Как работает градирня. Внутреннее устройство градирни (25 фото)

На любых промышленных предприятиях существует вопрос охлаждения жидкостей, которые непосредственно используют в производстве или получают в результате работы других установок (конденсат). Для решения этой проблемы существуют специальные воздушные охладители – промышленные градирни закрытого типа. Что такое градирня и как она работает? На эти вопросы мы постараемся ответить в этой статье.

Типы производственных градирен

Целью установки градирни на промышленных предприятиях является охлаждение больших объёмов воды при помощи воздушного потока. Отсутствие других охладителей, кроме воздуха, отличает градирню от других устройств этого типа.

Классификация градирен

По принципу действия производители различают следующие типы градирен:


Градирни открытого типа работают благодаря разбрызгиванию горячей воды и её смешиванию с охлаждённым наружным воздухом. При этом часть оборотной воды превращается в пар и уносится вместе с горячим воздухом за пределы градирни. Оставшаяся в резервуаре вода охлаждается.

Устройство открытой градирни

Сухая градирня охлаждает воду путём прохождения жидкости внутри закрытого отсека, где она принудительно обдувается потоками наружного воздуха. Вода проходит внутри трубок радиатора с ребристой поверхностью, что исключает прямой контакт жидкости с воздухом. Такие водоохладители позволяют поддерживать чистоту обрабатываемого материала и не вызывают проблем при установке.

Устройство закрытой градирни

Виды и возможности открытых градирен

Испарительные водоохладители устанавливают на большинстве предприятий за счёт низкой стоимости этих конструкций. Однако их нельзя назвать универсальными, так как монтаж такой градирни требует большой открытой площади для размещения. Открытые градирни обладают и рядом других недостатков: загрязнение оборотной воды от наружного воздуха, невозможность установки вблизи зданий и вырабатывание больших масс пара.

Открытые охладительные установки обеспечивают снижение температуры воды путём её непосредственного контакта с воздухом. В зависимости от типа смешивания влаги с воздухом, производители выделяют несколько типов испарительных градирен:

  • Насадочные (поперечноточные и противоточные) .
  • Эжекционные.

Мокрые водоохладители первого типа (их также называют оросительными) создают контакт поступающего воздуха с водой на развитой поверхности оросительного слоя.

При этом, если вода и воздушные массы двигаются в противоположных направлениях, устройство относится к противоточному типу. Если воздух проходит сквозь воду перпендикулярно - это градирня поперечноточного вида.

Поперечноточная градирня

Как уже было сказано, конструкция поперечноточной градирни предполагает горизонтальное направление потоков воздуха и вертикальное стекание воды. Подача воздуха может происходить с одной или с двух сторон конструкции. Вода подаётся сверху из резервуара и стекает под собственным весом вниз по слою оросителя. За счёт большого количества поступающего воздуха, вода превращается в пар и охлаждается.

Противоточные градирни

Водоохладители, в которых жидкость и воздушный поток двигаются параллельно друг другу, но в противоположных направлениях, называют противоточными. Они делятся на два больших типа: башенные и вентиляторные градирни. Все модели противоточного типа имеют в конструкции трубопровод для подачи воды, ороситель для её разбрызгивания и резервуар для сбора охлаждённой жидкости. Воздух подаётся через естественные отверстия оросителя. Если подача идёт в режиме самотёка – это башенная конструкция, если нагнетается, то вентиляторная градирня.


Эжекционная градирня

Эжекционные градирни отличаются от других подобных конструкций тем, что для подачи воды в зону охлаждения используются трубопроводы с высоким давлением и соплами (эжекторами). Жидкость разбрызгивается внутри градирни, проходя сквозь эжекторы под большим напором. Далее, в отсек под давлением поступает воздушный поток, где он смешивается с каплями воды.

Главным преимуществом установки с эжекторами является отсутствие ограничений в температуре нагрева воды перед её охлаждением. Сопла трубопровода более устойчивы к воздействию высоких температур в отличие от обычных оросителей, которые устанавливаются в других моделях водоохладителей. Однако у такой конструкции существует серьёзный недостаток – здесь необходимо постоянно поддерживать высокий уровень давления.

Принцип работы сухой градирни

Сухие градирни являются результатом научных разработок венгерских учёных. Изначально они были предназначены для охлаждения конденсаторов на электростанциях. В России существует свой аналог сухих градирен - аппараты воздушного охлаждения, которые снижают температуру используемых в производстве жидкостей.

Закрытая сухая градирня применяется для охлаждения воды и конденсата, путём прохождения жидкости через сеть оребренных трубок, обдуваемых потоками воздуха. Для регулировки температуры и тяги они могут быть оборудованы вентиляторами или вытяжными конструкциями. Сухие градирни могут применяться как для охлаждения конденсата на производстве, так и непосредственно при работе с жидкими материалами. Во втором случае, преимущество закрытого охладителя состоит в изоляции воды от внешних загрязнений.

Охлаждение в сухой градирне происходит без непосредственного контакта воды и воздушного потока. Воздух обдувает ребристую поверхность трубок радиатора, благодаря этому снижается температура жидкости, проходящей по трубкам. Для большей эффективности в некоторых моделях идёт дополнительное орошение трубок водой.

Радиаторы с ребристой поверхностью могут иметь различную конструкцию. Как правило, их изготавливают из стали или алюминия – тонких, но устойчивых к нагреву металлов. Наиболее качественными считаются радиаторы из медных трубок, однако градирни с такими деталями стоят довольно дорого.

Сухая градирня незаменима на тех предприятиях, где к охлаждаемой жидкости предъявляются высокие требования чистоты и качества. В испарительных установках вода загрязняется, вступая в непосредственный контакт с воздухом. Закрытый тип воздухоохладителя подойдёт и для тех производств, где необходимо охлаждать воду высоких температур (вплоть до кипящих жидкостей). Оросители открытых установок не способны справиться с такой нагрузкой.

В других случаях, более выгодным и эффективным будет использование вентиляторных градирен, так как расход воздуха в открытых установках будет меньше.

Условия для эксплуатации сухой градирни

При каких условиях на промышленном предприятии стоит установить сухую систему водоохладителей? Есть несколько рекомендаций к её эксплуатации:


Комбинация сухой градирни с другими охладительными устройствами

Сухая градирня может использоваться в качестве самостоятельного охладителя воды, или совместно с другим прибором данного типа - чиллером. При этом устройства будут дополнять друг друга, работая с изменяющейся производительностью в соответствии с температурой среды и планируемым уровнем охлаждения жидкости. Принцип действия таких парных установок состоит из двух этапов:

  • Вода поступает в сухую градирню, где её температура постепенно снижается.
  • Жидкость следует в отсек чиллера, который отлаживает температурные показатели до установленной отметки.

Преимущество комбинированной эксплуатации градирни и чиллера состоит в экономии средств и электроэнергии. Чиллеры с предварительным охлаждением стоят дороже и имеют большую мощность, нежели те модели, которые получают уже холодную воду из градирни и доводят её до нужной температуры.

Преимущества установки сухой градирни

Экономный расход электроэнергии. Электричество необходимо только для работы вентиляторов, которые нагнетают воздух в отсеке водоохладителей. В холодное время года некоторые вентиляционные установки отключаются, поскольку среда за пределами градирни изначально имеет низкую температуру. Это также позволяет регулировать и снижать расходы на электричество.

  • Сравнительно небольшие траты на покупку и установку оборудования. Сухие градирни стоят меньше, чем чиллеры той же производительности.
  • Недорогое обслуживание системы. Поскольку конструкция сухой градирни упрощена по сравнению с «мокрыми» аналогами, помощь специалистов при её обслуживании обходится дешевле.
  • Широкий спектр применения. Сухая градирня позволяет охлаждать самые различные жидкости: вода, раствор гликоля, масло и пр.
  • Удобство расположения оборудования. Устройства закрытого типа занимают небольшую площадь, они не создают испарений и проблем с монтажом. Их можно устанавливать как в горизонтальном, так и в вертикальном положении. Зачастую производится установка на стену или крышу, таким образом, расширяется показатель использования полезной площади на предприятии.

Расчёты для установки сухой градирни

Чтобы подобрать промышленную модель водоохладителя, необходимо осуществить расчёт его производительности. Для вычислений используется несколько физических параметров, которые невозможно свести в единую формулу. Поэтому перед выбором и покупкой градирни на предприятиях необходимо доверить проведение расчётов специалистам. Профессиональные инженеры быстро произведут требуемые вычисления с использованием компьютерных программ и учтут самые мелкие особенности внешней среды.

Стоит отметить, что подбор модели градирни в соответствии с целями и условиями её работы очень важен. В этом случае не стоит полагаться исключительно на цену и «технические характеристики», которые предлагают производители. При малейших отклонениях в расчётах, этот дорогостоящий прибор может оказаться совершенно не эффективным. Градирня должна быть подобрана с учётом климатических особенностей, энергозатрат и совместимости с другим оборудованием на производстве. Поэтому решение данного вопроса стоит доверить профессионалам.

Охлаждение оборотной воды является неотъемлемой частью ряда промышленных технологических процессов на ТЭC , АЭС и т.д. Самыми распространенными устройствами для охлаждения больших объемов воды являются градирни.

Градирня представляет собой тепло- и массообменный аппарат, в котором перенос тепла от воды в окружающую среду осуществляется конвекцией при взаимодействии потоков воды и воздуха, а также испарением на границе раздела фаз. Основной поток тепла отводится вследствие испарения некоторого количества воды на границе раздела фаз и переноса массы испарившейся воды в воздух.

Классификация:

По признаку организации движения воздуха: а) атмосферные (поступление воздуха в объём аппарата продувкой ветром); б) вентиляторные (движение воздуха в объёме градирни создаётся вытяжными или нагнетательными вентиляторами); в) башенные (движение создаётся естественной тягой воздушного потока вследствие разности плотностей нагретого воздуха в башне и холодного вне её).

По принципу организации поверхности теплообмена в оросителях: а) капельные (имеющие расположенные по высоте оросительного устройства горизонтальные решетки, с которых вода стекает в виде относительно больших капель); б) плёночные (в которых вода стекает по вертикальным плоским, волнистым листам или другим насадкам в виде тонкой пленки); в) брызгальные (с разбрызгиванием воды при помощи сопел).

По отношению движения воздуха к воде: а) противоточным, б) поперечноточным, в) смешанным.

Рис. Градирни: а) - вентиляторная; б) - башенная; в) - атмосферная; 1 - ороситель; 2 - водораспределитель; 3 - вентилятор; 4 - водоуловитель; 5 - резервуар; 6 - подвод воды; 7 - отвод воды; 8 - вход воздуха.

Вода, которую требуется охладить, поступает по входному патрубку (6) в водораспределитель (2). Он предназначен для равномерного распределения охлаждаемой воды по поверхности оросителя (1) и состоит из системы труб и форсунок. Каплеуловитель (4) расположен над водораспределителем для радикального уменьшения уноса капель вне градирни. Он должен обладать высокой степенью улавливания, и при этом - наименьшим сопротивлением воздуха. Распыленная равномерно по всей площади вода попадает на ороситель (1). Задача последнего – получение возможно большей поверхности контакта между охлаждаемой водой и воздухом. На поверхности оросителя происходит процесс испарения воды, сопровождающийся ее охлаждением. Поток воздуха обеспечивает вентилятор (3). Охлажденная вода стекает в резервуар (5), откуда отводится через патрубок (7).


Причины поражения и причины смерти от действия электрического тока. Виды защиты от поражения электрическим током. Освобождение пострадавших от действия электрического тока и оказание первой доврачебной помощи.


а) Причины поражения электрическим током.

· Наведенное напряжение: Высоковольтные линии передачи переменного тока могут наводить высокое переменное напряжение на находящиеся рядом токопроводящие объекты.

· Остаточное напряжение: Многие энергоустановки имеют большую электрическую емкость. Поэтому при отключении напряжения, некоторое время все равно будет сохраняться заряд.

· Статическое напряжение: Возникает в результате накопления электрического заряда на изолированном проводящем объекте.

· Шаговое напряжение: Возникает между ногами из-за того, что они находятся на разном расстоянии от упавшего на землю провода.

· Повреждение изоляции токоведущих частей.

· Случайное прикосновение к токоведущей детали (незнание, спешка и т.д.)

· Отсутствие заземления: В случае пробоя изоляции на корпус происходит короткое замыкание.

· Замыкание в результате аварии.

· Нарушение техники безопасности.

б)Причины смерти от действия электрического тока .

· Остановка дыхания при прохождении тока через легки либо при рефлекторном воздействии.

· Остановка сердца при прямом или рефлекторном воздействии.

· Повреждения внутренних органов и головного мозга.

· Электрический шок - это тяжелая нервнорефлекторная реакция организма на раздражение электрическим током. При шоке возникают глубокие расстройства дыхания, кровообращения, нервной системы и других систем организма. Сразу после действия тока наступает фаза возбуждения организма: появляется реакция на боль, повышается артериальное давление и др. Затем наступает фаза торможения: истощается нервная система, снижается артериальное давление, ослабевает дыхание, падает и учащается пульс, возникает состояние депрессии. Шоковое состояние может длиться от нескольких десятков минут до суток, а затем может наступить выздоровление или биологическая смерть.

в) Виды защиты от поражения электрическим током

· исключение случайного прикосновения к токоведущим частям;

· применение безопасного напряжения (12 и 36 В);

· Защитное отключение (система защиты, обеспечивающая безопасность путем быстрого автоматического отключения электроустановки при возникновении поражения током.).

· контроль изоляции электрических проводов (изоляция со временем теряет свои диэлектр. сво-ва);

· устройство защитного заземления и зануления;

· использование средств индивидуальной защиты (диэлектрические перчатки, инструмент с изолированными ручками диэлектрические галоши, коврики...);

· соблюдение организационных мер обеспечения электробезопасности.

г) Освобождение пострадавших от действия электрического тока.

Прикосновение к токоведущим частям, вызывает судорожное сокращение мышц. Вследствие этого пальцы сжиматься, что высвободить провод из его рук становится невозможным. В этом случае необходимо прежде всего быстро освободить его от действия электрического тока. (прикасаться к человеку, находящемуся под током, опасно для жизни). Поэтому необходимо отключение установки, которой касается пострадавший.

При этом необходимо учитывать следующее:

1. в случае нахождения пострадавшего на высоте отключение может привести к падению пострадавшего.

2. при отключении установки может одновременно отключиться также и электрическое освещение.

Если отключение установки невозможно, необходимо отделить пострадавшего от токоведущих частей, к которым он прикасается:

При напряжении до 1000 Вольт.

Для отделения пострадавшего от токоведущих частей или провода следует воспользоваться сухой одеждой, канатом, палкой, доской или каким-либо другим сухим предметом, не проводящим электрический ток (например оттащить за воротник).Рекомендуется действовать одной рукой. Если оттащить невозможно - перерубить провода топором с сухой деревянной рукояткой (не касаясь проводов, перерезая каждый провод в отдельности, надев диэлектрические перчатки и галоши).

На напряжении выше 1000 Вольт.

Для отделения пострадавшего от земли или токоведущих частей, находящихся под высоким напряжением, следует надеть диэлектрические перчатки и боты и действовать штангой или клещами, рассчитанными на напряжение данной установки.

На линиях электропередачи, можно прибегнуть к короткому замыканию (наброс и т. п.). При набросе набрасываемый провод не должен коснулся тела спасающего и пострадавшего. Провод, применяемый для заземления следует сперва соединить с землей, а затем набросить на провода, подлежащие заземлению. Следует помнить что линии может сохраниться заряд после отключения, и что обезопасить линию может лишь ее надежное заземление.

д) Оказание первой доврачебной помощи при поражении током: вызвать врача; уложить пострадавшего на спину на твердую поверхность; проверить наличие у пострадавшего дыхания; проверить наличие у пострадавшего пульса; выяснить состояние (широкий зрачок - ухудшение кровоснабжения мозга).

Если пострадавший находится в сознании, но до этого был в состоянии обморока, его следует уложить в удобное положение (подстелить под него и накрыть его сверху чем-либо из одежды) и до прибытия врача обеспечить полный покой, непрерывно наблюдая за дыханием и пульсом. Ни в коем случае нельзя позволять пострадавшему двигаться, так как отсутствие тяжелых симптомов после поражения электрическим током не исключает возможности последующего ухудшения состояния пострадавшего.

Если пострадавший находится в бессознательном состоянии, но с сохранившимся устойчивым дыханием и пульсом, его следует ровно и удобно уложить, распустить и расстегнуть одежду, создать приток свежего воздуха, давать нюхать нашатырный спирт, обрызгивать его водой и обеспечить полный покой и постоянное наблюдение. Одновременно следует срочно вызвать врача. Если пострадавший плохо дышит – очень редко и судорожно (как умирающий), ему следует делать искусственное дыхание и массаж сердца.

При отсутствии у пострадавшего признаков жизни (дыхания и пульса) нельзя считать его мертвым, так как смерть часто бывает лишь кажущейся. В таком состояний пострадавший, если ему не будет оказана немедленная первая помощь в виде искусственного дыхания и наружного (непрямого) массажа сердца, действительно умрет (первую помощь следует оказывать немедленно).

Переносить пострадавшего в другое место следует если продолжает угрожать опасность или когда оказание помощи на месте невозможно.

Пораженного электрическим током можно признать мертвым только в случае наличия видимых тяжелых внешних повреждений.

) - устройство для охлаждения большого количества воды направленным потоком атмосферного воздуха. Иногда градирни называют также охладительными башнями (англ. cooling tower ).

В настоящее время градирни в основном применяются в системах оборотного водоснабжения для охлаждения теплообменных аппаратов (как правило, на тепловых электростанциях , ТЭЦ , АЭС). В гражданском строительстве градирни используются при кондиционировании воздуха, например, для охлаждения конденсаторов холодильных установок, охлаждения аварийных электрогенераторов. В промышленности градирни используются для охлаждения холодильных машин, машин-формовщиков пластмасс, при химической очистке веществ.

Процесс охлаждения происходит за счёт испарения части воды при стекании её тонкой плёнкой или каплями по специальному оросителю, вдоль которого в противоположном движению воды направлении подаётся поток воздуха (вентиляторные градирни), а в случае с эжекционными градирнями охлаждение происходит за счёт создаваемой среды, приближенной к условиям вакуума специальными форсунками (обеспечивающими площадь тепломассообмена, каждая - 450 м² на 1 м³ прокачиваемой жидкости, представляющие собой принцип двойного действия, охлаждая распыляемую жидкость не только снаружи, но и внутри) и особенностями конструкции. При испарении 1 % воды, температура оставшейся массы понижается на 5,48 °C, а в случае с описанным эжекционным принципом охлаждения температура оставшейся массы понижается на 7,23 °C.

Как правило, градирни используют там, где нет возможности использовать для охлаждения большие водоёмы (озёра, моря).

Простой и дешёвой альтернативой градирням являются брызгательные бассейны, где вода охлаждается простым разбрызгиванием.

Характеристики

Основной параметр градирни - величина плотности орошения - удельная величина расхода воды на 1 м² площади орошения.

Основные конструктивные параметры градирен определяются технико-экономическим расчётом в зависимости от объёма и температуры охлаждаемой воды и параметров атмосферы (температуры, влажности и т. д.) в месте установки.

Использование градирен в зимнее время, особенно в суровых климатических условиях, может быть опасно из-за вероятности обмерзания градирни. Происходит это чаще всего в том месте, где происходит соприкосновение морозного воздуха с небольшим количеством теплой воды. Для предотвращения обмерзания градирни и, соответственно, выхода её из строя следует обеспечивать равномерное распределение охлаждаемой воды по поверхности оросителя и следить за одинаковой плотностью орошения на отдельных участках градирни (только для градирен с оросителем). Нагнетательные вентиляторы тоже часто подвергаются обледенению из-за неправильного использования градирни (для вентиляторных градирен). При использовании эжекционных градирен большая часть этих трудностей исчезает, потому что нет ни вентилятора, ни оросителя.

Классификация

В зависимости от типа оросителя, градирни бывают:

  • плёночные;
  • капельные;
  • брызгальные;
  • сухие.

По способу подачи воздуха:

  • вентиляторные (тяга создаётся вентилятором);
  • башенные (тяга создаётся при помощи высокой вытяжной башни);
  • открытые (атмосферные), использующие силу ветра и естественную конвекцию при движении воздуха через ороситель.
  • эжекционные, использующие естественный захват воздуха при распылении воды в специальных каналах.

По направлению течения сред (охлаждаемой воды и воздуха):

  • с противотоком (наибольший температурный перепад, наибольшее аэродинамическое сопротивление);
  • с перекрестным током (меньшее аэродинамическое сопротивление, меньше капельного уноса);
  • с смешанным током (конструкция градирни содержит и противоток и перекрестный ток).

Вентиляторные градирни до последнего времени были наиболее эффективны с технической точки зрения, так как обеспечивали более глубокое и качественное охлаждение воды, выдерживая большие удельные тепловые нагрузки (однако требуют затрат электрической энергии для привода вентиляторов). Эжекционные градирни выдерживают наибольшие гидравлические нагрузки и способны охлаждать воду с большим перепадом и с очень высоких температур (до 90 °С). Это обусловлено как отсутствием оросителя, так и большой суммарной площадью поверхности мелкодисперсных капель и высокими скоростями водо-воздушных потоков. Затраты электроэнергии на эксплуатацию систем оборотного водоснабжения с эжекционной градирней при грамотной организации схемы водоснабжения и автоматики не превышают затрат на типовые вентиляторные установки.

Самая производительная градирня в мире - градирня для АЭС Исар II в Германии . Она охлаждает 216 000 кубометров воды в час. Ее высота 165 м и основной диаметр 153 м.

Примечания


Wikimedia Foundation . 2010 .

Синонимы :

Все наверное видели подобного рода сооружения и знаете, что это вовсе не труба и из нее выходит не дым.

Но давайте все же посмотрим на принцип работы и внутренее устройство градирни.

Градирни - это специальные устройства для охлаждения большого количества воды посредством направленного потока воздуха. Также их называют охладительными башнями - это более понятно звучит.

Это одно из наиболее эффективных устройств для охлаждения воды в системах оборотного водоснабжения промышленных предприятий. Высокая башня создает ту самую тягу воздуха, которая необходима для эффективного охлаждения циркулирующей воды. Вытяжные башни служат для создания естественной тяги благодаря разности удельных весов воздуха, поступающего в градирню, и нагретого воздуха, выходящего из градирни. Под оросителем располагается водосборный резервуар. Вода подается в водораспределительное устройство по размещаемым в центре градирни стоякам. Благодаря высокой башне одна часть испарений возвращается в цикл, а другая – уносится ветром. Из-за этого в округе не образуется сырости, тумана и обледенений в зимнее время, хотя возможно появление льда вокруг оросительных устройств.

Градирни служили для добычи соли выпариванием. В настоящее время эти сооружения используются для незначительного охлаждения теплой воды. «Незначительное» означает, что после градирни вода не становится ледяной, как в чиллере (+7 градусов) . Температура поступающей воды в градирню - около 40-50 градусов, после градирни - 25-30 градусов (в лучшем случае) .

Необходимость охлаждать теплую воду возникает, если того требует технологический процесс на производстве или в случае охлаждения воды для чиллера с водяным конденсатором.

Градирни бывают двух типов: собственно градирни и «сухие градирни» (« drycooler » / «драйкулер») .

ТЭC, АЭС, промышленные предприятия потребляют огромное количество технической воды, прежде всего, для охлаждения узлов и агрегатов. Вода при этом, естественно, нагревается. Поскольку зачастую вода двигается по замкнутому контуру (т. е. не сливается в реку, а снова идет для охлаждения агрегатов) , ее следует охладить. Это нужно, прежде всего, для повышения эффективности охлаждения - чем холоднее вода, тем лучше она будет охлаждать оборудование.

Для целей частичного охлаждения воды применяются градирни.

Фото 3.

Принцип работы градирни достаточно прост. Процесс охлаждения в градирнях происходит за счет частичного испарения воды и теплообмена с воздухом. Вода в градирне стекает по оросителю сбегает каплями или тонкой плёнкой. В это время вдоль оросителя проходят потоки воздуха. существует такая закономерность: в градирнях при испарении 1 % воды температура оставшейся понижается на 6 С. Потеря жидкости восполняется за счет внешнего источника. Причем свежая вода при необходимости подвергается обработке (фильтрации).

Наиболее сложным элементом башенной градирни является вытяжная башня, конструкция которой в основном определяется материалом, из которого ее сооружают.
Горячая вода поступает в градирню, где в зависимости от типа и конструкции градирни, происходит ее охлаждение, до необходимой температуры. Охлаждение воды может осуществляться:
- обратным потоком атмосферного воздуха (вентиляторные градирни);
- за счет распыления горячей воды форсунками на специальный наполнитель с развитой площадью, по которому вода растекается тонкой пленкой и за счет медленного ее течения - охлаждается (башенные, атмосферные градирни);
- за счет распыления воды в специальных каналах и естественном захвате атмосферного воздуха (эжекционные градирни).
В любом случае вода вступает в контакт с воздухом, которому отдает часть своего тепла и тем самым, понижая свою температуру. Приобретя необходимую температуру, вода поступает обратно для охлаждения теплообменных аппаратов или других приборов, у которых необходимо снизить температуру.

Фото 4.

Типы градирен
По типу системы орошения, градирни можно разделить на:
- плёночные;
- капельные;
- брызгальные;
- сухие.

По принципу подачи атмосферного воздуха, градирни делят на:
- вентиляторные, когда подача воздуха осуществляется вентиляторами.
Преимущества: качественное, быстрое охлаждение воды
Недостатки: большие энергозатраты
- башенные, когда тяга воздуха создаётся при помощи специальной конструкции башни и ее высоты
Преимущества: невысокие энергозатраты
Недостатки: медленное охлаждение воды
- открытые или атмосферные градирни, которые используют силу ветра и естественное движение воздушных масс при движении через башню
Преимущества: практически отсутствие энергозатрат
Недостатки: медленное охлаждение воды, большие размеры
- эжекционные, в которых применяется метод распыления воды в специальных каналах с естественным захватом воздуха
Преимущества: быстрое охлаждение воды за счет создания вакуума
Недостатки: высокие энергозатраты.

По направлению движения воды и воздуха:
- противоточные
Преимущества: в таких градирнях создается наибольший перепад температур и соответственно теплопередача за счет большого аэродинамического сопротивления.
Недостатки: большой капельный унос, особенно ощутим при недостатке возмещения оборотной воды и в густозаселенных местах;
- перекрестные
Преимущества: меньше капельного уноса.
Недостатки: невысокое аэродинамическое сопротивление;
- смешанные
Используется как противоток так и перекресный ток.

Фото 5.

Башенную градирню целесообразно использовать на больших промышленных предприятиях. Площадь сечения башни должна занимать не менее 30-40% площади оросителя. Башни градирен средней и малой производительности могут иметь очень разнообразную форму: цилиндрическую, усеченного конуса или в виде усеченной многогранной пирамиды. Башенные градирни обычно выполняются в виде оболочек гиперболической формы, которая оптимальна по условиям внутренней аэродинамики и устойчивости.

Вытяжные башни работают в очень тяжелых условиях: оболочка башен находится под воздействием влажного теплого воздуха в градирне и холодного воздуха снаружи в зимний период, на внутренних поверхностях образуется конденсат. Таким образом, важен выбор материала .
В башенных градирнях конвекция воздуха осуществляется за счет естественной тяги или ветра. Высота градирен, изготовленных из бетона, может достигать 100 метров. Площадь орошения в таком случае будет достигать 3500 кв.м. В основном, башенные градирни используются для охлаждения больших объемов воды ТЭС или АЭС.

Плюсы башенных градирен:

экономичность (не нужна электроэнергия);
простота эксплуатации;
размещение близко к промышленному объекту.

Минусы:

большая площадь для постройки;
большая стоимость.

Фото 6.

Схемы башенных градирен с различным характером движения воздуха в оросителе приведены на рис. Оросительные устройства во всех приведенных градирнях выполняют капельного, капельно-пленочного или пленочного типа. В настоящее время в основном строят градирни с пленочными и капельно-пленочными оросителями с противоточным движением воздуха, обладающие наибольшей охлаждающей способностью.



Рис. Схемы башенных градирен с различным характером движения воздуха
а - с поперечным; б - с поперечно-противоточным; в - с противоточным

Опыт применения железобетона в градирнях показывает, что оболочки башен вследствие насыщения бетона изнутри влагой и многократного замерзания и оттаивания его под влиянием температур наружного воздуха в зимний период интенсивно разрушаются. Металлические каркасно-обшивочные башни строят в районах с суровым зимним климатом. Они имеют пирамидальную форму с основанием в виде многоугольника или квадрата.

Деревянный каркас используют в градирнях, имеющих небольшую площадь.

форма поверхности которую описывает трубу в трехмерном пространстве называется параболический гиперболоид - поверхность второго порядка! Вода сбрасывается в фокусе фигуры и эффективность этой формы вычислена математически - то есть тот самый уникальный случай когда была сначал теория математическая, а потом практика

формула элементарна

В XIX веке электричество плотно вошло в мировую цивилизацию и жизнь человека кардинально изменилась как в промышленной деятельности, так и на бытовом уровне.

Глобальная эпоха электричества в России началась после становления советской власти, которой надо отдать должное в развитии энергетики по стране в целом. Электрификация молодой Страны Советов являлась самой приоритетной задачей правительства рабочего пролетариата и крестьян. Страна нуждалась в подъёме промышленности и сельскохозяйственного комплекса, развить которые было невозможно без новых технологий, применяемых в капиталистических странах с использованием электричества и пара.

В связи с этим вначале 1920 года была создана Госкомиссия, план которой назывался ГОЭЛРО - Государственный план электрификации России, ставший первым перспективным документом развития экономики Социалистических Республик.

Электрические сети развивались такими темпами, что уже через шесть лет достигнута половина программы, а ещё через пятилетку производство электроэнергии поднялось в разы. Энергетическая промышленность Советского Союза шагнула на уровень мировых лидеров и была в первой тройке с Соединенными Штатами Америки и Германским государством. Вывести из экономического кризиса страну без развития энергетики за полтора десятка лет до уровня самых развитых держав планеты не смог бы никакой экономический стратег.

Для реализация программы ГОЭЛРО необходимо было строительство дополнительных специальных станций, которые должны были производить электрическую энергию и пар. Впоследствии, такие станции получили название теплоэлектроцентраль или сокращённо - ТЭЦ.

На сегодняшний день почти в каждом российском городе имеется по несколько ТЭЦ, которые обеспечивают теплом и светом наши дома и промышленные предприятия.

ДЛЯ ЧЕГО НУЖНА ТЭЦ И КАК РАБОТАЕТ?

Работа ТЭЦ заключается в выработке пара и преобразовании его энергии в электрическую. Происходит это следующим образом:

Газ (уголь или мазут), сгорающий в специальных камерах огромных котлов, выделяет большое количество тепла, которое передаётся специально очищенной воде, а та, в свою очередь, преобразуется в пар с высокими температурой и давлением. Обладающий огромным потенциалом, водяной пар направляется к множеству сопел, на выходе из которых, он приобретает кинетическую энергию. Такое превращение происходит при переходе газа с высоким давлением в среду с меньшим давлением. Затем пар воздействует на криволинейные лопатки ротора турбины, который вращается, совершая механическую работу.

Но это ещё не всё, на что способен нагретый в котлах пар. Поскольку на выходе из турбины он всё ещё обладает достаточно высокой энергией, то основная часть его используется для нагрева сетей, которые и создают благоприятные условия для проживания в наших квартирах.

Такая работа пара является основным принципиальным циклом для выработки электричества и тепла. Чтобы такой цикл повторить снова и снова, пару необходимо постоянно обладать достаточной энергией. Поэтому его обращают в жидкость, которую направляют в нагревательные котлы.

ГРАДИРНИ ТЭЦ, КАКАЯ ИХ РОЛЬ?

Обращение из парообразного состояния в жидкое происходит в конденсаторных установках путём понижения давления и уменьшения температуры. Существует два основных типа таких устройств:

  • смешивающие
  • поверхностные

В настоящее время практически на всех ТЭЦ используются поверхностные конденсаторы, т.к. они обладают рядом существенных преимуществ перед смешивающими. Оборотная вода, поступающая на градирни, идет как раз для охлаждения этих аппаратов.

Поверхностный конденсатор с водяным охлаждением имеет следующую общую схему:

Через горловину 4 пар после турбинной установки попадает в аппарат, где после контакта с трубками 2 конденсируется и превращается в жидкость. Конденсат скапливается внизу и из патрубка 5 откачивается для подачи в водогрейные котлы. В трубках же используется вода, которая как раз и охлаждается на градирнях. На рисунке вода подается через патрубок 1 и, пройдя по трубкам и сменив направление, возвращается в водооборотный цикл через патрубок 3.

Кроме этого на конденсаторе устанавливается патрубок для удаления попавшего в аппарат воздух. Специальным насосом он отсасывается вместе с небольшим количеством не успевшего сконденсироваться пара.

Таким образом, градирни на ТЭЦ служат для охлаждения конденсаторов, которые выполняют 2 главных функции:

  1. поддерживают необходимый уровень разрежения (вакуума) у выпускного патрубка турбины
  2. превращают поступающий из турбины пар в жидкость, которая возвращается обратно в паровые котлы.

Что же происходит, если градирни не справляются со своей задачей и не дают необходимого охлаждения?

В этом случае снижается вакуум в конденсаторах, что ведет к снижению конденсации пара. Учитывая, что вода для паровых котлов должна быть подготовлена определенным образом, обессолена, не содержать других примесей, то её восполнение обходится довольно дорого. Это постоянные затраты.

Кроме того, возрастают разовые затраты на ремонт турбин, требуется замена большего количества лопаток, происходит ускорение коррозии.

Вот почему даже большие разовые затраты на модернизацию градирен выгоднее, чем компенсация потерь от их неэффективной работы.

Ну а на градирне происходит следующий цикл. Забрав определённое количество тепла от конденсатора, нагретая вода по водной магистрали направляется обратно в охладительную башню, но уже в водораспределительную систему. Здесь, через специальные водоразбрызгивающие сопла, обеспечивается равномерное разбрызгивание по всей поперечной площади и обильным ливнем орошается слой, состоящий из блоков оросителя. Ороситель обеспечивает основное охлаждение жидкости до оптимальной температуры путём замедления стекания, образования тонкой водяной плёнки и мелких капель, которые, в свою очередь, обдуваются потоком воздуха. Воздушный поток образуется за счёт конусной формы охладительного сооружения, разности температур и давлений внутри и снаружи. Иными словами - эффект вытяжной трубы. При таком процессе вода остывает и частично, в виде тёплой паровоздушной смеси, уносится в атмосферу. Основная масса её падает в водосборный бассейн и уже охлаждённая, насосами по трубопроводам, вновь подаётся в конденсаторы.

При обычной нагрузке ТЭЦ, одна установка охлаждает свыше 10 000 кубических метров жидкости в час. Можно себе представить, какое её количество уносится в атмосферу. К сожалению, этот процесс неизбежен. Но прогресс не стоит на месте и найдено эффективное решение для уменьшения потерь при охлаждении - это водоуловитель. Благодаря специально разработанной конструкции, водоуловитель создаёт небольшое препятствие, в котором пар обращается в крупные капли, а те, в свою очередь, под воздействием силы тяжести, падают в водосборный бассейн. Таким образом, применение водоуловителя в открытых охлаждающих установках позволяет сократить капельный унос до 0,01-0,02 % от общего объёма.

ООО «НПО «Агростройсервис» обладает технологиями производства современных, высокотехнологичных и эффективных элементов градирен, которые позволяют не только повысить производственные показатели, но и значительно уменьшить воздействия неблагоприятных факторов на окружающую среду.

Строительство новых вентиляторных или реконструкция существующей градирни ТЭЦ позволяют рационально использовать водные ресурсы без ущерба окружающей среде и при этом значительно снизить потребление топлива для производства тепловой и электрической энергии.

Эффективное и экономное использование природных ресурсов неизбежно влечёт за собой снижение вредных выбросов в окружающую среду.