Гибриды животных и растений: примеры, фото. Гибрид человека и животного

В 30-х гг. прошлого столетья Н.И. Вавилов отметил, что проблема создания устойчивых к болезням сортов сельскохозяйственных культур может быть развязана двумя путями: селекцией у узком понимании этого слова (отбором устойчивых растений среди существующих форм) и с помощью гибридизации (скрещивания между собой разных растений). Методы селекции растений на иммунитет к патогенным организмам не специфичны. Они представляют собой модификации обычных селекционных методов. Основные трудности в создании иммунных сортов — необходимость одновременного учета особенностей растений и вредных организмов, которые их повреждают. На данный момент в селекции на устойчивость используют все общепринятые современные методы селекционной работы: гибридизация, отбор, а также полиплоидию, экспериментальный мутагенез, биотехнологию и генную инженерию.

Одной из основных трудностей в селекции растений на иммунитет есть генетическое сцепление признаков растений, которые отображают их филогенетическую историю в условиях природных экосистем. В процессе стихийного одомашнивания и образования высокопродуктивных и высококачественных форм растений система ихнего иммунитета была ослаблена. В тех случаях, когда селекция осуществляется без внимания к иммунитету, ослабление последнего имеет место и в наше время.

Важнейшая задача селекции, генетики, молекулярной биологии и — поиск путей сочетания высокой продуктивности и других хозяйственно ценных свойств растений с признаками их иммунитета. Желательно, чтобы основа иммунитета была полигенной.

Наиболее просто вопрос решается, когда с популяции существуещего сорта возможно выделить растения, которые отличаются высокой иммунной устойчивостью к одному конкретному патогену. Для такого выделения могут быть использованны разные методы отбора и аналитические методы, которые учитывают гетерозисность популяции сорта.

При составлении селекционных программ очень важным является тип опыления популяции растений (перекрестное, самоопыление или популяция относится к промежуточной группе). Селекционная работа на иммунитет к патогену должна вестись с учетом следующих факторов: в популяции растений первой группы единицей анализа является отдельное растение, другой — популяции (сорт или линия).

Традиционные методы селекции в создании генотипов, устойчивых к болезням и вредителям

Отбор. Как в общем в природе, так и в селекционной деятельности человека, отбор является основной процесса получения новых форм (образования видов и разновидов, создание пород, сортов). Отбор наиболее эффективный при работе с культурами самоопылителями, а также растениями, которые размножаются вегетативно (клоновый отбор).

В селекции на устойчивость, отбор результативно используется и сам по себе (есть основным методом при работе с некротрофными патогенами), и как составляющая селекционного процесса, без которой вообще невозможно обойтись при любых методах селекции. В практичной селекции на устойчивость используют два вида отбора: массовый и индивидуальный.

Массовый отбор является древнейшим методом селекции, благодаря ему были созданы сорта так называемой народной селекции, и до сих пор является ценным исходным материалом для современной селекционеров. Это вид отбора, при котором из исходной популяции в поле отбирают большое количество растений, соответствующие требованиям к будущему сорту, оценивая сразу комплекс признаков (в том числе и устойчивость к определенным болезням). Урожай всех отобранных растений объединяют и высевают в следующем году в виде одного участка. Результат массового отбора — это потомство общей массы лучших отобранных по определенному признаку (признакам) растений.

Основными преимуществами массового отбора является его простота и возможность быстро улучшить большое количество материала. К недостаткам можно отнести то, что отобранный массовым отбором материал невозможно проверить с потомством и определить его генетическую ценность, а следовательно, выделить из популяции сорта или гибрида ценные в селекционном отношении формы и использовать их для дальнейшей работы.

Индивидуальный подбор (педигри) — один из самых эффективных современных методов селекции на устойчивость. Гибридизация, искусственный мутагенез, биотехнология и генная инженерия является прежде поставщиками материала для индивидуального отбора — следующий этап селекционной работы, выделяет из предоставленного материала самое ценное.

Суть метода заключается в том, что из исходной популяции отбирают отдельные устойчивые растения, потомство каждой из которых в дальнейшем размножают и изучают отдельно.

Как индивидуальный, так и массовый отбор можут быть одноразовым и многоразовым.

Одноразовый отбор преимущественно применяется в селекции самоопыляющихся культур. Одноразовый индивидуальный отбор предусматривает последовательное изучение во всех звеньях селекционного процесса отобранный один раз по определенному признаку растения. Одноразовый массовый отбор чаще и наиболее эффективно используют для оздоровления сорта в семеноводческой практике. Поэтому его еще называют оздоравливающим.

Многократные отборы более пригодны и результативны в селекции перекрестно-опылительных культур, эффективность их определяется прежде всего степенью гетерозиготности исходного материала. Путем многократного массового отбора поддерживается устойчивость к некротрофам — возбудителей таких и как фузариоз, серая и белая гнили и др.. С применением этого метода были созданы высокоустойчивые к и .

Гибридизация. В настоящее время одним из наиболее используемых методов в селекции на устойчивость является гибридизация — скрещивание между собой генотипов с различными наследственными способностями и получения гибридов, в которых сочетаются свойства родительских форм.

В селекции на устойчивость к болезням гибридизация целесообразна и эффективна в том случае, если хотя бы одна родительская форма является носителем наследственных факторов, способных обеспечить генетическую защиту будущего сорта или гибрида от потенциально опасных штаммов и рас возбудителя.

Как уже отмечалось ранее, такие наследственные факторы (эффективные гены устойчивости) были сформированы в центрах родственной эволюции растений-хозяев и их патогенов. Многие из них уже переданы культурным растениям от их дикорастущих сородичей с помощью отдаленной гибридизации. Теперь они известны как гены устойчивости культурных растений.

Но неоспоримым фактом является то, что на сегодняшний день большинство этих генов широко использованы в селекции и преимущественно потеряли эффективность, преодоленные в результате изменчивости патогенов. Поэтому внутривидовая гибридизация (между растениями одного вида) при создании устойчивых к болезням сортов или гибридов в ряде случаев является малоперспективным. Для получения позитивных результатов селекционер, вовлекая в скрещивания те или иные родительские формы, должен быть уверен в высокой эффективности их генов устойчивости к популяции возбудителя болезни в месте будущего выращивания сорта (гибрида).

На этом фоне все большее значение в селекции на устойчивость приобретает отдаленная гибридизация (между растениями из разных ботанических таксонов). Ведь наиболее выраженным иммунитетом характеризуются растения дикорастущих и примитивных видов. Геномы дикорастущих сородичей культурных растений были и остаются основным природным источником генов устойчивости, в том числе и комплексного иммунитета. Скрещивание культурных растений существующих сортов с дикорастущими видами обычно позволяет повышать иммуногенетические свойства. И если раньше использование отдаленной гибридизации было не слишком популярным из-за сложностей, связанных с несбалансированностью геномов родительских форм, сцеплением устойчивости с нежелательными в хозяйственном отношении признаками, то в настоящее время разработаны методы, позволяющие разрешить проблемные вопросы.

Отдаленная гибридизация дает возможность передать от дикорастущих растений культурным экологическую пластичность, устойчивость к неблагоприятным факторам внешней среды, к болезням и другие ценные свойства и качества. На основе отдаленной гибридизации созданы сорта и новые формы зерновых, овощных, технических и других культур. Например, источником генов иммунитета пшеницы к , и является эндемической для Закавказья Triticum dicoccoides Korn .

Как свидетельствует мировая практика, очень результативным видом гибридизации в селекции самоопыляющихся культур на устойчивость является обратные скрещивания (беккроссы) , когда гибрид скрещивают с одной из родительских форм. Этот метод называют еще методом «ремонта» сортов, поскольку он позволяет улучшить определенный сорт по тому или иному отсутствующего у него признака (в частности, устойчивостью к определенной болезни). Но следует иметь в виду, что применение этого метода не позволяет превысить производительность сорта, который «ремонтируется» (а согласно требованиям Государственной службы по охране прав на сорта растений Украины сорт не может быть зарегистрированным, если он по производительности не превышает стандарт).

Как правило, при беккросированни сорт-донор устойчивости к болезни используют в качестве материнской формы, а неустойчивый, но высокопродуктивный сорт (реципиент по признаку устойчивости) — как родительскую форму. В результате их скрещивания получают гибриды, которые повторно скрещивают с родительской формой (беккросируют). Обязательным условием является то, что материнские формы для каждого следующего беккросса подбирают из устойчивых гибридных растений предыдущего скрещивания, обнаруженных на инфекционном фоне. Потомства подбирают по фенотипу сорта-реципиента. Беккроссы проводят до тех пор, пока генотип и фенотип реципиента почти полностью восстановится, одновременно приобретя устойчивости к болезни, характерной для донора.

Повышение эффективности селекции растений на иммунитет к вредителям может быть достигнуто при использовании предварительно созданных так называемых синтетиков иммунитета (известных, например, для кукурузы). Упомянутые синтетики создаются на основе скрещивания 8-10 иммунных линий, характеризующихся различной экологической пластичностью и составом факторов иммунитета. Многие из синтетиков являются хорошими источниками для создания иммунных линий при дальнейшем выводе простых и двойных межлинейных гибридов.

Мутагенез. В отличии от методов гибридизации достаточно трудоемкие и требуют много лет работы для достижения конечного результата, экспериментальный (искусственный) мутагенез позволяет за короткий период усилить изменчивость растений и получить такие мутации по устойчивости, которые не встречаются в природе.

В основу метода экспериментального (искусственного) мутагенеза положено направленное действие на растения различных физических и химических мутагенов (ионизирующего, ультрафиолетового, лазерного излучения, химических веществ), в результате чего в растительных организмах возникают мутации генные (изменения молекулярной структуры гена), хромосомные (изменения в структурах хромосом) или геномные (изменения в наборах хромосом).

Наиболее ценные в селекционном плане генные мутации, что, в отличии от хромосомных, не приводят к стерильности пыльцы, бесплодию или неконстантности мутантных линий. Генные мутации устойчивости чаще всего связаны или с заменой основания в определенном участке ДНК хромосомы, или ее потерей, добавлением, перемещением. Вследствие этого происходит изменение генетического кода и, соответственно, изменение в физиолого-биохимических механизмах клетки, что приводит к ингибированию роста, развития и размножения патогена.

Метод искусственного мутагенеза в селекции на устойчивость к болезням применяется во многих странах, но его нельзя считать основным методом получения устойчивых форм растений. Наиболее эффективно этот метод используется при работе на устойчивость с культурами, которые размножаются вегетативно, поскольку размножение их семенами влечет за собой сложное расщепление в потомстве из-за высокой степени гетерозиготности.

Это наука о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов. В основе селекции лежат такие методы, как гибридизация и отбор. Теоретической основой селекции является генетика.

Для успешного решения задач, стоящих перед селекцией, академик Н.И. Вавилов особо выделял значение изучения сортового, видового и родового разнообразия культур; изучения наследственной изменчивости; влияния среды на развитие интересующих селекционера признаков; знаний закономерностей наследования признаков при гибридизации; особенностей селекционного процесса для само- или перекрестноопылителей; стратегии искусственного отбора.

Породы, сорта, штаммы — искусственно созданные человеком популяции организмов с наследственно закрепленными особенностями: продуктивностью, морфологическими, физиологическими признаками.

Каждая порода животных, сорт растений, штамм микроорганизмов приспособлены к определенным условиям, поэтому в каждой зоне нашей страны имеются специализированные сортоиспытательные станции и племенные хозяйства для сравнения и проверки новых сортов и пород.

Для успешной работы селекционеру необходимо сортовое разнообразие исходного материала. Во Всесоюзном институте растениеводства Н.И. Вавиловым была собрана коллекция сортов культурных растений и их диких предков со всего земного шара, которая в настоящее время пополняется и является основой для работ по селекции любой культуры.

Центры происхождения культурных растений, выявленные Н.И. Вавиловым

Центры происхождения Местоположение Культивируемые растения
1. Южноазиатский тропический Тропическая Индия, Индокитай, о-ва Юго-Восточной Азии Рис, сахарный тростник, цитрусовые, баклажаны и др. (50% культурных растений)
2. Восточноазиатский Центральный и Восточный Китай, Япония, Корея, Тайвань Соя, просо, гречиха, плодовые и овощные культуры — слива, вишня и др. (20% культурных растений)
3. Юго-Западноазиатский Малая Азия, Средняя Азия, Иран, Афганистан, Юго-Западная Индия Пшеница, рожь, бобовые культуры, лен, конопля, репа, чеснок, виноград и др. (14% культурных растений)
4. Средиземноморский Страны по берегам Средиземного моря Капуста, сахарная свекла, маслины, клевер (11% культурных растений)
5. Абиссинский Абиссинское нагорье Африки Твердая пшеница, ячмень, бананы, кофейное дерево, сорго
6. Центральноамериканский Южная Мексика Кукуруза, какао, тыква, табак, хлопчатник
7. Южноамериканский Западное побережье Южной Америки Картофель, ананас, хинное дерево

Наиболее богатыми по количеству культур являются древние центры цивилизации. Именно там наиболее ранняя культура земледелия, более длительное время проводятся искусственный отбор и селекция растений.

Классическими методами селекции растений были и остаются гибридизация и отбор. Различают две основные формы искусственного отбора: массовый и индивидуальный.

Массовый отбор

Массовый отбор применяют при селекции перекрестноопыляемых растений (рожь, кукуруза, подсолнечник). В этом случае сорт представляет собой популяцию, состоящую из гетерозиготных особей, и каждое семя обладает уникальным генотипом. С помощью массового отбора сохраняются и улучшаются сортовые качества, но результаты отбора неустойчивы в силу случайного перекрестного опыления.

Индивидуальный отбор

Индивидуальный отбор применяют при селекции самоопыляемых растений (пшеница, ячмень, горох). В этом случае потомство сохраняет признаки родительской формы, является гомозиготным и называется чистой линией. Чистая линия — потомство одной гомозиготной самоопыленной особи. Так как постоянно происходят мутационные процессы, то абсолютно гомозиготных особей в природе практически не бывает. Мутации чаще всего рецессивны. Под контроль естественного и искусственного отбора они попадают только тогда, когда переходят в гомозиготное состояние.

Естественный отбор

Этот вид отбора играет в селекции определяющую роль. На любое растение в течение его жизни действует комплекс факторов окружающей среды, и оно должно быть устойчивым к вредителям и болезням, приспособлено к определенному температурному и водному режиму.

Инбридинг (инцухт)

В центре гете-розис-ная куку-руза, слева и справа роди-тель-ские особи.

Так называется близкородственное скрещивание. Инбридинг имеет место при самоопылении перекрестноопыляемых растений. Для инбридинга подбирают такие растения, гибриды которых дают максимальный эффект гетерозиса. Такие подобранные растения в течение ряда лет подвергаются принудительному самоопылению. В результате инбридинга многие рецессивные неблагоприятные гены переходят в гомозиготное состояние, что приводит к снижению жизнеспособности растений, к их «депрессии». Затем полученные линии скрещивают между собой, образуются гибридные семена, дающие гетерозисное поколение.

Гетерозис («гибридная сила») — явление, при котором гибриды по ряду признаков и свойств превосходят родительские формы. Гетерозис характерен для гибридов первого поколения, первое гибридное поколение дает прибавку урожая до 30%. В последующих поколениях его эффект ослабляется и исчезает. Эффект гетерозиса объясняется двумя основными гипотезами. Гипотеза доминирования предполагает, что эффект гетерозиса зависит от количества доминантных генов в гомозиготном или гетерозиготном состоянии. Чем больше в генотипе генов в доминантном состоянии, тем больше эффект гетерозиса.

Р ♀AAbbCCdd × ♂aaBBccDD
F 1 AaBbCcDd

Гипотеза сверхдоминирования объясняет явление гетерозиса эффектом сверхдоминирования. Сверхдоминирование — вид взаимодействия аллельных генов, при котором гетерозиготы превосходят по своим характеристикам (по массе и продуктивности) соответствующие гомозиготы. Начиная со второго поколения гетерозис затухает, так как часть генов переходит в гомозиготное состояние.

Растения диплоид-ной (2n = 16) и тетра-плоидной (2n = 32) гре-чихи.

Аа × Аа
АА 2Аа аа

Перекрестное опыление самоопылителей дает возможность сочетать свойства различных сортов. Например, при селекции пшеницы поступают следующим образом. У цветков растения одного сорта удаляются пыльники, рядом в сосуде с водой ставится растение другого сорта, и растения двух сортов накрываются общим изолятором. В результате получают гибридные семена, сочетающие нужные селекционеру признаки разных сортов.

Метод получения полиплоидов. Полиплоидные растения обладают большей массой вегетативных органов, имеют более крупные плоды и семена. Многие культуры представляют собой естественные полиплоиды: пшеница, картофель, выведены сорта полиплоидной гречихи, сахарной свеклы.

Виды, у которых кратно умножен один и тот же геном, называются автополиплоидами . Классическим способом получения полиплоидов является обработка проростков колхицином. Это вещество блокирует образование микротрубочек веретена деления при митозе, в клетках удваивается набор хромосом, клетки становятся тетраплоидными.

Отдаленная гибридизация

Восстановление плодови-тости капустно--редечного гибрида: 1 — капуста; 2 — редька; 3, 4 — капустно--редечный гибрид.

Отдаленная гибридизация — это скрещивание растений, относящихся к разным видам. Отдаленные гибриды обычно стерильны, так как у них нарушается мейоз (два гаплоидных набора хромосом разных видов не могут конъюгировать) и, следовательно не образуются гаметы.

Методика преодоления бесплодия у отдаленных гибридов была разработана в 1924 году советским ученым Г.Д. Карпеченко. Он поступил следующим образом. Вначале скрестил редьку (2n = 18) и капусту (2n = 18). Диплоидный набор гибрида был равен 18 хромосомам, из которых 9 хромосом были «редечными» и 9 — «капустными». Полученный капустно-редечный гибрид был стерильным, поскольку во время мейоза «редечные» и «капустные» хромосомы не конъюгировали.

Далее с помощью колхицина Г.Д. Карпеченко удвоил хромосомный набор гибрида, полиплоид стал иметь 36 хромосом, при мейозе «редечные» (9 + 9) хромосомы конъюгировали с «редечными», «капустные» (9 + 9) с «капустными». Плодовитость была восстановлена. Таким способом были получены пшенично-ржаные гибриды (тритикале), пшенично-пырейные гибриды и др. Виды, у которых произошло объединение разных геномов в одном организме, а затем их кратное увеличение, называются аллополиплоидами .

Использование соматических мутаций

Соматические мутации применяются для селекции вегетативно размножающихся растений. Это использовал в своей работе еще И.В. Мичурин. С помощью вегетативного размножения можно сохранить полезную соматическую мутацию. Кроме того, только с помощью вегетативного размножения сохраняются свойства многих сортов плодово-ягодных культур.

Экспериментальный мутагенез

Основан на открытии воздействия различных излучений для получения мутаций и на использовании химических мутагенов. Мутагены позволяют получить большой спектр разнообразных мутаций. Сейчас в мире созданы более тысячи сортов, ведущих родословную от отдельных мутантных растений, полученных после воздействия мутагенами.

Методы селекции растений, предложенные И.В. Мичуриным

С помощью метода ментора И.В. Мичурин добивался изменения свойств гибрида в нужную сторону. Например, если у гибрида нужно было улучшить вкусовые качества, в его крону прививались черенки с родительского организма, имеющего хорошие вкусовые качества, или гибридное растение прививали на подвой, в сторону которого нужно было изменить качества гибрида. И.В. Мичурин указывал на возможность управления доминированием определенных признаков при развитии гибрида. Для этого на ранних стадиях развития необходимо воздействие определенными внешними факторами. Например, если гибриды выращивать в открытом грунте, на бедных почвах повышается их морозостойкость.

В гетевские времена, как вспоминал сам Гете, в Карлсбаде - на карте не ищите, теперь это Карлови Вари - на водах отдыхающие любили определять в букетах растения по Линнею. Эти букеты пьющим в тени колоннады минеральные воды (гидрокарбонатно-сульфатно-хлоридно-натриевые - к сведению собирающихся в Karlovy Vary) доставлял ежедневно молодой красивый садовник, вызывающий у бледных одиноких дам повышенный интерес.

Правильное определение каждого растеньица было делом чести и успеха у садовника, поощрявшего за скромную плату невинные ботанические увлечения. Трудно сказать почему - из-за ревности ли к садовнику, или к Линнею, но поэт жестко разошелся с Линнеем в принципах систематики растений. Линней, как известно, искал в растениях различия, Гете же стал искать общее и этим, надо сказать, сделал первый шаг к генетической систематизации растений.

Увлечение женщин ботаникой можно было понять: система Линнея была до изумления проста и понятна. Это вам не «Определитель высших растений европейской части СССР» Станкова-Талиева более чем в тысячу страниц, приводящий студентов в предынфарктное состояние.

Линней, сроду не любивший арифметики, тем не менее заложил ее, можно сказать, в основу своей системы. Он подразделил растения на 24 класса, из которых 13 выделены по числу тычинок. Растения с одной тычинкой в каждом цветке помещены в первый класс, с двумя - во второй и так далее до десятого класса, к которому отнесены растения с десятью тычинками. Класс 11-й включал растения с 11-20 тычинками, 20 и более тычинок в цветке говорило о принадлежности к 12-му и 13-му классу. Эти два класса различали по уровню расположения основания тычинок относительно места прикрепления пестика. Растения 14-го и 15-го классов имеют тычинки неравной длины. В цветах классов 15-20-го тычинки у растений сращены между собой или с пестиком. В 21-й класс были помещены однодомные растения, имеющие частью тычиночные, частью плодущие (пестичные) цветки. В 22-й класс попали двудомные растения, развивающие на одних растениях лишь тычиночные, на других - только плодущие цветки. Класс 23-й включал растения с хаотичным разбросом мужских и женских цветков (в том числе порою и совместном) на растении. В 24-м классе были объединены «тайнобрачные» растения - все бесцветковые растения, начиная с папоротникообразных и кончая водорослями. Названы последние «тайнобрачными» по той причине, что ботаники не знали, как они размножаются. Это сейчас биологам известны их организация и размножение лучше, чем цветковых растений.

Линней отнес 20 из 23 классов к явнобрачным обоеполым цветкам. Именно их он посчитал правилом в растительном царстве, остальные - любопытным исключением. Оно вроде бы логично, для растений удобнее - тычинки и пестики рядом, значит, брак без заминки; итог любви - плод и семя появляются в результате самоопыления, зашифрованного биологами латинским словом autogamia.

Уже после Линнея выяснилось, что некоторые растения имеют лишь с виду обоеполые цветки. Хотя у них в цветках рядом и тычинки, и пестики, но пыльцевые клетки в пыльниках недоразвиты и все растение евнух евнухом - смотреть противно. Другие цветки сами себя не могут оплодотворить, но их пыльца способна к производству потомства при опылении пестиков чужих растений.

Поскольку повелось исстари у ботаников все называть латинскими именами, то совокупность тычинок цветка они наименовали андроцеем, а совокупность пестиков (или просто пестик) - гинецеем. Но так как ни один ученый на уже достигнутом однажды ни за что не остановится, то ботаники в дальнейшем в зависимости от строения цветков подразделили их на обоеполые (содержат андроцей и гинецей) и однополые (содержат либо андроцей, либо гинецей). Если мужские и женские цветки расцветают на одном растении, его называют однодомным (кукуруза), если же на разных - двудомным (конопля). У полигамных видов на одном растении бывают обоеполые и однополые цветки (дыня, подсолнечник). Однако, по-видимому, в пику ученым-ботаникам природа порой подставляет их пытливому оку все формы перехода от одного полового типа цветка и растений к другому, вплоть до пустоцветов, вовсе лишенных тычинок и с недоразвитыми пестиками.

Чрезвычайно раздражающее огородников сорное растение мокрица, или топтун, имеет в двух пятичленных мутовках десять тычинок, из которых обыкновенно 5 внутренних с некоторым добавлением таковых же из внешней мутовки сморщены и лишены пыльцы. Цветковые головки черноголовника (Poterium polygamum) содержат кроме чисто плодущих и чисто тычиночных цветков еще и настоящие обоеполые цветки. Они представляют все примеры перехода от настоящих обоеполых к цветкам чисто материнского типа. Кстати, этот ботанический род исключителен среди розоцветных своей склонностью к ветроопылению.

Необычайно разнообразны также степени обособления среди ложнообоеполых плодовитых и тычиночных цветков. Бодяк, спаржа, хурма, виноград, некоторые скабиозы, камнеломки, валерьяны имеют цветки на первый взгляд обоеполые. В них хорошо развиты пестики, видны и тычинки, в пыльниках которых может быть или отсутствовать пыльца. В последнем случае это ложнообоеполые цветки. Что делать, и в природе «лжедмитрии» встречаются. То же самое можно сказать и о части цветков в кистях конских каштанов и некоторых видов щавеля, а также в цветках в центре корзинок мать-и-мачехи и ноготков, имеющих вид настоящих обоеполых цветков, но чьи завязи не дают всхожих семян, так как рыльце не способно пропускать через себя пыльцевые трубки.

В кистях явора (один из видов клена) можно заметить все возможные переходы от ложнообоеполых тычиночных цветков с хорошо развитыми крупными завязями к таким, в которых пестики недоразвиты или совершенно отсутствуют. Переходы от настоящих обоеполых цветков к пустоцветам можно встретить у нескольких видов степного гиацинта.

Известны также трехдомные виды: у них одни растения несут только мужские, другие - только женские, а третьи - обоеполые цветки (смолевка). Из курьезов растений можно отметить смену пола с возрастом или в отдельные годы. Виноград сердцевидный, относящийся на своей родине к типично двудомным, в Венском ботаническом саду представлен кустами с тычиночными цветками. Но в некоторые годы виноградные кусты приводят экскурсоводов в замешательство, поскольку образуют кроме тычиночных настоящие обоеполые цветки.

У многих растений самооплодотворению препятствует неодновременное созревание тычинок и пестиков в цветке - дихогамия (подсолнечник, малина, груша, яблоня, слива), при которой различают протерандрию, когда тычинки пылят раньше созревания пестиков, и протогинию, когда пестики созревают раньше тычинок.

Главным образом протерандричны сложноцветные, губоцветные, мальвовые, гвоздичные и бобовые; протерогиничны ситники и ожики, кирказоновые и дафниевые, жимолостные, глобуляриевые, пасленовые, розоцветные и крестоцветные. Протерогиничны все однодомные растения: осоки, рогозы, ежеголовники, ароидные с однодомными цветками, кукуруза, однодомная крапива жгучая, уруть, черноголовник, дурнишник, бешеный огурец, молочайные растения, ольха, береза, грецкий орех, платан, вяз, дуб, орешник, бук. У названных здесь деревьев и кустарников пыльники начинают пылить с опозданием в 2-3 дня. У альпийской зеленой ольхи эта разница равна 4-5 дням, а у мелкого рогоза - даже девяти.

Большей частью протерогиничны двудомные растения. В больших ивовых зарослях по не травленным химией берегам наших рек некоторые виды все еще представлены многочисленными кустарниками. Часть их несет тычиночные цветки, другая - пестичные. Они практически находятся в одних условиях, но, несмотря на одинаковые внешние условия в одной и той же местности, кусты с пестичными цветками всегда ловко опережают в цветении своих «мужчин» с тычиночными цветками. У белотала, пурпурного лозника, корзиночной вербы и ракиты рыльца в своем созревании на 2-3 дня опережают вскрытие тычиночных цветков. То же самое у альпийских ив - убедитесь, если доведется побывать в Альпах. Но тут разница во времени ограничена всего лишь одним днем, из чего правомерно заключить, что наши ивы - самые протерогиничные ивы в мире.

У растений конопли, растущих рядом, в начале цветения можно заметить рыльца, готовые к восприятию пыльцы, хотя ни единый тычиночный цветок еще не раскрыт - они раскроются лишь через 4-5 дней. У пролески, или кур-зелья, растущей по лиственным лесам и кустарникам, рядом расположены материнские и отцовские особи. Тем не менее пестичные цветки у них открываются за два дня до тычиночных. То же у хмеля и многих других двудомных растений.

У немногих растений самооплодотворение затруднено из-за такого расположения тычинок и пестиков, при котором пыльце трудно попасть на рыльце пестика своего цветка. Например, при гетеростилии одни особи имеют цветки с длинными пестиками и короткими тычинками, а другие - наоборот. К гетеростильным (разностолбчатым) относятся некоторые горечавковые (например, вахта, или трилистник), гречиха, различные виды ленца, многочисленные первоцветные (к примеру, проломник, турча, примула, или первоцвет), а также многие бурачниковые (незабудки, медуница и др).

Вахта обладает очень изящными мохнатыми белорозовыми цветками-звездочками, собранными кистью на безлистном стебле. Одни цветки обладают низким столбиком и укрепленным над ним пыльником, другие, напротив, - высокими столбиками и укрепленными под ними пыльниками. Рыльца у растения созревают раньше тычинок. Насекомые, посещающие цветки вахты, касаются одной и той же частью своего тела то пестиков, то тычинок, осуществляя строго перекрестное опыление. Однако в долгое ненастье цветок закрыт и вынужден самооплодотворяться.

Примула, среди детей более известная как баранчики, распускает цветки одной из первых среди весенних цветов. Отсюда и латинское название primus - первый. Опыляют растение только шмели и бабочки. Благодаря разностолбчатости пестики одних цветков могут быть опылены пыльцой только с других цветков. Если шмель садится на цветок с низким пестиком, он касается головой высокостоящих тычинок. Перелетая на цветок с высокостоящим пестиком, он касается головой рыльца и производит перекрестное опыление.

Явление разностолбчатости впервые было открыто на цветках турчи болотной, а потом и на других растениях. Первенство турчи в этом отношении кажется даже невероятным, если учесть, что все растение погружено в воду, и только в июле цветки появляются над водой. Другая примечательность турчи в том, что корней она не имеет, и всасывающие функции у нее исполняют клетки кожицы листьев.

У гречихи, по клятвенному заверению генетиков, длинностолбчатость контролируется рецессивной аллелью s, а короткостолбчатость - доминантной аллелью S (напоминаем, что аллель - одна из форм coстояния одного и того же гена). Поскольку опыления в пределах одного типа цветка не происходит, то в популяциях все время поддерживается равное соотношение растений с генотипами Ss и ss; это видно из решетки Пеннета, известной из школьного курса биологии:

то есть расщепление 1:1, как и у человека, на мальчиков (АТ) и девочек (XX) в потомстве.

По строению цветка гречиха приспособлена к перекрестному опылению преимущественно насекомыми (мухами, шмелями и особенно пчелами), которых привлекает нектар, и лишь отчасти - ветром. При нормальном (легитимном) опылении, когда пыльца коротких тычинок попадает на рыльца коротких столбиков и, соответственно, пыльца длинных тычинок - на рыльца длинных столбиков, завязывается наибольшее количество семян.

Плакун-трава (Lythrum salicaria) - одно из самых интересных наших растений. Дело в том, что цветки плакун-травы имеют пестики трех различных величин и 12 тычинок, расположенных поровну в два круга. В одних цветках пестик выше обоих кругов тычинок, в других - он находится между ними и в третьих - ниже обоих кругов. Следовательно, тычинки располагаются на различных высотах так же, как и пестики, что обеспечивает перекрестное опыление. Насекомое, прилетая за нектаром, вымазывается пыльцой и отдает ее на рыльце пестика, по длине соответствующего тычинке, с которой снята пыльца. Оплодотворение происходит нормально, когда пыльца переносится с тычинки, одинаковой по длине с пестиком. Зерна пыльцы с тычинок трех различных высот разнятся между собой по величине и отчасти по цвету, а соответственно этому длина сосочков на рыльцах трех различных высот также различная, - ведь рыльца должны улавливать разную пыльцу. Процесс опыления в деталях впервые исследован Ч. Дарвином.

У некоторых растений тычинки и пестики расположены в строгой очередности, подставляясь насекомым для «разгрузки» пыльцы или «погрузки» рыльца. У нашей руты обыкновенной, встречаемой на склонах и холмах в лесах Южного Крыма, цветок содержит десять пыльников, поддерживаемых прямыми, расположенными звездой нитями. Сначала поднимается одна нить, устраивая поддерживаемый ею пыльник в середине цветка по линии, ведущей к нектару, который выделяется мясистым кольцом у основания пестика. Она сохраняет такое положение около суток, затем возвращается в прежнее положение. В то время как первая тычинка отгибается, поднимается другая - и все повторяется. Это продолжается, пока все десять пыльников, один за другим, не постоят в середине цветка. Когда, наконец, и десятая тычинка отогнется назад, в центре цветка оказывается рыльце, ставшее в это время восприимчивым к опылению.

В обоеполых цветках постенницы из семейства крапивных рыльце развивается еще до распускания цветка и первым выдается из зеленоватого бутона цветка. Пыльники на согнутых ножках, словно на пружинах, закрыты смыкающимися мелкими зеленоватыми покроволистиками. Но прежде чем они позволят пыльникам подняться с «колен», выпрямиться и рассеять свою пыльцу в виде облачка в воздухе, рыльце вянет и столбик отделяется вместе с рыльцем от завязи. Так что ко времени освобождения пыльцы из пыльников завязь оканчивается острием - засохшим основанием отпавшего столбика.

Обычно у растений все это происходит иначе: сначала в цветке опадают пыльники и тычинки, и лишь после этого рыльце приобретает способность воспринимать пыльцу. В цветках бальзамина пыльники срощены между собой и образуют нечто вроде колпачка над рыльцем. После того как цветок раскрылся и сделался доступным прилетающим насекомым, пыльники тотчас растрескиваются, и перед нами предстает образованный вскрывшимися пыльниками колпачок. Но вот нити тычинок отделяются, и колпачок вываливается из цветка. Лишь теперь показываются рыльца, вполне уже созревшие. То же можно наблюдать у крупноцветковых видов журавельника и герани.

В обоеполых цветках традесканции, разводимой дома и по недоразумению называемой «бабьими сплетнями», пыльники вскрываются чуть раньше, чем рыльца станут восприимчивыми к пыльце. Но как только рыльце готово к опылению, тычинки свертываются в спираль, а вскоре за этим увядают покроволистики, покрывающие собой пыльники на свернувшихся нитях. Столбик же выдается, и рыльца восприимчивы к пыльце еще весь следующий день. Эти цветки навещают насекомые с короткими хоботками, чтобы полакомиться соком смятых покроволистиков, скрывающих тычинки, при этом они касаются рылец и опыляют их пыльцой, принесенной с других цветков. Опыление же пыльцой своих пыльников уже невозможно.

Дихогамии ботаники, опирающиеся в своих изысканиях лишь на морфоэкологические различия, без учета содержания геномов, обязаны изобилию видов осок, бесконечно вновь открываемых, а то и переоткрываемых. Тем более что так называемые «виды» осок легко скрещиваются друг с другом, выдавая множество промежуточных форм, охотно принимаемые за новые «виды» (авторов видов привлекает возможность увековечить свое имя в латинской транскрипции). Несовершенная (неполная) дихогамия у ботанических родов с однодомными цветками обеспечивает, например, у осок вначале так называемое межвидовое, а позднее внутривидовое скрещивание. Это понятно, так как рыльце самого первого расцветающего растения протерогиничного вида может быть опылено только пыльцой других, еще раньше зацветших «видов».

Лысенко считал, что «диалектический материализм, развитый и поднятый на новую высоту трудами товарища Сталина, для советских биологов, для мичуринцев является самым ценным, наиболее мощным теоретическим оружием в решении глубоких вопросов биологии, в том числе и вопроса о происхождении одних видов из других». Потому и дано им сверхдиалектическое определение вида на этой новой высоте: «Вид - это особенное, качественно определённое состояние живых форм материи. Существенной характерной чертой видов растений, животных и микроорганизмов являются определённые внутривидовые взаимоотношения между индивидуумами». Вот так-то.

Не все ботаники желают видеть, что в диалектическом единстве формы и содержания определяющим является содержание. Содержание же вида - это единство генетического строения популяций, его составляющих. Внешне оно проявляется в фенотипическом сходстве, свободной скрещиваемости, особенно же в способности давать плодовитое потомство при скрещивании. Наследственная информация - вот то, что качественно определяет вид и составляет его содержание. Трудно сказать, возникла ли жизнь одновременно с наследственностью (подозреваю, что одновременно), но одно не вызывает сомнений: с появлением дискретной наследственности на земном шаре появились виды.

С учетом известных науке формулировок определение вида может быть таким: вид - качественно обособленное на данном этапе эволюционного процесса, сложное и подвижное сообщество организмов, характеризующееся единством происхождения, общностью генетической конституции, наследственной устойчивостью и плодовитостью потомства . Большинство выделенных «видов» осок и ив этому определению не соответствуют.

При выделении «хороших», или настоящих, видов по скрещиваемости и образованию плодовитого потомства нельзя забывать о явлении самонесовместимости - невозможности самооплодотворения у некоторых гермафродитных организмов или перекрестного оплодотворения между особями вида с одинаковыми генетическими факторами несовместимости. Основная функция систем самонесовместимости - предотвращение самооплодотворения и содействие скрещиванию между неродственными особями.

Различают гаметофитную, спорофитную и гетероморфную самонесовместимость. Гаметофитная самонесовместимость - самая распространенная (злаковые, свекла, люцерна, плодовые, картофель и др.). Эта система характеризуется независимым действием в пыльце и столбике двух аллелей локуса несовместимости S. присутствующего в каждой особи. Например, пыльца растения с генотипом S 1 S 2 ведет себя как S 1 или S 2 в зависимости от того, какую аллель содержит пыльцевое зерно. Ни одна из аллелей не проявляет доминирования или иной формы межаллельного взаимодействия. Такая же полная независимость действия наблюдается и в столбике.

Реакция несовместимости проявляется в столбике пестика: рост пыльцевых трубок, несущих данную аллель, прекращается в столбиках, содержащих идентичную аллель. Если все аллели, участвующие в гибридизации, различны, например S 1 S 2 XS 3 S 4 , то все пыльцевые трубки совместимы, завязь получается нормальной и в потомстве образуются 4 перекрестно совместимых генотипа. У огромного большинства изученных видов гаметофитной несовместимостью управляют один-два локуса.

Спорофитная несовместимость впервые была описана у гваюлы. При спорофитной самонесовместимости поведение каждого пыльцевого зерна зависит от генотипа столбика. Так, если S 1 доминирует над S 2 , вся пыльца растения S 1 S 2 будет реагировать как S 1 и сможет проникать в столбики, несущие аллель S 2 , независимо от генотипа пыльцевой трубки - S 1 или S 2 .

Гетероморфная несовместимость возникает на основе гетеростилии, уже описанной нами ранее.

Одним из приспособлений растения для осуществления перекрестного оплодотворения служит мужская стерильность. В последние десятилетия мужская стерильность у культурных растений вызывает у селекционеров и семеноводов огромный интерес, так как позволяет в широких масштабах получать гетерозисные гибриды первого поколения, которые дают прибавки урожая до 40 процентов по отношению к обычным сортам, отличаются ранним и дружным созреванием, высокой выравненностью и устойчивостью к неблагоприятным факторам среды.

К настоящему времени описаны цитоплазматическая мужская стерильность (ЦМС) и генная мужская стерильность (ГМС), контролируемая генами ядра клетки. Цитоплазматическая мужская стерильность у растений обусловлена взаимодействием стерильной цитоплазмы (S) с 1-3 парами рецессивных генов ядра (rf). В присутствии доминантных генов ядра (RF) восстанавливается фертильность пыльцы. ЦМС широко используется для получения гетерозисных гибридов в промышленных масштабах у кукурузы, сорго, Сахарной свеклы, лука, моркови. Как правило,

для использования ЦМС в семеноводстве гибридов первого поколения (они обозначаются F 1) используют фертильные закрепители стерильности с генотипом Nrfrf (N - нормальная цитоплазма), их стерильные аналоги - Srfrf и восстановители фертильности - RfRf.

Генная мужская стерильность используется для получения гетерозисных семян у томатов, перца, ячменя. При производстве гибридных семян на основе одного рецессивного гена ГМС расщепление в Fi идет по Менделю в соотношении 3 фертильных: 1 стерильное растение, поскольку, в отличие от ЦМС, мужская стерильность передается как через женские, так и через мужские гаметы.

Скрещивания, как известно, широко применяются в селекции и семеноводстве растений. Возможность искусственного получения гибридов впервые предположил немецкий ученый Р. Камерариус в 1694 году, и, как это часто бывает, ему никто не поверил. Только в 1760 году немецкий ботаник и почетный член Петербургской академии наук Йозеф Кёльрёйтер получил гибрид перуанского табака метельчатого с махоркой. С этого года ученые начинают сознательную гибридизацию.

В зависимости от степени родства скрещиваемых форм различают внутривидовую и отдаленную - межвидовую и межродовую гибридизацию. Если в скрещивании участвуют две родительские формы, говорят о простой, или парной, гибридизации, если более двух - о сложной. Различают прямые (A×B) и обратные (В×А) скрещивания, носящие в целом название реципрокных. Скрещивание гибридов с одним из родителей, например (A×B)×A или (А×В)×В, называют беккроссом, или возвратным.

Для обозначения гибридов и родительских форм используют символы: Р - родительская форма; F 1 - гибрид первого поколения; F 2 - второго и т. д.; В 1 , или ВС 1 , - первое поколение беккросса; В 2 , или ВС 2 - второе и т. д. Материнскую форму обозначают значком ♀, отцовскую - ♂. Впрочем, чаще всего обходятся без последних, помещая в записи комбинации скрещивания материнскую форму на первое место, а отцовскую - на второе.

Методика и техника скрещивания зависят от биологии цветения и опыления, оплодотворения, особенностей строения цветков (обоеполые, раздельнополые), расположения последних на растении и в соцветии, от способа опыления, продолжительности сохранения жизнеспособности пестика и пыльцы и условий скрещивания.

Селекционеры используют принудительное, ограниченно-свободное и свободное скрещивания, для осуществления которых часто необходима кастрация растений. Кастрация заключается в удалении незрелых пыльников или их повреждении подрезанием, термической стерилизацией (горячим воздухом или водой) или химической кастрацией - применением специально подобранных гаметоцидов.

При принудительном скрещивании кастрированные и изолированные материнские растения опыляют пыльцой отцовского растения. При свободном скрещивании родительские формы высевают чередующимися рядками. Кастрированные, мужскистерильные или биологически женские материнские растения опыляются пыльцой произрастающих рядом отцовских растений.

Человек в своем стремлении улучшить природу движется все дальше. Благодаря современным достижениям генетики аграрии получают все больше необычных и интересных гибридов, способных удовлетворить самые смелые желание потребителей.
Кроме того глобализация приводит к распространению видов растений, нехарактерных для данной климатической зоны. У нас уже давно вышли из экзотики ананасы и бананы, стали привычными гибридные нектарины и миниолы и т.д.

Желтый арбуз (38 ккал, витамины А, С)


Снаружи это привычный полосатый арбуз, но при этом ярко-желтый внутри. Еще одной особенностью является очень небольшое количество косточек. Этот арбуз результат скрещивания дикого (желтого внутри, но совершенно невкусного) с культурным арбузом. Результат получился сочный и нежный, но менее сладкий, чем красный.
Выращивают их в Испании (округлые сорта) и Таиланде (овальные). Есть сорт «Лунный» выведенный селекционером Соколовым из Астрахани. Этот сорт как раз отличается очень сладким вкусам с некоторыми экзотическими нотками, похожими на привкус манго или лимона, или тыквы.
Есть и украинский гибрид на основе арбуза («кавуна») и тыквы («гарбуза») – «кавбуз». Он больше похож на тыкву с ароматом арбуза и идеален для приготовления каш.

Фиолетовый картофель (72 ккал, витамин С, витамины группы В, калий, железо, магний и цинк)


Картошка с розовой, желтой или фиолетовой кожурой уже никого не удивляет. Но ученым из Colorado State University удалось получить картошку с фиолетовым окрасов внутри. Основой сорта стала андский высокогорный картофель, а цвет вызван высоким содержанием антоцианов. Эти вещества являются сильнейшими антиоксидантами, свойства которых сохраняются и после приготовления.
Назвали сорт «Фиолетовое величество», его уже активно продают в Англии и начинают в Шотландии, климат которой наиболее подошел сорту. Популяризации сорта способствовал английский кулинар Джейми Оливер. Эта фиолетовая картошка с привычным вкусом великолепно смотрится в виде пюре, непередаваемого насыщенного цвета, запеченной, и конечно фри.

Капуста романеско (25 ккал, каротин, витамин С, минеральные соли, цинк)


Неземной вид этого близкого родственника брокколи и цветной капусты, прекрасно иллюстрирует понятия «фрактала». Его нежно-зеленые соцветия имеют конусообразную форму и располагаются по спирали на кочане. Эта капуста родом из Италии, в широкой продаже она находится около 10 лет, а ее популяризации способствовали голландские селекционеры, слегка улучшившие овощ, известный итальянским домохозяйкам с XVI века.

В романеско мало клетчатки и много полезных веществ, за счет этого она легко усваивается. Что интересно, при приготовлении этой капусты не возникает характерного капустного запаха, который дети так не любят. Кроме того, экзотический вид космического овоща вызывает желание его пробовать. Готовят романеско как обычную брокколи - варят, тушат, добавляют в пасту и в салаты.

Плуот (57 ккал, клетчатка, витамин С)


От скрещивания таких видов растений как сливы (plum)и абрикосы (apricot) получены два гибрида плуот, который внешне больше похож на сливу, и априум, больше напоминающий абрикос. Оба гибрида названые по первым слогам английский названий видов-родителей.
Внешне плоды плуота окрашены в розовый, зеленый, бордовый или фиолетовый цвет, внутренность - от белого до насыщенно-сливового. Вывели эти гибриды в питомнике Dave Wilson Nursery 1989 году. Сейчас в мире уже два сорта априума, одиннадцать сортов плуота, один нектаплама (гибрида нектарина и сливы), одни пичплама (гибрида персика и сливы).
Используют плоуты для приготовления сока, десертов, домашних заготовок и вина. На вкус этот фрукт намного слаще и сливы, и абрикоса.

Арбузный редис (20 ккал, фолиевая кислота, витамин С)


Арбузный редис полностью соответствует своему названию – он яркий малиновый внутри и покрыт бело зеленой кожицей снаружи, точно как арбуз. Формой да и размером тоже (диаметр 7-8см) он напоминает некрупную редьку или репку. По вкусу он вполне обычный – горький у шкурки и сладковатый к середине. Правда более твердый, не такой сочный и хрустящий как обычный.
Он чудесно смотрится в салате, просто нарезанный ломтиками с кунжутом или солью. Так же рекомендуют делать из него пюре, запекать, добавлять к овощам для жарки.

Йошта (40 ккал, антоцианы, обладающие антиоксидантными свойствами, витамины С, Р)


Скрещивание таких видов растений как смородина (johannisbeere) и крыжовник (stachelbeere) дало ягоду йошту с плодами близкого к черному цвету, размером с вишню, кисло-сладким немного вяжущим вкусом, приятно отдающие смородиной.
Еще Мичурин мечтал создать смородину размерами с крыжовник, но при этом не колючую. Он успел вывести крыжовник «Мавр черный» темно-фиолетового цвета. К 1939 году в Берлине Пол Лоренц так же занимался выведением подобных гибридов. В связи с войной эти работы были остановлены. И только в 1970 году удалось получить идеальное растение Рудольфу Бауэру. Теперь есть два сорта йошты: «Черный» (коричнево-бордового цвета) и «Красный» (блекло-красного цвета).
За сезон с куста йошты получают 7-10 кг ягод. Используют их в домашних заготовках, десертах, для ароматизации газировки. Йошта хорошо помогает при желудочно-кишечных заболеваниях, для выведения из организма тяжелых металлов и радиоактивных веществ, улучшения кровообращения.

Брокколини (43 ккал, кальций, витамины А, С, железо, клетчатка, фолиевая кислота)


В семействе капуст в результате скрещивания обычной брокколи и китайской брокколи (гайлана) получили новую капусту похожую на спаржу на макушке с головкой брокколи.
Брокколини немного сладковата, не имеет резкого капустного духа, с перечной ноткой, нежная на вкус, напоминает спаржу одновременно и брокколи. В нем множество полезных веществ и при этом низкокалориен.
В США, Бразилии, странах Азии, Испании, брокколини привычно используют как гарнир. Его подают свежим, политым маслом или слегка обжаривают в масле.

Нэши (46 ккал, антиоксиданты, фосфор, кальций, клетчатка)


Еще один результат скрещивания растений – это нэши. Получили его от яблока и груши в Азии несколько столетий назад. Там его называют азиатской, водяной, песочной или японской грушей. Выглядит плод как круглое яблоко, а на вкус как сочная, хрустящая груша. Цвет нэши - от бледно-зеленого до оранжевого. В отличии от обычной груши нэши тверже, поэтому лучше хранится и транспортируется.
Нэши достаточно сочное, потому его лучше использовать в салатах или соло. Так же хорош в качестве закуски к вину вместе с сыром и виноградом. Сейчас выращивают порядка 10 популярных коммерческих сортов в Австралии, США, Новой Зеландии, Франции, Чили и на Кипре.

Юзу (30 ккал, витамин С)


Юзу (японский лимон) это гибрид мандарина и декоративного цитруса (ичангской папеды). Фрукт размером с мандарин зеленого или желтого цвета с бугристой кожицей имеет кислый вкус и яркий аромат. Его используют японцы еще с VII века, тогда буддийские монахи завезли с материка на острова этот фрукт. Юзу популярен в кулинарии Китая и Кореи.
У него совершенно необычный аромат - цитрусовый, с цветочными оттенками и нотами хвои. Чаще всего применяют для отдушки, цедру используют в качестве приправы. Эту приправу добавляют к мясным и рыбным блюдам, в суп мисо, лапшу. Так же с цедрой готовят джемы, алкогольные и безалкогольные напитки, десерты, сиропы. Сок похож на лимонный (кислый и ароматный, но более мягкий) и является основой соуса понзу, так же используют в качестве уксуса.
Имеет и культовое значение в Японии. 22 декабря в праздник зимнего солнцестояния принято принимать ванны с этими плодами, которые символизируют солнце. Его аромат отгоняет злые силы, защищает от простуды. В эту же ванну окунают животных, а водой потом поливают растения.

Желтая свекла (50 ккал, фолиевая кислота, калий, витамин А, клетчатка)


Отличается эта свекла только от обычной только цветом и тем, что не пачкает руки при приготовлении. По вкусу она такая же сладкая, ароматная, хороша в запеченном виде и даже в чипсах. Листья желтой свеклы можно использовать в свежем виде для салатов.

Но человек только учится преобразовывать виды растений, а природа уже давно творит

Сад и огород, растения растущие на них, с каждым днём становятся совсем не такими, как мы привыкли его видеть! Новые гибридные сорта растений появляются с удивительной быстротой! Каждый год в магазинах появляются все новые и новые гибридные фрукты и овощи, хотя еще совсем недавно обычный банан был для российского покупателя настоящей экзотикой. Гибриды (то есть плоды, появившиеся на свет в результате межвидового скрещивания растений, а вовсе не в результате генетических экспериментов) довольно прочно укрепились на полках магазинов, а такие гибридные фрукты, как нектарины и миниолы, и вовсе, как теперь кажется, были всегда. Однако этими двумя фруктами ассортимент, конечно, не ограничивается. Посмотрим 10 самых любопытных фруктов и овощей, которые появились на свет благодаря селекции.


Желтый арбуз, от 350 рублей за кг

Энергетическая ценность: 38 ккал
Полезные элементы: витамины А, С
Где купить: Avesta Service

С виду это обычный полосатый арбуз, только внутри он ярко-желтый. Но вдобавок к непривычной окраске этот арбуз содержит совсем немного, по сравнению с обычным, косточек. Такой арбуз появился на свет в результате скрещивания дикого арбуза, который как раз желтого цвета (правда, есть его невозможно), с обычным. И теперь круглые желтые арбузы выращивают летом в Испании, а овальные — зимой в Таиланде. Кстати, там желтый арбуз особенно уважают, ведь по тайским поверьям желтый цвет притягивает деньги. Арбуз этот нежный и сочный, правда, не такой сладкий, как красный.

В России тоже есть желтые арбузы, и родом они из Астрахани. Десять лет над выведением нового сорта работал заведующий отделом селекции бахчевых культур Всероссийского НИИ орошаемого овощеводства и бахчеводства Сергей Соколов, пока, наконец, не смог получить сорт, который назвал «Лунный». Кстати, российский сорт — в отличие от иностранных — очень сладкий и с экзотическим привкусом, по поводу которого мнения расходятся: то ли это лимон, то ли манго, то ли тыква.

Стоит сказать, что эксперименты по выведению желтого арбуза шли давно. К примеру, украинским селекционерам повезло меньше, чем российским. В результате скрещивания они получили гибрид под названием «кавбуз», который взял от арбуза только аромат, а всем остальным пошел в тыкву. Его лучше всего использовать для приготовления каши.

Фиолетовый картофель, £1,50 за упаковку 1,25 кг


Энергетическая ценность: 72 ккал
Полезные элементы: витамины группы В, витамин С, калий, магний, железо и цинк
Где купить: Sainsbury’s

Никого не удивишь картошкой с желтой, розовой или даже фиолетовой кожурой. Но вот картошка, фиолетовая внутри — это что-то новое. Ее появлению мы обязаны ученым из Colorado State University, которые долго работали над картофелем из андских высокогорий, пока не получили выдающийся фиолетовый цвет. Этим насыщенным цветом картошка обязана высокому содержанию антоцианов, которые обладают антиоксидантными свойствами, кстати, сохраняющимися после приготовления.

Больше других картофелю сорта «Фиолетовое величество», который широко продается в Англии уже около полугода (в продажу картошка поступила накануне Хэллоуина), подходит климат Шотландии, где ее теперь и выращивают.

Популяризации необычного корнеплода среди домохозяек поспособствовал английский кулинарный гуру Джейми Оливер, не боящийся экспериментировать. Из такой картошки получается оригинальное пюре насыщенного фиолетово-синего цвета, она хорошо смотрится запеченной в компании других овощей, что уж говорить о картошке фри. По вкусу фиолетовая картошка не отличается от обычной.

Капуста романеско, от 230 рублей за кг


Энергетическая ценность: 25 ккал
Полезные элементы: каротин, минеральные соли, витамин С, цинк
Где купить: «Глобус Гурме» или «Продукторг»

Овощ, выглядящий как пришелец, является близким родственником цветной капусты и брокколи, только его нежно-зеленые соцветия не округлой формы, а конусообразной и располагаются на кочане по спирали. Кстати, его форма служит поводом для шуток. Говорят, что кочан романеско выпал из летающей тарелки где-то в Италии, откуда эта капуста родом. Подлинная история появления романеско более прозаична: в широкой продаже она появилась около 10 лет назад, а ее популяризации послужили голландские селекционеры, которые слегка улучшили овощ, знакомый итальянским домохозяйкам еще с XVI века.

В романеско много полезных веществ и мало клетчатки, за счет чего она легко усваивается. Немаловажный факт для родителей, которые хотят заставить ребенка есть капусту: при приготовлении романеско не возникает характерного запаха капусты, который так не любят дети. К тому же экзотический вид космического овоща наверняка вызовет желание его попробовать. Готовить романеско можно как обычную брокколи — варить, тушить, добавлять в салаты и в пасту.

Необычный овощ блистает не только на кухне, но и в науке. Математики утверждают, что на примере романеско можно объяснять геометрическое понятие «фрактал».

Плуот, от 942 рублей за кг


Энергетическая ценность: 57 ккал
Полезные элементы: витамин С, клетчатка
Где купить: «Азбука вкуса» (доступен в конце лета)

Гибрид сливы и абрикоса, плуот назван по первому и последнему слогу двух английских слов: plum (слива) и apricot (абрикос). У плуота, который больше все же пошел в сливу, есть родной брат — априум, который, напротив, больше похож на абрикос.

Снаружи плуот может быть розового, зеленого, бордового и фиолетового цвета, а внутри — от белого до насыщенного сливового. Авторы этого фрукта взимают роялти в размере около $2 за саженец. Его вывели в 1989 году в калифорнийском питомнике Dave Wilson Nursery, где сначала выращивали саженцы обычных плодовых деревьев на продажу, а потом занялись созданием своих собственных сортов. На сегодняшний день в мире насчитывается одиннадцать сортов плуота, два сорта априума, один сорт нектаплама (гибрид нектарина и сливы), а также одни сорт пичплама (гибрид персика и сливы).

Говорят, что из плуота получается отличный сок, десерты, домашние заготовки и даже вино. А в свежем виде это настоящее лакомство, ведь плуот гораздо слаще как сливы, так и абрикоса.

Арбузный редис, от $2,97 за пакетик семян


Энергетическая ценность: 20 ккал
Полезные элементы: витамин С, фолиевая кислота
Где купить: Amazon.com, фермерские рынки США, Великобритании

Арбузный редис как будто вывернулся наизнанку — малиновый он не снаружи, а внутри. Сверху же его покрывает бело-зеленая шкурка, которая делает его похожим на арбуз. По форме и размеру этот редис похож на некрупную репку или редьку, а его диаметр составляет 7-8 см. Снаружи редис, как и полагается, горький, а ближе к сердцевине становится сладковатым. Вместе с тем он не такой хрустящий и сочный, как обычный сорт, и гораздо более твердый.

Арбузный редис рекомендуют запекать, делать из него пюре, добавлять к овощам для жарки или в салат. Очень эффектно смотрятся ломтики арбузного редиса, посыпанные черным кунжутом или черной же солью. В Калифорнии это блюдо — ресторанный хит. За пучками лучшего арбузного редиса закупщики отправляются на фермерские рынки. В российские сады и огороды растение это добирается более медленно, хотя арбузный редис несложно вырастить на даче.

Йошта, £9,95 за саженец


Энергетическая ценность: 40 ккал
Полезные элементы: витамины С, Р, антоцианы, обладающие антиоксидантными свойствами
Где купить: GardeningExpress.co.uk, фермерские рынки России, США, Германии

Чтобы дать название плоду любви смородины и крыжовника, йоште, соединили два немецких слова johannisbeere (смородина) и stachelbeere (крыжовник). Ягоды йошты почти черного цвета, размером с вишню, имеют кисло-сладкий вкус, немного вяжут и приятно отдают смородиной.

Создать смородину величиной с крыжовник, но при этом без колючек мечтал еще Мичурин. Ему удалось вывести крыжовник темно-фиолетового цвета, который получил название «Мавр черный». Примерно в то же время в Берлине над созданием гибрида трудился Пол Лоренц. К 1939 году он вырастил 1000 саженцев, из которых намеревался выбрать лучший, но началась Вторая мировая война. И только к 1970 году немецкому ученому Рудольфу Бауэру удалось создать идеальный гибрид. Теперь существует два сорта йошты: «Черный» и «Красный», коричнево-бордового и блекло-красного цветов соответственно.

Куст йошты за сезон приносит 7-10 кг ягод, которые используются в десертах, домашних заготовках и даже для ароматизации газировки. Йошту советуют есть при желудочно-кишечных заболеваниях, для улучшения кровообращения и выведения из организма радиоактивных веществ и тяжелых металлов.

Йошта, как и смородина, редкий гость на прилавках магазинов, и купить ее можно только на фермерских рынках. Или собрать с куста, выращенного на собственной даче.

Брокколини, $2,29 за пучок


Энергетическая ценность: 43 ккал
Полезные элементы: витамины А, С, кальций, железо, фолиевая кислота, клетчатка
Где купить: FreshDirect

Сложно поверить, что брюссельская и савойская капуста, брокколи и кольраби — родственники. Недавно в капустном ряду случилось прибавление. В результате скрещивания обычной брокколи и овоща гайлан (китайская брокколи) получилось растение, похожее на спаржу с головкой брокколи на макушке. Брокколини не имеет резкого капустного духа, немного сладковата, с перечной ноткой, нежная на вкус, напоминает брокколи и спаржу одновременно. Новый овощ содержит массу полезных веществ и низкокалориен.

В США, Испании, Бразилии, странах Азии брокколини — привычный гарнир. Обычно его либо слегка обжаривают в масле либо подают свежим, политым маслом. Брокколини отлично чувствует себя в ориентальных и итальянских блюдах.

Для истинных поклонников брокколини существует отличная вакансия на ферме в австралийском Станторпе. За час прополки, сбора и перевязывания брокколини в букетики работодатель предлагает $17.

Нэши, от 119 рублей за кг

Энергетическая ценность: 46 ккал
Полезные элементы: антиоксиданты, кальций, фосфор, клетчатка
Где купить: «Фруктовая почта»

Нэши — это гибрид яблока и груши, культивируемый много столетий в Азии. Еще его называют азиатской, песочной, водяной или японской грушей. Круглое яблоко на вкус оказывается сочной, хрустящей грушей. Цвет фрукта — от бледно-зеленого до оранжевого. Яблокогруша имеет преимущество перед обычной грушей: оно тверже, поэтому лучше переносит транспортировку и хранение.

Использовать фрукт лучше соло или в салатах, потому что нэши содержит много воды, что не очень хорошо для термической обработки. Кроме того, нэши подают как закуску к вину вместе с виноградом и сыром. Существует около 10 особенно популярных коммерческих сортов нэши, которые выращивают в США, Австралии, Новой Зеландии, Чили, Франции и на Кипре.

Юзу, $1,99 за штуку


Энергетическая ценность: 30 ккал
Полезные элементы: витамин С
Где купить: Nijiya Market

Юзу, или японский лимон, — гибрид мандарина и ичангской папеды (декоративный цитрус). Желтого или зеленого цвета фрукт с бугристой кожицей размером с мандарин имеет яркий аромат и кислый вкус. Он используется японцами еще с VII века, когда буддийские монахи завезли его на острова с материка. Фрукт популярен также в кулинарии Кореи и Китая.

Юзу применяется в большинстве случаев для отдушки. У него потрясающий аромат — цитрусовый, с нотами хвои и цветочными оттенками. Цедра юзу — одна из популярнейший японских приправ. Она используется для мясных и рыбных блюд, добавляется в суп мисо, лапшу. На основе цедры делаются алкогольные и безалкогольные напитки, джемы, сиропы, десерты. Кислый, ароматный и не такой прямолинейный, как лимонный, сок юзу используется в качестве уксуса, также он служит основой для популярного соуса понзу.

Юзу используется не только в кулинарии. Этот фрукт является участником японского праздника зимнего солнцестояния, который отмечается 22 декабря. В этот день взрослые и дети принимают ванны с плодами юзу, символизирующими солнце. В горячей воде фрукт благоухает еще сильнее и, согласно поверьям, отгоняет злые силы. Считается, что после ванны с юзу человек год не будет болеть простудой, особенно если после водных процедур перекусить тыквой, еще одним символом солнца. В юзу-ванну окунают и домашних животных, а оставшейся водой поливают растения.

Желтая свекла, $3,49 за пучок


Энергетическая ценность: 50 ккал
Полезные элементы: фолиевая кислота, витамин А, калий, клетчатка
Где купить: FreshDirect

Вряд ли желтая, или, как ее еще называют, золотая свекла, получит признание на российском рынке. Уму непостижимы желтые борщ, свекольник, винегрет, селедка под желтой шубой. А вот американцы, далекие от русских кухонных традиций, наоборот, не нарадуются на желтую свеклу — она не пачкается при приготовлении.

По вкусу этот овощ от привычного нам практически не отличается. Такой же сладкий, ароматный, готов подружиться с любым продуктом — от сыра и копченостей до цитрусовых, хорош в запеченном виде и даже в чипсах. Листья желтой свеклы можно использовать в свежем виде для салатов.