Валентный угол алканов. Что такое алканы: строение и химические свойства

В таблице представлены некоторые представители ряда алканов и их радикалы.

Формула

Название

Название радикала

CH3 метил

C3H7 пропил

C4H9 бутил

изобутан

изобутил

изопентан

изопентил

неопентан

неопентил

Из таблицы видно, что эти углеводороды отличаются друг от друга количеством групп - СН2 -.Такой ряд сходных по строению, обладающих близкими химическими свойствами и отличающихся друг от друга числом данных групп называется гомологическим рядом. А вещества, составляющие его называются гомологами.

Гомологи - вещества сходные по строению и свойствам, но отличающиеся по составу на одну или несколько гомологических разностей (- СН2 -)

Углеродная цепь - зигзаг (если n ≥ 3)

σ - связи (свободное вращение вокруг связей)

длина (-С-С-) 0,154 нм

энергия связи (-С-С-) 348 кДж/моль

Все атомы углерода в молекулах алканов находятся в состоянии sр3-гибридизации

угол между связями С-C составляет 109°28", поэтому молекулы нормальных алканов с большим числом атомов углерода имеют зигзагообразное строение (зигзаг). Длина связи С-С в предельных углеводородах равна 0,154 нм (1нм=1*10-9м).

а) электронная и структурная формулы;

б) пространственное строение

4. Изомерия - характерна СТРУКТУРНАЯ изомерия цепи с С4

Один из этих изомеров (н -бутан) содержит неразветвленную углеродную цепь, а другой — изобутан — разветвленную (изостроение).

Атомы углерода в разветвленной цепи различаются типом соединения с другими углеродными атомами. Так, атом углерода, связанный только с одном другим углеродным атомом, называется первичным , с двумя другими атомами углерода - вторичным , с тремя - третичным , с четырьмя - четвертичным .

С увеличением числа атомов углерода в составе молекул увеличиваются возможности для разветвления цепи, т.е. количество изомеров растет с ростом числа углеродных атомов.

Сравнительная характеристика гомологов и изомеров


1. Свою номенклатуру имеют радикалы (углеводородные радикалы)

Алкан

С n H2n+2

Радикал (R)

С n H2n+ 1

НАЗВАНИЕ

Физические свойства

В обычных условиях

С1- С4 - газы

С5- С15 - жидкие

С16 - твёрдые

Температуры плавления и кипения алканов, их плотности увеличиваются в гомологическом ряду с ростом молекулярной массы. Все алканы легче воды, в ней не растворимы, однако растворимы в неполярных растворителях (например, в бензоле) и сами являются хорошими растворителями. Физические свойства некоторых алканов представлены в таблице.

Таблица 2. Физические свойства некоторых алканов

а) Галогенирование

при действии света - hν или нагревании (стадийно - замещение атомов водорода на галоген носит последовательный цепной характер. Большой вклад в разработку цепных реакций внёс физик, академик, лауреат Нобелевской премии Н. Н. Семёнов)

В реакции образуются вещества галогеналканы или С n H 2 n +1 Г

(Г - это галогены F, Cl, Br, I)

CH4 + Cl2 hν → CH3Cl + HCl (1 стадия) ;

метан хлорметан CH3Cl + Cl2 hν → CH2Cl2 + HCl (2 стадия);

дихлорметан

СH2Cl2 + Cl2 hν → CHCl3 + HCl (3 стадия);

трихлорметан

CHCl3 + Cl2 hν → CCl4 + HCl (4 стадия).

тетрахлорметан

Скорость реакции замещения водорода на атом галогена у галогеналканов выше, чем у соответствующего алкана, это связано с взаимным влиянием атомов в молекуле:

Электронная плотность связи С - Cl смещена к более электроотрицательному хлору, в результате на нём скапливается частичный отрицательный заряд, а на атоме углерода - частичный положительный заряд.

На атом углерода в метильной группе (- СН3) создаётся дефицит электронной плотности, поэтому он компенсирует свой заряд за счёт соседних атомов водорода, в результате связь С - Н становится менее прочной и атомы водорода легче замещаются на атомы хлора. При увеличении углеводородного радикала наиболее подвижными остаются атомы водорода у атома углерода ближайщего к заместителю:

CH3 - CH2 - Cl + Cl2 h ν CH3 - CHCl2 + HCl

хлорэтан 1 ,1 -дихлорэтан

Со фтором реакция идёт со взрывом.

С хлором и бромом требуется инициатор.

Иодирование происходит обратимо, поэтому требуется окислитель для удаления HI из рекции.

Внимание!

В реакциях замещения алканов легче всего замещаются атомы водорода у третичных атомов углерода, затем у вторичных и, в последнюю очередь, у первичных. Для хлорирования эта закономерность не соблюдается при T >400˚ C .


б) Нитрование

(реакция М.И. Коновалова, он провёл её впервые в 1888 г)

CH4 + HNO3(раствор ) С CH3NO2 + H2O

нитрометан

RNO2 или С n H2n+1 NO2 ( нитроалкан )

Нагревание натриевой соли уксусной кислоты (ацетата натрия) с избытком щелочи приводит к отщеплению карбоксильной группы и образованию метана:

СН3СОNа + NаОН СН4 + Nа2С03

Если вместо ацетата натрия взять пропионат натрия, то образуется этан, из бутаноата натрия - пропан и т. д.

RСН2СОNа +NаОН -> RСН3 + Nа2С03

5. Синтез Вюрца. При взаимодействии галогеналканов с щелочным металлом натрием образуются предельные углеводороды и галогенид щелочного металла, например:

Действие щелочного металла на смесь галогенуглеводородов (например, бромэтана и бромметана) приведет к образованию смеси алканов (этана, пропана и бутана).

Реакция, на которой основан синтез Вюрца, хорошо протекает только с галогеналканами, в молекулах которых атом галогена присоединен к первичному атому углерода.

6. Гидролиз карбидов. При обработке некоторых карбидов, содержащих углерод в степени окисления -4 (например, карбида алюминия), водой образуется метан:

Аl4С3 + 12Н20 = ЗСН4 + 4Аl(ОН)3 Физические свойства

Первые четыре представителя гомологического ряда метана - газы. Простейший из них - метан - газ без цвета, вкуса и запаха (запах «газа», почувствовав который надо звонить по телефону 04, определяется запахом меркаптанов - серусодер-жащих соединений, специально добавляемых к метану, используемому в бытовых и промышленных газовых приборах, для того чтобы люди, находящиеся рядом с ними, могли по запаху определить утечку).

Углеводороды состава от С5Н12 до С15Н32 - жидкости, более тяжелые углеводороды - твердые вещества.

Температуры кипения и плавления алканов постепенно увеличиваются с возрастанием длины углеродной цепи. Все углеводороды плохо растворяются в воде, жидкие углеводороды являются распространенными органическими растворителями.

Химические свойства

1. Реакции замещения. Наиболее характерными для ал-канов являются реакции свободнорадикального замещения, в ходе которых атом водорода замещается на атом галогена или какую-либо группу.

Приведем уравнения наиболее характерных реакций.

Галогенирование:

СН4 + С12 -> СН3Сl + HCl

В случае избытка галогена хлорирование может пойти дальше, вплоть до полного замещения всех атомов водорода на хлор:

СН3Сl + С12 -> HCl + СН2Сl2
дихлорметан хлористый метилен

СН2Сl2 + Сl2 -> HCl + CHCl3
трихлорметан хлороформ

СНСl3 + Сl2 -> HCl + ССl4
тетрахлорметан четыреххлористый углерод

Полученные вещества широко используются как растворители и исходные вещества в органических синтезах.

2. Дегидрирование (отщепление водорода). При пропускании алканов над катализатором (Pt, Ni, А1203, Сг2O3) при высокой температуре (400-600 °С) происходит отщепление молекулы водорода и образование алкена:

СН3-СН3 -> СН2=СН2 + Н2

3. Реакции, сопровождающиеся разрушением углеродной цепи. Все предельные углеводороды горят с образованием углекислого газа и воды. Газообразные углеводороды, смешанные с воздухом в определенных соотношениях, могут взрываться. Горение предельных углеводородов - это свободнора-дикальная экзотермическая реакция, которая имеет очень большое значение при использовании алканов в качестве топлива.

СН4 + 2O2 -> С02 + 2Н2O + 880кДж

В общем виде реакцию горения алканов можно записать следующим образом:


Реакции термического расщепления лежат в основе промышленного процесса - крекинга углеводородов. Этот процесс является важнейшей стадией переработки нефти.

При нагревании метана до температуры 1000 °С начинается пиролиз метана - разложение на простые вещества. При нагревании до температуры 1500 °С возможно образование ацетилена.

4. Изомеризация. При нагревании линейных углеводородов с катализатором изомеризации (хлоридом алюминия) происходит образование веществ с разветвленным углеродным скелетом:


5. Ароматизация. Алканы с шестью или более углеродными атомами в цепи в присутствии катализатора циклизуются с образованием бензола и его производных:

В чем причина того, что алканы вступают в реакции, протекающие по свободнорадикальному механизму? Все атомы углерода в молекулах алканов находятся в состоянии sр 3 -гибридизации. Молекулы этих веществ построены при помощи ковалентных неполярных С-С (углерод-углерод) связей и слабополярных С-Н (углерод-водород) связей. В них нет участков с повышенной и пониженной электронной плотностью, легко поляризуемых связей, т. е. таких связей, электронная плотность в которых может смещаться под действием внешних воздействий (электростатических полей ионов). Следовательно, алканы не будут реагировать с заряженными частицами, так как связи в молекулах алканов не разрываются по гетеролитическому механизму.

Наиболее характерными реакциями алканов являются реакции свободнорадикального замещения. В ходе этих реакций атом водорода замещается на атом галогена или какую-либо группу.

Кинетику и механизм свободнорадикальных цепных реакций, т. е. реакций, протекающих под действием свободных радикалов - частиц, имеющих неспаренные электроны, - изучал замечательный русский химик Н. Н. Семенов. Именно за эти исследования ему была присуждена Нобелевская премия по химии .

Обычно механизм реакции свободнорадикального замещения представляют тремя основными стадиями:

1. Инициирование (зарождение цепи, образование свободных радикалов под действием источника энергии - ультрафиолетового света, нагревания).

2. Развитие цепи (цепь последовательных взаимодействий свободных радикалов и неактивных молекул, в результате которых образуются новые радикалы и новые молекулы).

3. Обрыв цепи (объединение свободных радикалов в неактивные молекулы (рекомбинация), «гибель» радикалов, прекращение развития цепи реакций).

Научные исследования Н.Н. Семенова

Семенов Николай Николаевич

(1896 - 1986)


Советский физик и физикохимик, академик. Лауреат Нобелевской премии (1956). Научные исследования относятся к учению о химических процессах, катализе, цепных реакциях, теории теплового взрыва и горении газовых смесей.

Рассмотрим этот механизм на примере реакции хлорирования метана:

СН4 + Сl2 -> СН3Сl + НСl

Инициирование цепи происходит в результате того, что под действием ультрафиолетового облучения или при нагревании происходит гомолитический разрыв связи Сl-Сl и молекула хлора распадается на атомы:

Сl: Сl -> Сl· + Сl·

Образовавшиеся свободные радикалы атакуют молекулы метана, отрывая у них атом водорода:

СН4 + Сl· -> СН3· + НСl

и превращая в радикалы СН3·, которые, в свою очередь, сталкиваясь с молекулами хлора, разрушают их с образованием новых радикалов:

СН3· + Сl2 -> СН3Сl + Сl· и т. д.

Происходит развитие цепи.

Наряду с образованием радикалов происходит их «гибель» в результате процесса рекомбинации - образования неактивной молекулы из двух радикалов:

СН3· + Сl· -> СН3Сl

Сl· + Сl· -> Сl2

СН3· + СН3· -> СН3-СН3

Интересно отметить, что при рекомбинации выделяется ровно столько энергии, сколько необходимо для разрушения только что образовавшейся связи. В связи с этим рекомбинация возможна только в том случае, если в соударении двух радикалов участвует третья частица (другая молекула, стенка реакционного сосуда), которая забирает на себя избыток энергии. Это дает возможность регулировать и даже останавливать свободнорадикальные цепные реакции.

Обратите внимание на последний пример реакции рекомбинации - образование молекулы этана. Этот пример показывает, что реакция с участием органических соединений представляет собой достаточно сложный процесс, в результате которого, наряду с основным продуктом реакции, очень часто образуются побочные продукты, что приводит к необходимости разрабатывать сложные и дорогостоящие методики очистки и выделения целевых веществ.

В реакционной смеси, полученной при хлорировании метана, наряду с хлорметаном (СН3Сl) и хлороводородом, будут содержаться: дихлорметан (СН2Сl2), трихлорметан (СНСl3), тетрахлорметан (ССl4), этан и продукты его хлорирования.

Теперь попытаемся рассмотреть реакцию галогенирования (например, бромирования) более сложного органического соединения - пропана.

Если в случае хлорирования метана возможно только одно моно-хлорпроизводное, то в этой реакции может образоваться уже два монобромпроизводных:


Видно, что в первом случае происходит замещение атома водорода при первичном атоме углерода, а во втором - при вторичном. Одинаковы ли скорости этих реакций? Оказывается, что в конечной смеси преобладает продукт замещения атома водорода, который находится при вторичном углероде, т. е. 2-бромпропан (СН3-СНВг-СН3). Давайте попытаемся объяснить это.

Для того чтобы это сделать, нам придется воспользоваться представлением об устойчивости промежуточных частиц. Вы обратили внимание, что при описании механизма реакции хлорирования метана мы упомянули радикал метил - СН3·? Этот радикал является промежуточной частицей между метаном СН4 и хлорметаном СН3Сl. Промежуточной частицей между пропаном и 1-бромпропаном является радикал с неспаренным электроном при первичном углероде, а между пропаном и 2-бромпропаном - при вторичном.

Радикал с неспаренным электроном при вторичном атоме углерода (б) является более устойчивым по сравнению со свободным радикалом с неспаренным электроном при первичном атоме углерода (а). Он и образуется в большем количестве. По этой причине основным продуктом реакции бромирования пропана является 2-бром-пропан - соединение, образование которого протекает через более устойчивую промежуточную частицу.

Приведем несколько примеров свободнорадикальных реакций:

Реакция нитрования (реакция Коновалова)

Реакция применяется для получения нитросоединений - растворителей, исходных веществ для многих синтезов.

Каталитическое окисление алканов кислородом

Эти реакции являются основой важнейших промышленных процессов получения альдегидов, кетонов, спиртов непосредственно из предельных углеводородов, например:

СН4 + [О] -> СН3ОН

Применение

Предельные углеводороды, в особенности метан, находят очень широкое применение в промышленности (схема 2). Они являются простым и достаточно дешевым топливом, сырьем для получения большого количества важнейших соединений.

Соединения, полученные из метана, самого дешевого углеводородного сырья, применяют для получения множества других веществ и материалов. Метан используют как источник водорода в синтезе аммиака, а также для получения синтез-газа (смесь СО и Н2), применяемого для промышленного синтеза углеводородов, спиртов, альдегидов и других органических соединений.

Углеводороды более высококипящих фракций нефти используются как горючее для дизельных, турбореактивных двигателей, как основа смазочных масел, как сырье для производства синтетических жиров и т. д.

Приведем несколько промышленно значимых реакций, протекающих с участием метана. Метан используют для получения хлороформа, нитрометана, кислородсодержащих производных. Спирты, альдегиды, карбоновые кислоты могут образовываться при непосредственном взаимодействии алканов с кислородом в зависимости от условий проведения реакций (катализатора, температуры, давления):

Как вы уже знаете, углеводороды состава от С5Н12 до С11Н24 входят в бензиновую фракцию нефти и применяются в основном как горючее для двигателей внутреннего сгорания. Известно, что наиболее ценными компонентами бензина являются изомерные углеводороды, так как они обладают максимальной детонационной устойчивостью.

Углеводороды при контакте с кислородом воздуха медленно образуют с ним соединения - перекиси. Это медленно протекающая свободнорадикальная реакция, инициатором которой является молекула кислорода:

Обратите внимание на то, что гидропероксидная группа образуется при вторичных атомах углерода, которых больше всего в линейных, или нормальных, углеводородах.

При резком повышении давления и температуры, происходящем в конце такта сжатия, начинается разложение этих перекисных соединений с образованием большого числа свободных радикалов, которые «запускают» свободнорадикальную цепную реакцию горения раньше, чем это необходимо. Поршень еще идет вверх, а продукты горения бензина, которые уже успели образоваться в результате преждевременного поджига смеси, толкают его вниз. Это приводит к резкому уменьшению мощности двигателя, его износу.

Таким образом, основной причиной детонации является наличие перекисных соединений, способность образовывать которые максимальна у линейных углеводородов.

Наименьшей детонационной устойчивостью среди углеводородов бензиновой фракции (С5Н14 - С11Н24) обладает к-гептан. Наиболее устойчив (т. е. в наименьшей степени образует перекиси) так называемый изооктан (2,2,4-триметилпентан).

Общепринятой характеристикой детонационной устойчивости бензина является октановое число. Октановое число 92 (например, бензин А-92) означает, что данный бензин обладает теми же свойствами, что и смесь, состоящая из 92% изооктана и 8% гептана.

В заключение можно добавить, что использование высокооктанового бензина дает возможность повысить степень сжатия (давление в конце такта сжатия), что приводит к повышению мощности и КПД двигателя внутреннего сгорания.

Нахождение в природе и получение

На сегодняшнем уроке вы познакомились с таким понятием, как алканы, а также узнали о его химическом составе и методах получения. Поэтому давайте сейчас более подробно остановимся на теме нахождения алканов в природе и узнаем, как и где алканы нашли применение.

Главными источниками для получения алканов являются природный газ и нефть. Они составляют основную часть продуктов от нефтипереботки. Распространенный, в залежах осадочных пород метан, также является газовым гидратом алканов.

Основной составляющей природного газа является метан, но в его составе присутствует и небольшая доля этана, пропана и бутана. Метан можно обнаружить в выделениях угольных пластов, болот и в попутных нефтяных газах.

Также анканы можно получить методом коксования каменного угля. В природе встречаются и так называемые твердые алканы – озокериты, которые представлены в виде залежей горного воска. Озокерит можно обнаружить в восковых покрытиях растений или их семян, а также в составе пчелиного воска.

Промышленное выделение алканов берется из природных источников, которые к счастью пока неисчерпаемые. Их получают методом каталитического гидрирования оксидов углерода. Также метан можно получить в лабораторных условиях, используя метод нагревания ацетата натрия с твердой щелочью или гидролизом некоторых карбидов. Но и также алканы можно получить способом декарбоксилирования карбоновых кислот и при их электролизе.

Применение алканов

Алканы на бытовом уровне, широко применяются во многих сферах деятельности человека. Ведь очень сложно представить нашу жизнь без природного газа. И ни для кого не будет секретом, что основой природного газа является метан, из которого производят технический углерод, используемый при производстве топографических красок и шин. Холодильник, который есть в доме у каждого, также работает благодаря соединениям алканов, применяющихся в качестве хладагентов. А полученный из метана ацетилен используют для сварки и резки металлов.

Теперь вы уже знаете, что алканы используются как топливо. Они присутствуют в составе бензина, керосина, солярового масла и мазута. Кроме этого, они есть и в составе смазочных масел, вазелина и парафина.

В качестве растворителя и для синтеза различных полимеров, широкое применение нашел циклогексан. А в наркозе используют циклопропан. Сквалан, как высококачественное смазочное масло, является компонентом многих фармацевтических и косметических препаратов. Алканы являются сырьем, с помощью которого получают такие органические соединения, как спирт, альдегиды и кислоты.

Парафин является смесью высших алканов, а так как он нетоксичен, то широко используется в пищевой промышленности. Его применяют для пропитки упаковок для молочной продукции, соков, круп и так далее, но в том числе и при изготовлении жевательных резинок. А разогретый парафин используют в медицине при парафинолечении.

Помимо выше сказанного, парафином пропитаны головки спичек, для их лучшего горения, карандаши и из него изготавливают свечи.

С помощью окисления парафина получают кислородосодержащие продукты, в основном органические кислоты. При смешении жидких углеводоpодов с определенным числом атомов углерода получают вазелин, который нашел широкое применение как парфюмерии и косметологии, так и в медицине. Его применяют для приготовления различных мазей, кремов и гелей. А также используют для тепловых процедур в медицине.

Практические задания

1. Запишите общую формулу углеводородов гомологического ряда алканов.

2. Напишите формулы возможных изомеров гексана и назовите их по систематической номенклатуре.

3. Что такое крекинг? Какие виды крекинга вы знаете?

4. Напишите формулы возможных продуктов крекинга гексана.

5. Расшифруйте следующую цепочку превращений. Назовите соединения А, Б и В.

6. Приведите структурную формулу углеводорода С5Н12, образующего при бромировании только одно монобром-производное.

7. На полное сгорание 0,1 моль алкана неизвестного строения израсходовано 11,2 л кислорода (при н. у.). Какова структурная формула алкана?

8. Какова структурная формула газообразного предельного углеводорода, если 11 г этого газа занимают объем 5,6 л (при н. у.)?

9. Вспомните, что вам известно о применении метана, и объясните, почему утечка бытового газа может быть обнаружена по запаху, хотя его составляющие запаха не имеют.

10*. Какие соединения могут быть получены каталитическим окислением метана в различных условиях? Напишите уравнения соответствующих реакций.

11*. Продукты полного сгорания (в избытке кислорода) 10,08 л (н. у.) смеси этана и пропана пропустили через избыток известковой воды. При этом образовалось 120 г осадка. Определите объемный состав исходной смеси.

12*. Плотность по этану смеси двух алканов равна 1,808. При бромировании этой смеси выделено только две пары изомерных монобромалканов. Суммарная масса более легких изомеров в продуктах реакции равна суммарной массе более тяжелых изомеров. Определите объемную долю более тяжелого алкана в исходной смеси.

Предельные углеводороды - это такие соединения, которые представляют собой молекулы, состоящие из атомов углерода, находящихся в состоянии гибридизации sp 3 . Они связаны между собой исключительно ковалентными сигма-связями. Название «предельные» или «насыщенные» углеводороды исходит из того факта, что эти соединения не имеют возможности присоединять какие-либо атомы. Они предельны, полностью насыщены. Исключение составляют циклоалканы.

Что такое алканы?

Алканы - это углеводороды предельные, а их углеродная цепь незамкнута и состоит из атомов углерода, связанных между собой при помощи одинарных связей. Она не содержит иных (то есть двойных, как у алкенов, или же тройных, как у алкилов) связей. Алканы также называют парафинами. Это название они получили, так как общеизвестные парафины являются смесью преимущественно данных предельных углеводородов С 18 -С 35 с особой инертностью.

Общие сведения об алканах и их радикалах

Их формула: С n Р 2 n +2 , здесь n больше или равно 1. Молярная масса вычисляется по формуле: М = 14n + 2. Характерная особенность: окончания в их названиях - «-ан». Остатки их молекул, которые образуются в результате замещения водородных атомов на иные атомы, имеют название алифатических радикалов, или алкилов. Их обозначают буквой R. Общая формула одновалентных алифатических радикалов: С n Р 2 n +1 , здесь n больше или равно 1. Молярная масса алифатических радикалов вычисляется по формуле: М = 14n + 1. Характерная особенность алифатических радикалов: окончания в названиях «-ил». Молекулы алканов имеют свои особенности строения:

  • связь С-С характеризуется длиной 0,154 нм;
  • связь С-Н характеризуется длиной 0,109 нм;
  • валентный угол (угол между связями углерод-углерод) равен 109 градусов и 28 минут.

Начинают гомологический ряд алканы: метан, этан, пропан, бутан и так далее.

Физические свойства алканов

Алканы - это вещества, которые не имеют цвета и нерастворимы в воде. Температура, при которой алканы начинают плавиться, и температура, при которой они закипают, повышаются в соответствии с увеличением молекулярной массы и длины углеводородной цепи. От менее разветвленных к более разветвленным алканам температуры кипения и плавления понижаются. Газообразные алканы способны гореть бледно-голубым либо бесцветным пламенем, при этом выделяется довольно много тепла. СН 4 -С 4 Н 10 представляют собой газы, у которых отсутствует также и запах. С 5 Н 12 -С 15 Н 32 - это жидкости, которые обладают специфическим запахом. С 15 Н 32 и так далее - это твердые вещества, которые также не имеют запаха.

Химические свойства алканов

Данные соединения являются малоактивными в химическом плане, что можно объяснить прочностью трудноразрываемых сигма-связей - С-С и С-Н. Также стоит учитывать, что связи С-С неполярны, а С-Н малополярны. Это малополяризуемые виды связей, относящиеся к сигма-виду и, соответственно, разрываться по наибольшей вероятности они станут по механизму гомолитическому, в результате чего будут образовываться радикалы. Таким образом, химические свойства алканов в основном ограничиваются реакциями радикального замещения.

Реакции нитрования

Алканы взаимодействуют только с азотной кислотой с концентрацией 10% либо с оксидом четырехвалентного азота в газовой среде при температуре 140°С. Реакция нитрования алканов носит название реакции Коновалова. В результате образуются нитросоединения и вода: CH 4 + азотная кислота (разбавленная) = CH 3 - NO 2 (нитрометан) + вода.

Реакции горения

Предельные углеводороды очень часто применяются как топливо, что обосновано их способностью к горению: С n Р 2n+2 + ((3n+1)/2) O 2 = (n+1) H 2 O + n СО 2 .

Реакции окисления

В химические свойства алканов также входит их способность к окислению. В зависимости от того, какие условия сопровождают реакцию и как их изменяют, можно из одного и того же вещества получить различные конечные продукты. Мягкое окисление метана кислородом при наличии катализатора, ускоряющего реакцию, и температуры около 200 °С может дать в результате следующие вещества:

1) 2СН 4 (окисление кислородом) = 2СН 3 ОН (спирт - метанол).

2) СН 4 (окисление кислородом) = СН 2 О (альдегид - метаналь или формальдегид) + Н 2 О.

3) 2СН 4 (окисление кислородом) = 2НСООН (карбоновая кислота - метановая или муравьиная) + 2Н 2 О.

Также окисление алканов может производиться в газообразной или жидкой среде воздухом. Такие реакции приводят к образованию высших жирных спиртов и соответствующих кислот.

Отношение к нагреванию

При температурах, не превышающих +150-250°С, обязательно в присутствии катализатора, происходит структурная перестройка органических веществ, которая заключается в изменении порядка соединения атомов. Данный процесс называется изомеризацией, а вещества, полученные в результате реакции - изомерами. Таким образом, из нормального бутана получается его изомер - изобутан. При температурах 300-600°С и наличии катализатора происходит разрыв связей С-Н с образованием молекул водорода (реакции дегидрирования), молекул водорода с замыканием углеродной цепи в цикл (реакции циклизации или ароматизации алканов):

1) 2СН 4 = С 2 Н 4 (этен) + 2Н 2.

2) 2СН 4 = С 2 Н 2 (этин) + 3Н 2.

3) С 7 Н 16 (нормальный гептан) = С 6 Н 5 - СН 3 (толуол) + 4Н 2 .

Реакции галогенирования

Такие реакции заключаются во введении в молекулу органического вещества галогенов (их атомов), в результате чего образуется связь С-галоген. При взаимодействии алканов с галогенами образуются галогенпроизводные. Данная реакция обладает специфическими особенностями. Она протекает по механизму радикальному, и чтобы ее проинициировать, необходимо на смесь галогенов и алканов воздействовать ультрафиолетовым излучением или же просто нагреть ее. Свойства алканов позволяют реакции галогенирования протекать, пока не будет достигнуто полное замещение на атомы галогена. То есть хлорирование метана не закончится одной стадией и получением метилхлорида. Реакция пойдет далее, будут образовываться все возможные продукты замещения, начиная с хлорметана и заканчивая тетрахлорметаном. Воздействие хлора при данных условиях на другие алканы приведет к образованию различных продуктов, полученных в результате замещения водорода у различных атомов углерода. От температуры, при которой идет реакция, будет зависеть соотношение конечных продуктов и скорость их образования. Чем длиннее углеводородная цепь алкана, тем легче будет идти данная реакция. При галогенировании сначала будет замещаться атом углерода наименее гидрированый (третичный). Первичный вступит в реакцию после всех остальных. Реакция галогенирования будет происходить поэтапно. На первом этапе заместиться только один атом водорода. C растворами галогенов (хлорной и бромной водой) алканы не взаимодействуют.

Реакции сульфохлорирования

Химические свойства алканов также дополняются реакцией сульфохлорирования (она носит название реакции Рида). При воздействии ультрафиолетового излучения алканы способны реагировать со смесью хлора и диоксида серы. В результате образуется хлороводород, а также алкильный радикал, который присоединяет к себе диоксид серы. В результате получается сложное соединение, которое становится стабильным благодаря захвату атома хлора и разрушения очередной его молекулы: R-H + SO 2 + Cl 2 + ультрафиолетовое излучение = R-SO 2 Cl + HCl. Образовавшиеся в результате реакции сульфонилхлориды находят широкое применение в производстве поверхностно-активных веществ.

Углеводороды представляют собой простейшие органические соединения. Их составляют углерод и водород. Соединения этих двух элементов называются предельными углеводородами или алканами. Их состав выражается общей для алканов формулой CnH2n+2, где n - количество атомов углерода.

Алканы - международное наименование данных соединений . Также эти соединения называют парафинами и насыщенными углеводородами. Связь в молекулах алканов простая (или одинарная). Остальные валентности насыщены атомами водорода. Все алканы насыщены водородом до предела, его атомы находятся в состоянии sp3-гибридизации.

Гомологический ряд предельных углеводородов

Первым в гомологическом ряду насыщенных углеводородов стоит метан. Его формула CH4. Окончание -ан в наименовании предельных углеводородов являет отличительным признаком. Далее в соответствии с приведенной формулой в гомологическом ряду располагаются этан - C2H6, пропан C3H8, бутан - C4H10.

С пятого алкана в гомологическом ряду названия соединений образуются следующим образом: греческое число, указывающее число атомов углеводорода в молекуле + окончание -ан. Так, по-гречески число 5 - пэндэ, соответственно за бутаном идет пентан - C5H12. Далее - гексан C6H14. гептан - C7H16, октан - C8H18, нонан - C9H20, декан - C10H22 и т. д.

Физические свойства алканов заметно изменяются в гомологическом ряду: увеличивается температура плавления, кипения, увеличивается плотность. Метан, этан, пропан, бутан при обычных условиях, т. е. при температуре равной примерно 22 градуса тепла по Цельсию, являются газами, с пентана по гексадекан включительно - жидкостями, с гептадекана - твердыми веществами. Начиная с бутана, у алканов есть изомеры.

Существуют таблицы, отражающие изменения в гомологическом ряду алканов , которые наглядно отражают их физические свойства.

Номенклатура насыщенных углеводородов, их производные

Если происходит отрыв атома водорода от молекулы углеводорода, то образуются одновалентные частицы, которые называют радикалами (R). Название радикалу дает то углеводород, из которого этот радикал произведен, при этом окончание -ан меняется на окончание -ил. Например, из метана при отрыве атома водорода образуется радикал метил, из этана - этил, из пропана - пропил и т. д.

Радикалы также образуются и неорганическими соединениям. Например, отняв у азотной кислоты гидроксильную группу ОН, можно получить одновалентный радикал -NO2, который называется нитрогруппой.

При отрыве от молекулы алкана двух атомов водорода образуется двухвалентные радикалы, названия которых также образуются из названия соответствующих углеводородов, но окончание меняется на:

  • илиен, в том случае, если атомы водорода оторваны от одного атома углерода,
  • илен, в том случае, если от двух атомы водорода оторваны от двух соседних атомов углерода.

Алканы: химические свойства

Рассмотрим реакции, характерные для алканов. Всем алканам присущи общие химические свойства. Данные вещества являются малоактивными.

Все известные реакции с участием углеводородов подразделяются на два вида:

  • разрыв связи С-Н (примером может служить реакция замещения);
  • разрыв связи С-С (крекинг, образование отдельных частей).

Очень активны в момент образования радикалы. Сами по себе они существуют доли секунды. Радикалы легко вступают в реакции между собой. Их неспаренные электроны образуют новую ковалентную связь. Пример: CH3 + CH3 → C2H6

Радикалы легко вступают в реакции с молекулами органических веществ. Они либо присоединяются к ним, либо отрывают от них атом с неспаренным электроном, в результате чего появляются новые радикалы, которые, в свою очередь, могут вступать в реакции с другими молекулами. При такой цепной реакции получаются макромолекулы, которые перестают расти только тогда, когда оборвется цепь (пример: соединение двух радикалов)

Реакции свободных радикалов объясняют многие важные химические процессы, такие как:

  • Взрывы;
  • Окисления;
  • Крекинг нефти;
  • Полимеризацию непредельных соединений.

Подробно можно рассмотреть химические свойства насыщенных углеводородов на примере метана. Выше мы уже рассматривали строение молекулы алкана. Атомы углерода находятся в молекуле метана в состоянии sp3-гибридизации, и образуется достаточно прочная связь. Метан представляет собой газ баз запаха и цвета. Он легче воздуха. В воде малорастворим.

Алканы могут гореть. Горит метан синеватым бледным пламенем. При этом результатом реакции будут оксид углерода и вода. При смешивании с воздухом, а также в смеси с кислородом, особенно если соотношение объемов будет 1:2, данные углеводород образует взрывчатые смеси, из-за чего он крайне опасен для применения в быту и шахтах. Если метан сгорает не полностью, то образуется сажа. В промышленности ее таким образом и получают.

Из метана получают формальдегид и метиловый спирт путем его окисления в присутствии катализаторов. Если же метан сильно нагреть, то он распадается по формуле CH4 → C + 2H2

Распад метана можно осуществить до промежуточного продукта в специально оборудованных печах. Промежуточным продуктом будет ацетилен. Формула реакции 2CH4 → C2H2 + 3H2. Выделение ацетилена из метана сокращает расходы производства почти в два раза.

Также из метана получают водород, производя конверсию метана с водяным паром. Характерными для метана являются реакции замещения. Так, при обычной температуре, на свету галогены (Cl, Br) по стадиям вытесняют водород из молекулы метана. Таким образом образуются вещества, называемые галогенопроизводными. Атомы хлора , замещая в молекуле углеводорода атомы водорода, образуют смесь разных соединений.

В такой смеси присутствуют хлорметан (CH3 Cl или хлористый метил), дихлорметан (CH2Cl2или хлористый метилен), трихлорметан (CHCl3 или хлороформ), тетрахлорметан (CCl4 или четыреххлористый углерод).

Любое из этих соединений может быть выделено из смеси. В производстве важное значение отводится хлороформу и тетрахлорметану, в силу того, что они являются растворителями органических соединений (жиров, смол, каучука). Галогенопроизводные метана образуются по цепному свободнорадикальному механизму.

Свет воздействует на молекулы хлора, вследствие чего они распадаются на неорганические радикалы, которые отрывают атом водорода с одним электроном от молекулы метана. При этом образуется HCl и метил. Метил реагирует с молекулой хлора, в результате чего получается галогенопроизводное и радикал хлора. Далее радикал хлора продолжает цепную реакцию.

При обычной температуре метан обладает достаточной стойкостью к щелочам, кислотам, многим окислителям. Исключение - азотная кислота. В реакции с ней образуется нитрометан и вода.

Реакции присоединения для метана не характерны, т. к. все валентности в его молекуле насыщены.

Реакции, в которых участвуют углеводороды могут проходить не только с расщеплением связи С-Н, но и с разрывом связи С-С. Такие превращения происходят при наличии высоких температур и катализаторов. К таким реакциям относятся дегидрогенизация и крекинг.

Из насыщенных углеводородов путем окисления получают кислоты - уксусную (из бутана), жирные кислоты (из парафина).

Получение метана

В природе метан распространен достаточно широко. Он - главная составная часть большинства горючих природных и искусственных газов. Он выделяется из каменноугольных пластов в рудниках, со дна болот. Природные газы (что очень заметно в попутных газах нефтяных месторождений) содержат не только метан, но и другие алканы. Применение этих веществ разнообразно. Они используются как топливо, на различных производствах, в медицине и технике.

В условиях лаборатории данный газ выделяют при нагревании смеси ацетат натрия + гидроксид натрия, а также реакцией карбида алюминия и воды. Также метан получают из простых веществ. Для этого обязательными условиями являются нагрев и катализатор. Промышленное значение имеет получение метана синтезом на основе водяного пара.

Метан и его гомологи могут быть получены при прокаливании солей соответствующих органических кислот с щелочами. Еще одним способом получения алканов является реакция Вюрца, при которой нагреваются моногалогенопроизводные с металлическим натрием.

Алканы или алифатические насыщенные углеводороды - соединения с открытой (нециклічним) цепью, в молекулах которых атомы углерода соединены между собой σ-связью. Атом углерода в алканах находятся в состоянии sp 3 -гибридизации.

Алканы образуют гомологический ряд, в котором каждый член отличается на постоянную структурную единицу -CH 2 -, что называется гомологической разностью. Простейший представитель - метан CH 4 .

  • Общая формула алканов: C n H 2n+2
Изомерия Начиная с бутана C 4 H 10 для алканов характерна структурная изомерия. Количество структурных изомеров возрастает с увеличением числа углеродных атомов в молекуле алканов. Так, для пентана C 5 H 12 известно три изомеры, для октана C 8 H 18 - 18, для декана C 10 H 22 - 75.


Для алканов кроме структурной существует конформационная изомерия и начиная с гептана - енантіомерія:

Номенклатура IUPAC В названиях алканов используют префиксы н- , втор- , изо , трет- , нео :

  • н- означает нормальную (нерозгалужену) строение углеводородного цепи;
  • втор- применяется только для вторичного бутила;
  • трет- означает алкил третичной структуры;
  • изо разветвления на конце цепи;
  • нео используется для алкілу с четвертичным атомом углерода.
Префиксы изо и нео пишутся вместе, а н- , втор- , трет- через дефис.

Номенклатура разветвленных алканов построена основана на следующих основных правилах:

  • Для построения названия выбирают длинную цепь атомов углерода и нумеруют его арабскими цифрами (локантами), начиная с конца, ближе к которому находится заместитель, например:

  • Если одна и та же алкільна группа встречается более одного раза, то в названии перед ней ставят помножуючі приставки ди- (перед гласной ди- ), три- , тетра- и т. п. и обозначают цифрой каждый алкил отдельно, например:


Необходимо заметить, что для сложных остатков (групп) применяются помножуючі префиксы вроде бис- , трис- , тетракіс- прочее.
  • Если в боковых ответвлениях главной цепи размещены различные алкіли-заместители, то их переразовують по алфавиту (при этом помножуючі приставки ди- , тетра- и т. п, а также префиксы н- , втор- , трет- не принимают во внимание), например:

  • Если возможны два или более вариантов длиннейшей цепи, то выбирают тот, который имеет максимальное количество боковых разветвлений.
  • Названия сложных алкильных групп строятся по тем же принципам, что и названия алканов, но нумерация цепи алкілу всегда автономна и начинается с того атома углерода, имеющего свободную валентность , например:

  • При использовании в названии такой группы ее берут в скобки и в алфавитном порядке учитывается первая буква названия всей:

Промышленные методы добычи 1. Извлечения алканов газа. Природный газ состоит главным образом из метана и небольших примесей этана, пропана, бутана. Газ под давлением при пониженных при пониженных температурах разделяют на соответствующие фракции.

2. Извлечения алканов из нефти. Сырую нефть очищают и подвергают переработке (розгонка, фракціювання, крекинг). Из продуктов переработки получают смеси или индивидуальные соединения.

3. Гидрирование угля (метод Ф. Бергіуса, 1925 г.). Каменный или бурый уголь в автоклавах при 30 МПа в присутствии катализаторов (оксиды и сульфиды Fe, Mo, W, Ni) в среде углеводородов гидрированные и превращаются в алканы, так называемое моторное топливо:

nC + (n+1)H 2 = C n H 2n+2

4. Оксосинтеза алканов (метод Ф. Фишера - Г. Тропша, 1922 г.). По методу Фишера - Тропша алканы получают из синтез-газа. Синтез-газ представляет собой смесь CO и H 2 с различным соотношением. Его получают из метана одной из реакций, которые происходят при 800-900°C в присутствии оксида никеля NiO, нанесенного на Al 2 O 3:

CH 4 + H 2 O ⇄ CO + 3H 2

CH 4 + CO 2 ⇄ 2CO + 2H 2

2CH 4 + O 2 ⇄ 2CO + 4H 2

Алканы получают по реакции (температура около 300°C, катализатор Fe-Co):

nCO + (2n+1)H 2 → C n H 2n+2 + nH 2 O

Образованная смесь углеводородов, состоящая в основном из алканов строения (n=12-18), называют "синтином".

5. Сухая перегонка. В относительно небольших количествах алканы получают при помощи сухой перегонки или нагрева угля, сланцев, древесины, торфа без доступа воздуха. Примерный состав полученной смеси при этом составляет 60% водорода, 25% метана и 3-5% этилена.

Лабораторные методы добывания 1. Получение из галогеналкілів

1.1. Взаимодействие с металлическим натрием (Вурц, 1855 г.). Реакция состоит во взаимодействии щелочного металла с галогеналкілом и применяется для синтеза высших симметричных алканов:

2CH 3 -I + 2Na ⇄ CH 3 -CH 3 + 2NaI

В случае участия в реакции двух разных галогеналкілів образуется смесь алканов:

3CH 3 -I + 3CH 3 CH 2 -I + 6Na → CH 3 -CH 3 + CH 3 CH 2 CH 3 + CH 3 CH 2 CH 2 CH 3 + 6NaI

1.2 Взаимодействие с літійдіалкілкупратами. Метод (иногда называют реакцией Е. Коре - Х. Хауса) заключается во взаимодействии реакционноспособных літійдіалкілкупратів R 2 CuLi с галогеналкілами. Сначала происходит взаимодействие металлического лития с галогеналканом в среде эфира. Далее соответствующий алкіллітій реагирует с галогенідом меди(I) с образованием растворимого літійдіалкілкупрату:

CH 3 Cl + 2Li → CH 3 Li + LiCl

2CH 3 Li + CuI → (CH 3 ) 2 CuLi + LiI

При взаимодействии такого літійдіалкілкупрату с соответствующим галогеналкілом образуется конечное соединение:

(CH 3 ) 2 CuLi + 2CH 3 (CH 2 ) 6 CH 2 -I → 2CH 3 (CH 2 ) 6 CH 2 -CH 3 + LiI + CuI

Метод позволяет достичь выхода алканов почти 100% при применении первичных галогеналкілів. При их вторичной или третичной строении выход составляет 30-55%. Природа алкільної составляющей в літійдіалкілкупраті мало влияет на выход алкану.


1.3 Восстановление галогеналкілів. Восстанавливать галогеналкіли возможно каталитически возбужденным молекулярным водородом, атомарным водородом, йодоводнем тому подобное:

CH 3 I + H 2 → CH 4 + HI (катализатор Pd)

CH 3 CH 2 I + 2H → CH 3 CH 3 + HI

CH 3 I + HI → CH 4 + I 2

Метод имеет препаративне значение, часто используют сильный восстановитель - йодоводень.

2. Получение из солей карбоновых кислот.
2.1 Электролиз солей (Кольбе, 1849 г.). Реакция Кольбе заключается в электролизе водных растворов солей карбоновых кислот:

R-COONa ⇄ R-COO - + Na +

На аноде анион карбоновой кислоты окисляется, образуя свободный радикал, и легко декарбоксилюється или отщеплять CO 2 . Алкильные радикалы далее вследствие рекомбинации превращаются в алканы:

R-COO - → R-COO . + e -

R-COO . → R . + CO 2

R . + R . → R-R


Препаративный метод Кольбе считается эффективным при наличии соответствующих карбоновых кислот и невозможности применить другие методы синтеза.

2.2 Сплавления солей карбоновых кислот со щелочью. Соли щелочных металлов карбоновых кислот при славленні с щелочью образуют алканы:

CH 3 CH 2 COONa + NaOH → Na 2 CO 3 + CH 3 CH 3


3. Восстановление кислородсодержащих соединений (спиртов, кетонов, карбоновых кислот). Восстановителями выступают вышеупомянутые соединения. Чаще всего применяют йодоводень, который способен восстанавливать даже кетоны: Первые четыре представителя алканов от метана до бутана (C 1 -C 4) - газы, от пентана до пентадекану (C 5 -C 15 - жидкости, от гексадекану (C 16) - твердые вещества. Увеличения их молекулярных масс приводит к увеличению температур кипения и плавления, при чем алканы с разветвленной цепью кипят при более низкой температуре, чем алканы нормального строения. Это объясняется меньшей вандерваальсівською взаимодействием между молекулами разветвленных углеводородов в жидком состоянии. Температура плавления четных гомологов выше по сравнению с температурой соответственно для нечетных.

Алканы гораздо легче за воду, неполярные и трудно поляризуются, однако растворимы в большинстве неполярных растворителей, благодаря чему сами могут быть растворителем для многих органических соединений.