N = 1);

w 0 – скорость дымовых газов в устье дымовой трубы, м/с

(принимаем w 0 = 22 м/с /8/);

V – объемный расход дымовых газов, м 3 /с,

V = V Г *B, (78)

где В – суммарный расход топлива на станцию, кг/с;

V Г – удельный объем дымовых газов, м 3 /кг,

где - удельный объем дымовых газов, соответствующий теоретически необходимому объему воздуха, м 3 /кг,

Объемы продуктов сгорания подсчитываются по формулам:

где d Г – влагосодержание топлива (при температуре топлива 20 0 С

d Г = 19,4 /8/);

Тогда действительный объем газов:

С учетом плотности топлива имеем:

Суммарный расход топлива всеми котлами:

В = В Р *n, (84)

где В Р – расчетный расход топлива на один котел, кг/с;

n – число котлов.

В = 7,99*4 = 31,96 кг/с.

Тогда объемный расход дымовых газов:

V = 19*31,96 = 607,24 м 3 /с.

Диаметр устья дымовой трубы:

Высота дымовой трубы Н, м, определяется по формуле:

, /12/ (85)

где F – поправочный коэффициент, учитывающий содержание примесей в дымовых газах (для газообразных примесей F = 1);

A – коэффициент, зависящий от температурной стратификации атмосферы (для данного региона А= 200);

m и n – коэффициенты, учитывающие условия выхода газовоздушной смеси из трубы;

ПДК – предельно допустимая концентрация какого-либо элемента в атмосфере, мг/м 3 ;

C Ф – фоновая концентрация вредных веществ, обусловленная внешними источниками загазованности, мг/м 3 ;

М – массовый выброс вредных веществ в атмосферу, г/с;

Разность температур уходящих газов и атмосферного воздуха, 0 С.

Разность температур определяется формулой:

Т – температура воздуха самого жаркого месяца в 13 часов дня

150-20 = 130 0 С.

Фоновая концентрация С Ф зависит от промышленной развитости района сооружения станции. Поскольку город Сызрань является крупным промышленным центром, то фоновая концентрация велика: С Ф = 0,025 мг/м 3 .

Поскольку в топливе отсутствует сероводород, будем вести расчет только по выбросам диоксида азота NO 2 . ПДК по содержанию в воздухе этого элемента составляет 0,085 мг/м 3 .

Массовый выброс диоксида азота определяется пол формуле:

где q 4 – потери теплоты от механической неполноты сгорания топлива (при сжигании газообразного топлива q 4 = 0 %);

Поправочный коэффициент, учитывающий влияние на выход оксидов азота качества сжигаемого топлива (для газообразного топлива, при отсутствии содержания в нем N, =0,9);

Коэффициент, учитывающий конструкцию горелок (для вихревых горелок =1);

Коэффициент, учитывающий вид шлакоудаления (= 1);

Коэффициент, характеризующий эффективность воздействия рециркулирующих газов в зависимости от условий подачи их в топку (=0);

r – степень рециркуляции дымовых газов (r = 0 %);

Коэффициент, характеризующий снижение выброса оксидов азота при подаче части воздуха помимо основных горелок (=1).

К – коэффициент, характеризующий выход оксидов азота, кг/т;

где D – паропроизводительность котла, т/ч;

Итак массовый выброс оксида азота:

М NO 2 = 0,034*8,57*0,9*31,96*34,32 = 287,6 г/с.

Для того, чтобы определить коэффициенты m и n, необходимо знать высоту трубы. Поэтому расчет ведется методом последовательных приближений.

Задаемся высотой трубы H = 150 м.

Коэффициент m определяем по формуле:

, (89)

где f – безразмерный параметр, определяемый по формуле:

Коэффициент n зависит от параметра V М, который определяется по формуле.

Обратная тяга в дымовой трубе возникает и в том случае, когда температура наружного воздуха выше температуры воздуха в помещении. Такое явление наблюдается преимущественно в летнее время года, когда наружного воздуха достигает максимальных значений. Поэтому при неработающих печах дымовые трубы в жаркие дни могут работать не на вытяжку, а на .

Во многих случаях обратная образуется в результате потери плотности стенок дымовой трубы, в которых под действием ветра, атмосферных осадков и частой смены температурных режимов появляются сквозные трещины и . них в дымовую трубу подсасывается значительное количество наружного воздуха, препятствующего свободному продвижению дымовых газов. Вследствие дополнительного притока холодного воздуха из атмосферы или соседних вентиляционных каналов будет значительно снижаться температура уходящих газов, а следовательно, и разрежение. Поэтому в процессе эксплуатации дымовые и вентиляционные каналы следует периодически проверять на плотность. Явление обратной тяги в дымовых трубах не отражается на работе всех печных устройств, но и создает реальную угрозу отравления продуктами сгорания топлива.

В индивидуальных домах для защиты дымовой трубы от влияний ветра используют дефлекторы. Однако применение таких защитных приспособлений не исключает возможности возникновения обратной тяги в дымовой трубе при значительном увеличении скорости ветра, изменении направления воздушных потоков и других природных явлений. таких дефлекторов на дымовые трубы, предназначенные для отвода продуктов сгорания от печей, запрещена.

Дефлектора основана на использовании скорости ветра, который при определенных условиях создает дополнительное разрежение в дымовом и вентиляционном каналах. Степень разрежения должна быть достаточной для преодоления всех сопротивлений движению дымовых газов, которые могут возникнуть в дымовой трубе при различных погодных условиях. Опасно использовать металлические дефлекторы, так как в зимнее они часто обмерзают, вследствие в дымовых каналах наблюдается или прекращение тяги.

Опубликовано: 15.11.2009 | |

При эксплуатации маломощных теплогенераторов, очень большое значение имеет такой фактор, как правильно спроектированный и корректно смонтированный дымоход. Естественно возникает необходимость расчета. Как и всякий теплотехнический расчет, расчет дымоходов бывает конструкционный и поверочный.

Первый из них представляет собой последовательность вложенных итераций (т.е. в начале расчета мы задаем некоторые параметры, такие как высота и материал дымохода, скорость дымовых газов и т.д., а потом путем последовательных приближений уточняем эти значения).

Однако на практике гораздо чаще приходится сталкиваться с необходимостью поверочного расчета дымохода, так как обычно котел подключается к уже существующей системе дымоудаления. В этом случае у нас уже есть высота дымовой трубы, материал и площадь сечения дымохода и т.д.

Стоит задача проверки совместимости параметров дымового канала и теплогенератора.

То есть необходимым условием корректной работы дымохода является превышение cамотяги над потерями напора в дымоходе на величину минимально допустимого разряжения в дымоотводящем патрубке теплогенератора. Величина естественной тяги зависит от многих факторов

  • Формы поперечного сечения дымохода (прямоугольная, круглая и т.д.)
  • Температуры дымовых газов на выходе из теплогенератора
  • Материала дымохода (нержавеющая сталь, кирпич и т.д.)
  • Шероховатости внутренней поверхности дымохода
  • Неплотностей газохода, при сочленениях элементов (трещины в покрытии и т.п.)
  • Параметров наружного воздуха (температура, влажность)
  • Высоты над уровнем моря
  • Параметров вентиляции помещения, где установлен котел
  • Качества настройки теплогенератора - полноты сгорания топлива (соотношения топливо/воздух).
  • Типа работы горелки (модуляционный или дискретный)
  • Степени загрязненности элементов газовоздушного тракта (котла и дымохода)

Величина самотяги
В первом приближении величину самотяги можно проиллюстрировать на примере рис. 1 .

Где hc - величина самотяги;
Hд - эффективнаявысота дымохода;
в - плотность воздуха;
г - плотность дымовых газов.
Как видно из формулы , основную переменную составляющую образуют плотности дымовых газов и воздуха, которые являются функциями от их температуры.

Для того, чтобы показать насколько сильно величина самотяги зависит от температуры дымовых газов, мы приводим следующий график, иллюстрирующий эту зависимость (см. рис. 2 ).


Однако на практике гораздо чаще встречаются случаи, когда изменяется не только температура дымовых газов, но и температура воздуха. В таб. 1 приведены величины удельной самотяги на один метр высоты дымовой трубы в зависимости от температур продуктов сгорания и воздуха.


Естественно, что таблица дает весьма приблизительный результат и для более точной оценки (во избежание интерполирования значений) необходимо подсчитывать реальные значения плотности продуктов сгорания и окружающего воздуха.
в - плотность воздуха при рабочих условиях:

где tос - температура окружающей среды, °С, принимается для наихудших условий работы оборудования - летнего времени. При отсутствии данных принимается 20 °С;
вну - плотность воздуха при нормальных условиях - 1,2932 кг/м3.
г - плотность дымовых газов при рабочих условиях:

где гну - плотность продуктов сгорания при нормальных условиях, пр= 1,2 для природного газа можно принять - 1,26 кг/м3.

Для удобства обозначим, a=1/273
тогда

где 1 + a x t - температурная составляющая.
Для упрощения операций будем считать плотность дымовых газов равной плотности воздуха и сводим все значения плотности, приведенные к нормальным условиям на промежутке t = -20 +400 °С, в табл. 2 .

Практическое вычисление самотяги
Для вычисления естественной тяги необходимо уточнить среднюю температуру газов в трубе ϑcp. Температура на входе в трубу ϑ1 определяется из паспортных данных оборудования. Температуру продуктов сгорания на выходе из устья дымохода ϑ2 находят с учетом их охлаждения по длине трубы.

Охлаждение газов в трубе на 1 метр её высоты определяется по формуле:

где Q - номинальная тепловая мощность котла, кВт;
В - коэффициент: 0,85 - неизолированная металлическая труба, 0,34 - изолированная металлическая труба, 0,17 - кирпичная труба с толщиной кладки до 0,5 метра.
Температура на выходе из трубы:

где Hд - эффективная высота дымовой трубы в метрах.

Средняя температура продуктов сгорания в дымоходе:

На практике величину самотяги просчитывают для следующих граничных условий:
1. Для температуры наружного воздуха 20 °С (летний режим работы теплогенератора).
2. Если летняя расчетная температура наружного воздуха отличается более чем на 10 °С от 20 °С, то принимается расчетная температура.
3. Если теплогенератор эксплуатируется только в зимний период, то расчет ведется по средней температуре за отопительный период.

Для примера возьмем установку со следующими параметрами (рис. 3) :

  • мощность 28 кВт;
  • температура дымовых газов 125 °С;
  • высота дымовой трубы 8 м;
  • дымовая труба выполнена из кирпича.


Охлаждение газов в трубе на 1 метр её высоты по :

Температура дымовых газов на выходе из трубы по :
ϑ2 = 125 — 8 x 1,016 = 117, °С.
Средняя температура продуктов сгорания в дымоходе по :
ϑср = (125 + 117)/2 = 121, °С.
Величину самотяги вычисляем по :
hc = 8(1,2049 — 0,8982) = 2,4536, мм вод.ст.

Вычисление оптимальной площади поперечного сечения дымового канала

1. Первый вариант определения диаметра дымохода
Диаметр трубы принимается либо по паспортным данным (по диаметру выходного патрубка из котла) в случае монтажа отдельной дымовой трубы к каждому котлу, либо по формуле при объединении нескольких котлов в общий дымоход (суммарная мощность до 755 кВт).

Для цилиндрических труб определяется диаметр:

r - коэффициент, зависящий от вида используемого топлива. Газ: r = 0,016, жидкое топливо: r = 0,024, уголь: r = 0,030, дрова: r = 0,045.

2. Второй вариант определения диаметра дымохода (с учетом скорости продуктов сгорания)
Согласно Norma UNI-CTI 9615, площадь поперечного сечения дымохода можно вычислить по формуле:

где mг
д - массовый расход продуктов сгорания, кг/час.
Для примера рассмотрим следующий случай:

  • Высота дымовой трубы 7 м;
  • Массовый расход продуктов сгорания 81 кг/час;
  • Плотность продуктов сгорания (при ϑср =120 °С) г = 0,8982 кг/м3;
  • Скорость продуктов сгорания (в первом приближении) wг = 1,4 м/с.

По определяем ориентировочную площадь сечения дымового канала:
F = (0,225 кг/c)/(1,4 м/c x 0,8982) = 0,0178 м2 = 179 см2.

Отсюда вычисляем диаметр дымового канала и подбираем ближайший стандартный дымоход: 150 мм.

По новому значению диаметра дымовой трубы определяем площадь дымового канала и уточняем скорость дымовых газов.

wг = (0,225 кг/c)/(0,8982 кг/м3 x 0,01327 м2) = 1,89 м/c.
После этого проверяем, чтобы скорость дымовых газов укладывалась в диапазон 1,5-2,5 м/с.

При слишком высокой скорости дымовых газов увеличивается гидравлическое сопротивление дымохода, а при слишком низкой - активно образуется конденсат водяных паров.

Для примера просчитаем также скорость дымовых газов при нескольких ближайших типоразмерах дымохода:
Ø 110 mm: wг = 2,64 м/с.
Ø 130 mm: wг = 1,89 м/с.
Ø 150 mm: wг = 1,42 м/с.
Ø 180 mm: wг = 0,98 м/с.
Результаты представлены на рис. 4 . Как видим, из полученных значений скоростным условиям удовлетворяют два типоразмера: Ø 130 mm и Ø 150 mm. В принципе, мы можем остановиться на любом из этих значений, однако Ø 150 mm предпочтительней, так как потери напора в этом случае будут меньше.

Для удобства подбора типоразмера дымохода можно использовать диаграмму рис. 5 .
Для примера:

  • Расход продуктов сгорания 468 м3/час; диаметр газохода Ø 300 мм - скорость продуктов сгорания wг = 1,9 м/с
  • Расход продуктов сгорания 90 м3/час; диаметр газохода Ø 150 мм - скорость продуктов сгорания wг = 1,4 м/с

Потери напора в дымоходе
Сумма сопротивлений трубы:

Сопротивление трения:

Потери в местных сопротивлениях:

= 1,0; 0,9; 0,2-1,4 - коэффициенты местного сопротивления с выходной скоростью (на выходе из трубы), на входе в дымовую трубу и в поворотах - отводах и тройниках (коэффициент выбирают в зависимости от их конфигураций), соответственно.

- коэффициент сопротивления трения:
для кирпичных труб = 0,05;
для стальных труб = 0,02.
g - ускорение свободного падения, равное 9,81 м/с2.
d - диаметр дымовой трубы, м.
wг - скорость продуктов сгорания в трубе:

Vдг - действительный объём продуктов сгорания:

BT - расход топлива с учетом теплотворной способности данного топлива:

- КПД установки из паспортных данных на оборудование (0,9-0,95);
Qнр - низшая теплотворная способность (в зависимости от состава топлива), для газа - 8000 ккал/м3;
Voг - теоретический объем продуктов сгорания, для природного газа можно принять 10,9 м3/м3;
Voв - теоретически необходимое количество воздуха, для сжигания 1 м3 природного газа 8,5-10
м3/м3;
- коэффициент избытка воздуха, для природного газа 1,05-1,25.

Проверка тяги производится по формуле:

hбар - барометрическое давление, принимается 750 мм вод.ст.
HП - перепад полных давлений газового тракта, мм вод.ст., без учета сопротивления и самотяги трубы.
1,2 - коэффициент запаса по тяге.
Перепад полных давлений по газовому тракту (общий вид формулы):

где hT’’ - разряжение на выходе из топки, необходимое для предотвращения выбивания газов, обычно принимается 2-5 мм вод.ст.
В данном случае для проверки тяги перепад полных давлений берется без учета суммарного сопротивления h и самотяги трубы hc.
Таким образом:
HП = hT’’ = 2-5 мм вод.ст.
Для наглядности изобразим процессы, происходящие в дымовом канале на напорной диаграмме (рис. 6 ).

По горизонтальной оси отложим перепады давления и потери напора, а по горизонтальной высоту дымохода.

Тогда отрезок DB будет обозначать величину cамотяги, а линия DA - перепад давлений по высоте дымовой трубы.

С другой стороны от оси АВ откладываем потери напора в дымоходе. Графически потери давления по длине дымохода будет символизировать отрезок АС .

Производим зеркальную проекцию отрезка ВС и получаем точку С’ . Область, затушеванная зеленым цве- том, символизирует разряжение в дымовом канале.

Очевидно, что величина естественной тяги уменьшается по высоте дымохода, а потери напора возрастают от устья к основанию дымовой трубы.

Пример корректного монтажа дымохода и выдержки из ДБН.В.2.5-20-2001 «Газоснабжение»

При проектировании и монтаже дымоходов обязательно необходимо соблюдать следующие пункты отечественных норм и правил:

ДБН В.2.5-20-2001 Приложение Ж «Отвод продуктов сгорания».

Ж.З. Отвод продуктов сгорания от бытовых газовых приборов, печей и другого бытового газового оборудования, в конструкции которых предусмотрен отвод продуктов сгорания в дымоход, следует предусматривать от каждого прибора, агрегата или печи по обособленному дымоходу.
В существующих зданиях допускается предусматривать присоединение к одному дымоходу не более двух водонагревателей или отопительных печей, расположенных на одном или разных этажах здания, при условии ввода продуктов сгорания в дымоход на разных уровнях, не ближе 0,5 м один от другого, или на одном уровне с устройством в дымоходе рассечки на высоту не менее 0,5 м.

Ж.6. Площадь сечения дымохода не должна быть меньше площади сечения патрубка газового прибора, присоединяемого к дымоходу. При присоединении к дымоходу двух приборов, печей и т.п. сечение дымохода следует определять с учетом одновременной их работы. Конструктивные размеры дымоходов должны определяться расчетом.

Ж.7 . Дымоходы следует выполнять из морозостойкого кирпича (Мрз 125), глиняного кирпича, жаростойкого бетона для многоэтажных зданий и асбесто-цементных труб для одноэтажных зданий. Допускается отвод продуктов сгорания предусматривать по стальным дымовым трубам. Конструкции дымовых каналов также могут быть заводского изготовления, поставляемые в комплекте с газовым оборудованием. При установке асбестоцементных и стальных труб вне здания или при прохождении их через чердак здания они должны быть теплоизолированные для предотвращения образования конденсата. Конструкция дымовых каналов в наружных стенах и приставных к этим стенам каналов также должна обеспечивать температуру газов на выходе из них выше точки росы. Запрещается выполнять каналы из шлакобетонных и других неплотных или пористых материалов.

Ж.9 . Присоединение газового оборудования к дымоходам следует предусматривать соединительными трубами, изготовленными из кровельной или оцинкованной стали толщиной не менее 1,0 мм, гибкими металлическими гофрированными патрубками или унифицированными элементами, поставляемыми в комплекте с оборудованием. Соединительная дымоотводящая труба, соединяющая газовый прибор с дымоходом, должна иметь вертикальный участок. Длина вертикального участка соединительной трубы, считая от низа дымоотводящего патрубка газового прибора до оси горизонтального участка трубы, должна быть не менее 0,5 м. В помещениях высотой до 2,7 м для приборов со стабилизаторами тяги допускается уменьшение длины вертикального участка до 0,25 м, без стабилизаторов тяги до 0,15 м. Суммарная длина горизонтальных участков соединительных труб в новых домах должна быть не более 3 м, в существующих домах - не более 6 м. Уклон трубы должен быть не менее 0,01 в сторону газового прибора. На дымоотводящих трубах допускается предусматривать не более трех поворотов с радиусом закругления не менее диаметра трубы. Ниже места присоединения дымоотводящей трубы от прибора к дымоходу должно быть предусмотрено устройство «кармана» сечением не менее сечения дымохода и глубиной не менее 25 см, имеющий люк для очистки. Дымоотводящие трубы, прокладываемые через неотапливаемые помещения, при необходимости должны быть покрыты изоляцией. Прокладка дымоотводящих труб от приборов и печей через жилые комнаты не допускается

Ж.10 . Расстояние от соединительной трубы до потолка или стены из несгораемых материалов принимается не менее 5 см, а из сгораемых и трудносгораемых материалов - не менее 25 см.

Ж.15. Дымовые трубы от газовых приборов в зданиях должны быть выведены:
- выше границы зоны ветрового подпора, но не менее 0,5 м выше конька крыши при расположении их (считая по горизонтали) не далее 1,5 м от конька крыши;
- в уровень с коньком крыши, если они отстоят на расстоянии до 3 м от конька крыши;
- не ниже прямой, проведенной от конька вниз под углом 10° к горизонту, при расположении труб на расстоянии более 3 м от конька крыши. Зоной ветрового подпора дымовой трубы считается пространство ниже линии, проведенной под углом 45° к горизонту от наиболее высоких точек вблизи расположенных сооружений и деревьев. Во всех случаях высота трубы над прилегающей частью крыши должна быть не менее 0,5 м, а для домов с совмещенной кровлей (плоской крышей) - не менее 2,0 м. Установка на дымоходах зонтов и других насадок не допускается.

Ж.20 . Длина горизонтального участка дымового канала от отопительного оборудования с герметичной камерой сгорания при выходе через наружную стену принимается не более 3 м.

Заключение
Как показывает многолетний опыт эксплуатации теплогенераторов с открытой камерой сгорания, накопленный в нашей организации, от правильно спроектированного и корректно смонтированного дымохода в большой мере зависит надежная и стабильная работа теплогенерирующей установки (см. рис. 7).

Поэтому необходимо уделять данному вопросу самое пристальное внимание уже на стадии проектирования системы теплоснабжения, а также проводить поверочные расчеты при ремонте, модернизации и замене теплогенераторов. Надеемся, данный материал поможет широким кругам читателей разобраться с этим немаловажным вопросом.


9. Аэродинамический расчет тракта дымовых газов

Метод аэродинамического расчета котельных установок используется для подсчета газовых и воздушных сопротивлений и для выбора дымовых труб и тягодутьевых устройств. При аэродинамических расчетах определяют перепады давлений на газовоздушных трактах подсчетом их сопротивлений и возникающей на данном участке или в установке самотяги.

Когда теплоноситель не изменяет агрегатного состояния, расчет аэродинамики состоит изопределения суммы потерь напора в местных сопротивлениях и потерь напора на трение:

Потери напора на трение, Па определяют по формуле Дарси-Вейсбаха:

где – коэффициент сопротивления трением, зависящий при турбулентном режиме от

шероховатости, а при ламинарном и турбулентном от числа Рейнольдса;

– длина участка, м;

– плотность газа, кг/м 3 ;

– средняя скорость потока, м/с;

– эквивалентный диаметр, м;

g – ускорение свободного падения, м/с².

    часовой объем дыма от одного котельного агрегата по формуле:

- действительное количество дымовых газов при средней величине избытка воздуха в газоходе, м³/кг;

-расчетный расход топлива, кг/ч;

-плотность газового топлива, кг/м 3 ,определяемая по следующей формуле:

где V г д – средний объем продуктов сгорания при нормальных условиях и средней величине избытка воздуха в газоходе, м 3 /ч;

α – коэффициент избытка воздуха;

V 0 – теоретически объем воздуха для горения при α=1, м 3 /кг, м 3 / м 3 ;

ρ с г.т. - плотность сухого газа, кг/м 3 ;

Для действительных условий плотность газовоздушной смеси определяется по формуле:

,

где t г – температура газов у дымососа, 0 С, принимается равной температуре газов за воздухоподогревателем (при его отсутствии за экономайзером).

Определяют сечение дымовых боровов, задаваясь скоростью движения дымовых газов 10 м/с по формуле

,

где - объем дыма, м³/с;

- оптимальная скорость движения дымовых газов, м/с;

м²

м²

Действительная скорость движения дымовых газов:

Определяем потери напора в местном сопротивлении в Па на участке по формуле:

Определяем потери напора на трение на участке, Па, по формуле Дарси-Вейсбаха:

l – длина участка, м;

ρ – плотность газа, кг/м 3

ω – средняя скорость потока, м/с.

d – эквивалентный диаметр, равный для круглого сечения его диаметру и для некруглого определяемый по формулам, м

10. Расчет дымовой трубы

Для котельной следует иметь одну общую дымовую трубу для всех котлоагрегатов, стоящую отдельно от здания котельной, с возможностью присоединения к ней еще одного-двух котлов. Стальные трубы могут иметь высоту не более 45 м, и устанавливаются только на вертикально-цилиндрических котлах и водогрейных котлах большой теплопроизводительности башенного типа. При естественной тяге и сжигании природного газа высота дымовой трубы должна быть не ниже 20 м.

Скорость газов на выходе из дымовых труб определяется условием недопустимости задержки ветром газов в трубе («задувания») при естественной тяге и целесообразным выбросом газов на необходимую высоту. При искусственной тяге скорость истечения газов определяется материалом труб и их высотой с учетом необходимости выброса в верхние слои атмосферы. Ориентировочные значения скорости дымовых газов на выходе их дымовых труб приведены в табл…

Потери на трение в дымовой трубе (кирпичной или железобетонной), Па, (кгс/см 2), определяются из выражения:

λ – коэффициент сопротивления трения. Среднее опытное значение для бетонных и кирпичных труб с учетом кольцевых выступов футеровки равно 0,05, для стальных труб с диаметром d д.т. ≥2 м λ=0,015, а при d д.т <2м λ=0,02;

ω 0 – скорость, м/с, в выходном сечении трубы диаметром d д.т.

Ориентировочные значения выходных скоростей газов из дымовых труб, м/с

Материал для дымовой трубы

Естественная тяга

Искусственная тяга

Высота дымовой трубы, м

Железобетон

Стальной лист

При искусственной тяге охлаждение газов в дымовой трубе не учитывается. Потеря напора с выходной скоростью, Па (кгс/см 2), определяется

,

ξ – коэффициент местных потерь на выходе из трубы, равный 1,1.

Задаваясь скоростью движения дымовых газов на выходе их дымовой трубы согласно данным табл… определяют диаметр устья дымовой трубы по формуле:

Диаметр основания определяем по формуле:

Определяем действительную скорость истечения дымовых газов, м/с:

Определяем самотягу дымовой трубы, Па:

Рассчитываем полезную тягу дымовой трубы, Па:

Определяем полное сопротивление газового тракта котельной установки, Па (кгс/см 2), суммированием сопротивлений отдельных элементов установки:

11. Выбор дымососа

Найдем производительность дымососа:

Найдем напор по формуле:

По полученным значениям напора и производительности выбираем дымосос типа ВД: марка – ВД–6; частота вращения n =1450 об/мин, к.п.д. – 65 %.

Определим мощность дымососа по формуле:

Тепловая схема (принципиальная) отопительно-производственной котельной с паровыми котлами для закрытой системы теплоснабжения.

1 – котел; 2 – расширитель непрерывной продувки; 3 - питательный насос; 4 – подогреватель сырой воды; 5 – химводоочистка; 6 – потребитель технологического пара; 6а – потребитель теплоты, используемой на отопление, вентиляцию и горячее водоснабжение;7 – насос для подпитки тепловых сетей; 8 – теплообменники для сетевой воды; 9 – деаэратор атмосферный; 10 – охладитель выпара из деаэратора; 11 – сетевой насос; 12 – регулируемый клапан; 13 – редукционный клапан.

Библиографический список

1. Тепловой расчёт паровых котлов малой мощности: Учебное пособие / Курилов В.К. . - Иваново: ИИСИ, 1994. – 80 с.

2. Задачник по процессам тепломассообмена: Учебное пособие для вузов / Авчухов В.В., Паюсте Б.Я.. – М.: Энергоатомиздат, 1986. – 144 с.: ил.

3. Справочник по котельным установкам малой производительности / Роддатис К.Ф., Полтарецкий А.Н.. - М.: Энергоатомиздат, 1989. – 488 с.: ил.