Важнейшие альдегиды и кетоны. Альдегиды и кетоны: строение, изомерия, номенклатура

Альдегиды и кетоны – это производные углеводородов, в молекулах которых имеется карбонильная группа. Альдегиды по строению отличаются от кетонов положением карбонильной группы. О физических свойствах альдегидов и кетонов, а также об их классификации и номенклатуре говорим в этой статье.

Физические свойства

В отличие от спиртов и фенолов, для альдегидов и кетонов не характерно образование водородных связей, именно поэтому их температуры кипения и плавления значительно ниже. Так, формальдегид – газ, уксусный альдегид кипит при температуре 20,8 градусов, тогда как метанол кипит при температуре 64,7 градусов. Аналогично фенол – кристаллическое вещество, а бензальдегид – жидкость.

Формальдегид – бесцветный газ с резким запахом. Остальные члены ряда альдегидов – жидкости, а высшие альдегиды являются твердыми веществами. Низшие члены ряда (формальдегид, ацетальдегид) – растворимы в воде, имеют резкий запах. Высшие альдегиды хорошо растворимы в большинстве органических растворителях (спирты, эфиры), у альдегидов С 3 -С 8 весьма неприятный запах, а высшие альдегиды применяются в парфюмерии из-за цветочных запахов.

Рис. 1. Таблица классификация альдегидов и кетонов.

Общая формула альдегидов и кетонов выглядит следующим образом:

  • формула альдегидов – R-COH
  • формула кетонов – R-CO-R

Классификация и номенклатура

Альдегиды и кетоны отличаются по типу углеродной цепи, в которой находится карбонильная группа. Рассмотрим соединения жирного ряда и ароматические:

  • ациклические, предельные . Первым членом гомологического ряда альдегидов является муравьиный альдегид (формальдегид, метаналь) – CH 2 =O.

Муравьиный альдегид применяется как антисептик. С его помощью осуществляется дезинфекция помещений, протравливание семян.

Второй член альдегидного ряда – уксусный альдегид (ацетальдегид, этаналь). Он применяется как промежуточный продукт при синтезе уксусной кислоты и этилового спирта из ацетилена.

Рис. 2. Формула уксусный альдегид.

  • непредельные . Необходимо упомянуть такой непредельный альдегид, как акролеин (пропеналь). Этот альдегид образуется при термическом разложении глицерина и жиров, составной частью которых является глицерин.
  • ароматические . Первым членом гомологического ряда ароматических альдегидов является бензольный альдегид (бензальдегид). Также можно отметить такой альдегид растительного происхождения, как ванилин (3-метокси-4-гидроксибензальдегид).

Рис. 3. Формула ванилин.

Кетоны могут быть чисто ароматические и жиро-ароматические. Чисто ароматическим является, например, дифенилкетон (бензофенон). Жирно-ароматическим является, например, метил-фенилкетон (ацетофенон)

Что мы узнали?

На уроках химии 10 класса важнейшей задачей является изучение альдегидов и кетонов. В альдегидах атом углерода карбонильной группы является первичным, а в кетонах вторичным. Поэтому в альдегидах карбонильная группа всегда связана с атомом водорода. Альдегидная группа обладает большей химической активностью, чем кетонная, особенно в реакциях окисления.

Введение

Это единения, содержащие карбонильную группу = С = О. У альдегидов карбонил связан радикалом и водородом. Общая формула альдегидов:

У кетонов карбонил связан с двумя радикалами. Общая формула кетонов:

Альдегиды являются более активными, чем кетоны (у кетонов карбонил как бы блокирован радикалами с обеих сторон).

Кла сс ификация

1.по углеводородному радикалу (предельные, непредельные, ароматические, циклические).

2.по числу карбонильных групп (одна, две и тд.)

Изомерия и номенклатура

Изомерия альдегидов обусловлена изомерией углеродного скелета. У кетонов помимо изомерии углеродного скелета наблюдается изомерия положения карбонильной группы. По тривиальной номенклатуре альдегиды называют соответственно карбоновым кислотам, в которые они переходят при окислении. По научной номенклатуре названия альдегидов складываются из названий соответствующих углеводородов с добавлением окончания аль. Атом углерода альдегидной группы определяет начало нумерации. По эмпирической номенклатуре кетон называют по радикалам, связанным с карбоксилом с добавлением слова кетон. По научной номенклатуре названия кетонов складываются из названий соответствующих углеводородов с добавлением окончания ОН, в конце ставят номер углеродного атома, при котором стоит карбонил. Нумерацию начинают от ближайшего к кетонной группе конца цепи.

Представители предельных альдегидов. CnH2n+1C=O

Представители предельных кетонов

Способы получения

1) Путем окисления спиртов. Из первичных спиртов получаются альдегиды, из вторичных кетоны. Окисление спиртов происходит при действии сильных окислителей (хромовая смесь) при небольшом нагревании. В промышленности в качестве окисления используют кислород воздуха в присутствии катализатора - меди (Cu) при t0= 300-5000С

СН3 - СН2 - СН2 - ОН + О К2Cr2O7 CH3 - CH2 - C =O + HOH

пропанол -1 H

пропаналь

СН3 - СН - СН3 + О К2Cr2O7 СН3 - С - СН3

пропанол -2 пропанон

2) Термическое разложение кальциевых солей карбоновых кислот, причем, если взть соль муравьиной кислоты, то образуются альдегиды, а если других кислот, то кетоны.

О уксусный альдегид

О - Са прокаливание СаСО3 + СН3 - С = О

СН3 -С - О СН3

Это лабораторные способы получения.

3) По реакции Кучерова (из алкинов и воды, катализатор - соли ртути в кислой среде). Из ацетилена образуются альдегиды, из любых других алкинов - кетоны.

СН = СН + НОН СН2 = СН - ОН СН3 - С = О

ацетилен виниловый СН3

спирт уксусный альдегид

СН3 - С = СН + НОН СН3 - С = СН2 СН3 - С = О

пропин ОН СН3

пропенол - 2 ацетон

4) Оксосинтез. Это прямое взаимодействие алкенов с водным газом (СО+Н2) в присутствии кобальтового или никелевого катализаторов под давлением 100- 200 атмосфер при t0 = 100-2000С. По этому способу получают альдегиды

СН3 - СН2 - СН2 - С = О

бутаналь Н

СН3 - СН = СН2 + СО + Н2

СН3 - СН - С = О

2-метилпропаналь

5) Гидролиз дигалогенпроизводных. Если оба галогена находятся при первичном углеродном атоме, то образуется альдегид, если при вторичном - кетон.

СН3 - СН2 - С - CL2 + HOH 2HCL + CH3 - CH2 - C = O

1,1-дихлорпропен пропеналь

СН3 - С - CH3 + HOH 2HCL + CH3 - C = O

2,2-дихлорпропан пропанон

Муравьиный альдегид - газ, другие низшие альдегиды и кетоны - жидкости, легко растворимые в воде; альдегиды обладают удушливым запахом, который при сильном разведении становится приятным(цветочным или фруктовым). Кетоны пахнут довольно приятно. Следовательно карбонил = С =О носитель запаха, поэтому альдегиды и кетоны применяются в парфюмерной промышленности. температура кипения альдегидов и кетонов возрастает по мере увеличения молекулярного веса.

Природа карбонильной группы

Большинство реакций альдегидов и кетонов обусловлено присутствием карбонильной группы. рассмотрим природу карбонила = С =О. например,

1.углерод с кислородом в карбониле связаны двойной связью: одна сигма - связь, другая пи - связь. За счет разрыва П- связи у альдегидов и кетонов идут реакции присоединения (нуклеофильного типа):

R - C = O R - C - O:

Кислород является более электроотрицательным элементом, чем углерод, и поэтому электронная плотность у атома кислорода больше, чем у атома углерода. При реакциях присоединения к углероду будет присоединяться нуклеофильная часть реагента, к кислороду - электрофильная часть.

2.приреакциях замещения может замещаться кислород карбонила. При этом происходит разрыв двойной связи между С и О

3.карбонил влияет на связи С - Н в радикале, ослабляя их, особенно в альфа-положении, то есть рядом с карбонильной группой.

Н - ?С -? С - ?С - С = О

При действии свободных галогенов будет замещаться водород в углеродном радикале при альфа- углеродном атоме.

СН3 - СН2 - СН2 - С = О + СL2 CH3 - CH2 - CH - C = O + HCL

Хлормасляный альдегид

Химические свойства

Из всех классов органических соединений альдегиды и кетоны самые реакционноспособные. Причем в химическом отношении альдегиды более активны, чем кетоны. Для них характерны следующие реакции: окисления, присоединения, замещения, полимеризации, конденсации. Для кетонов не характерны реакции полимеризации.

Реакции окисления

Альдегиды окисляются легко, даже слабыми окислителями HBrO, OH, раствор Фелинга. При окислении альдегидов образуются карбоновые кислоты.

СН3 - С = О + О СН3 - С = О - уксусная кислота

Если окислителем является OH , то выделяется свободное серебро (реакция «серебряного зеркала» - это качественная реакция на альдегиды).

СН3 - С = О + 2OH СН3 - С = О + 2 Ag + 4 NH3 + Н2О

Окисление кетонов происходит гораздо труднее и только сильными окислителями. Продуктами окисления являются карбоновые кислоты. При окислении кетона образуется спиртокетон, затем дикетон, который, разрываясь, образует кислоты.

СН3 - СН2 - С - СН2 - СН3 + О СН3 - СН - С - СН2 - СН -Н2О+О СН3 - С - С - СН2 - СН3 +О +Н2О

О ОН О О О

диэтилкетон спиртокетон дикетон

СН3 - С = О + О = С - СН2 - СН3

уксусная к-та пропионовая к-та

В случае смешанного кетона окисление протекает по правилу Попова - Вагнера, то есть главное направление реакции - окисление соседнего с карбонилом наименее гидрированного атома углерода. Но помимо с главным направлением будет и побочное направление реакции, то есть окислится углеродный атом с другой стороны карбонила. При этом образуется смесь различных карбоновых кислот.

СН3 - С - СН - СН3 - спиртокетон +О - Н2О

СН3 - С - СН2 - СН3 ОН О

О СН2 - С - СН2 - СН3 + О - Н2О

Бутанон-2 спиртокетон

СН3 - С - С - СН3 +О +Н2О 2 СН3 - С = О

дикетон уксусная кислота

СН-С - СН2 - СН3 + О +Н2О НС = О + СН3 - СН2 - С = О

дикетон муравьиная к-та пропионовая к-та

Реакции присоединения

Протекают за счет разрыва пи-связи в карбониле. Эти реакции нуклеофильного присоединения, то есть сначала к положительно заряженному углероду карбонила присоединяется нуклеофильная часть реагента со свободной электронной парой (протекает медленно):

С+ = О - + :Х - = С - О -

Вторая стадия - присоединение протона или другого катиона к образовавшемуся аниону (протекает быстро):

С - О - + Н + = С - ОН

1.Присоединение водорода.

При этом из альдегидов получаются первичные спирты, из кетонов - вторичные. Реакция протекает в присутствии катализаторов Ni, Pt и др.

СН3 - С = О + Н + : Н - СН3 - С - Н

уксусный альдегид этанол

СН3 - С - СН3 + Н+ : Н - СН3 - СН - СН3

пропанон пропанол -2

2.Присоединение бисульфата натрия (гидросульфата):

R - C = O + HSO3Na R - C - SO3Na

При этом образуются бисульфитные производные. Эту реакцию используют для очистки альдегидов и кетонов и выделения их из примесей.

3.Присоединение синильной кислоты. При этом образуются?- оксинитрилы, которые являются промежуточными продуктами синтеза оксикислот, аминокислот:

R - C = O + HCN R - C - C =N

Оксинитрил

4. Присоединение аммиака NH3. При этом образуются оксиамины.

R - C = O + H - NH2 CH3 - CH - NH2

Оксиамин

5. Присоединение магнийгалогенорганических соединений (реактив Гриньяра). Реакцию используют для получения спиртов.

6.Присоединение спиртов (безводных). При этом первоначально образуются полуацетали (как обычная реакция присоединения). Затем при нагревании с избытком спирта образуются ацетали (как простые эфиры).

R - C = O + СН3 - ОН R - CН - О - СН3 +СН3ОН R - CН - О - СН3

H ОН О - СН3

полуацеталь ацеталь

В природе очень много соединений полуацетального и ацетального характера, особенно среди углеводов (сахаров).

Реакции замещения

Кислород карбонильных групп может замещаться на галогены и некоторые азотсодержащие соединения.

1.Замещение галогенами. Происходит при действии на альдегиды и кетоны фосфорных соединений галогенов PCL3 и PCL5. При действии же свободными галогенами замещается водород в углеводородном радикале при?-углеродном атоме.

PCL5 CH3 - CH2 - CH -CL2 + POCL3

СН3 - СН2 - С = О 1,1-дихлорпопин (фосфора хлорокись)

Н +CL2 CH3 - CH - CH = O + HCL

пропаналь CL

Монохлорпропионовый альдегид

2.Реакция с гидроксиамином NH2OH. При этом образуются окислы альдегидов (альдоксилы) и кетонов (кетоксины).

СН3 - СН = О + Н2N - OH CH3 - CH - N - OH + H2O

уксусный альдегид оксиэтаналь

Эту реакцию применяют для количественного определения карбоксильных соединений.

3.Реакция с гидразином NH2 - NH2 . Продуктами реакции являются гидразины (когда реагирует одна молекула альдегида или кетона) и азины (когда реагируют две молекулы).

СН3 - СН = О + NH2 - NH2 СН3 - СН = N - NH2

этаналь гидразин гидразин этаналь

СН3 - СН = N - NH2 + О = СН - СН3 СН3 - СН =N - N = НС - СН3

азин этаналь (альдазин)

4.Реакции с фенилгидразином. С6Н5 - NH - NH2 . Продуктами реакции являются фенилгидразины.

СН3 - СН = О + Н2N - NH - C6H5 CH3 - CH = N - NH - C6H5

Фенилгидразонэтаналь

Окислы, гидразины, азины, фенилгидразины - твердые кристаллические вещества с характерными температурами плавления, по которым определяют природу (строение) карбонильного соединения.

Реакции полимеризации

Характерны только для альдегидов. Но и то, только газообразные и летучие альдегиды (муравьиный, уксусный) подвергаются полимеризации. Это очень удобно при хранении этих альдегидов. муравьиный альдегид полимеризуется в присутствии серной кислоты или соляной, при нормальной температуре. Коэффициент полимеризации n=10-50. Продукт полимеризации - твердое вещество, называется - полиоксиметилен (формалин).

Н - С = О - С - О - С - О - ...- С - … - С - О -

Н Н Н Н Н n

Полиоксиметилен

Это твердое вещество, но его можно превратить в муравьиный альдегид, разбавляя водой и слегка подогревая.

Уксусный альдегид под влиянием кислот образует жидкий циклический триммер- паральдозу и твердый тетрамер - метальдозу («сухой спирт»).

3 СН3 - СН = О О

СН3 - НС СН - СН3

паральдегид

4 СН3 - СН = О СН3 - НС О

Метальдегид

Реакции конденсации

1.Альдегиды в слабо основной среде (в присутствии ацетона калия, поташа, сульфата калия) подвергаются альдольной конденсации с образованием альдегидо - спиртов, сокращенно называемых альдолями. Разработана эта реакция химиком А.П. Бородиным (он же композитор). В реакции участвует одна молекула своей карбонильной группой, а другая молекула водородом при?- углеродном атоме.

СН3 - СН = О + НСН2 - СН = О СН3 - СН - СН2 - СН = О

ОН альдоль

(3 - оксибутаналь или?-оксимасляный альдегид)

СН3 - СН - СН2 - СН = О + НСН2 - СН = О СН3 - СН - СН2 - СН - СН2 -СН =О

гексенциол-3,5-аль

С каждым разом увеличивается число групп ОН. Получается альдегидная смола при уплотнении большого числа молекул.

2. Кротоновая конденсация. для альдегидов она является продолжением альдольной конденсации, то есть при нагревании альдоль отщепляет воду с образованием непредельного альдегида.

СН3 - СН - СН2 - СН = О СН3 - СН = СН - С = О

кротоновый альдегид

Рассмотрим эти реакции для кетонов.

СН3 - С = О + НСН2 - С = О СН3 - С - СН2 - С = О СН3 - С = СН - С = О

СН3 СН3 ОН СН3 СН3 СН3 СН3

4 - окси - 4 - метилпентанон-2 4 - метилпентан -3-он-2

3.Сложноэфирная конденсация. Характерна только для альдегидов. Разработана В.Е.Тищенко. протекает в присутствии катализаторов алкоголятов алюминия (CH3 - CH2 - O)3 AL.

CH3 - CH = O + O = HC - CH3 CH3 - СН2 - О - С = О

уксусноэтиловый эфир

1.СН2 = СН - СН =О - пропен-2-аль - акриловый альдегид или акролеин

2.СН3 - СН = СН - СН = О - бутен - 2 - аль - кротоновый альдегид

Акролеин иначе называют чад, он получается при нагревании горении жиров. В химическом отношении непредельные альдегиды обладают всеми свойствами предельных по карбонильной группе, а за счет двойной связи в радикале могут вступать в реакции присоединения.

У этих альдегидов сопряженная система двойных связей, поэтому в химическом отношении они отличаются реакциями присоединения. Присоединение водорода, галогенов, галогенводородов происходит по концам сопряженной системы.

Электронная плотность смещена к кислороду и к нему направляются положительно заряженная часть реагента, а к положительно поляризованному углероду - отрицательная часть реагента.

СН2+ = СН- - СН+= О- + Н+: Br- CH2 - CH = CH - OH CH2 - CH2 - CH = O

3-бромпропаналь

Образующаяся при этом енольная форма альдегида немедленно превращается в более устойчивую карбонильную форму. Таким образом присоединение галогенводородов в радикал идет против правила Марковникова.

Ароматические альдегиды

Представители С6Н5 -СН = О - бензойный альдегид. Это жидкость с запахом горького миндаля, содержится в косточках слив, вишен, диких абрикос и других плодах.

С писок использованной литературы

1) Гранберг И.И. Органическая химия. - М., 2002

2) Ким А.М. Органическая химия. - Новосибирск, 2007

Альдегиды и кетоны – это производные углеводородов, содержащие функциональную карбонильную группу СО . В альдегидах карбонильная группа связана с атомом водорода и одним радикалом, а в кетонах с двумя радикалами.

Общие формулы:

Названия распространенных веществ этих классов приведены в табл. 10.

Метаналь – бесцветный газ с резким удушающим запахом, хорошо растворим в воде (традиционное название 40 %‑ного раствора– формалин), ядовит. Последующие члены гомологического ряда альдегидов – жидкости и твердые вещества.

Простейший кетон – пропанон‑2, более известный под названием ацетон, при комнатной температуре – бесцветная жидкость с фруктовым запахом, t кип = 56,24 °C. Хорошо смешивается с водой.

Химические свойства альдегидов и кетонов обусловлены присутствием в них карбонильной группы СО; они легко вступают в реакции присоединения, окисления и конденсации.

В результате присоединения водорода к альдегидам образуются первичные спирты:

При восстановлении водородом кетонов образуются вторичные спирты:

Реакция присоединения гидросульфита натрия используется для выделения и очистки альдегидов, так как продукт реакции малорастворим в воде:

(действием разбавленных кислот такие продукты превращаются в альдегиды).

Окисление альдегидов проходит легко под действием кислорода воздуха (продукты – соответствующие карбоновые кислоты). Кетоны сравнительно устойчивы к окислению.

Альдегиды способны участвовать в реакциях конденсации . Так, конденсация формальдегида с фенолом протекает в две стадии. Вначале образуется промежуточный продукт, являющийся фенолом и спиртом одновременно:

Затем промежуточный продукт реагирует с другой молекулой фенола, и в результате получается продукт поликонденсации фенолформальдегидная смола:

Качественная реакция на альдегидную группу – реакция «серебряного зеркала», т. е. окисление группы С(Н)O с помощью оксида серебра (I) в присутствии гидрата аммиака:

Аналогично протекает реакция с Cu(ОН) 2 , при нагревании появляется красный осадок оксида меди (I) Cu 2 O.

Получение : общий способ для альдегидов и кетонов – дегидрирование (окисление) спиртов. При дегидрировании первичных спиртов получают альдегиды , а при дегидрировании вторичных спиртов – кетоны . Обычно дегидрирование протекает при нагревании (300 °C) над мелкораздробленной медью:

При окислении первичных спиртов сильными окислителями (перманганат калия, дихромат калия в кислотной среде) процесс трудно остановить на стадии получения альдегидов; альдегиды легко окисляются до соответствующих кислот:


Более подходящим окислителем является оксид меди (II):

Ацетальдегид в промышленности получают по реакции Кучерова (см. 19.3).

Наибольшее применение из альдегидов имеют метаналь и этаналь. Метаналь используют для производства пластмасс (фенопластов), взрывчатых веществ, лаков, красок, лекарств. Этаналь – важнейший полупродукт при синтезе уксусной кислоты и бутадиена (производство синтетического каучука). Простейший кетон – ацетон используют в качестве растворителя различных лаков, ацетатов целлюлозы, в производстве кинофотопленки и взрывчатых веществ.

1. Окисление спиртов. Первичные спирты при окислении образуют альдегиды, которые затем легко окисляются до карбоновых кислот:

При окислении вторичных спиртов образуются кетоны:

2. Гидратация алкинов (реакция Кучерова). Присоединение воды к ацетилену в присутствии солей ртути (II) приводит к образованию ацетальдегида:

Кетоны получают при гидратации других гомологов ацетилена:

3. Окисление алкенов (катализаторы - хлориды Pd и Cu):

4. Кумольный способ получения ацетона и фенола (Кружалов, Сергеев, Немцов):

5. Реакция оксосинтеза:

6. Восстановление хлорангидридов карбоновых кислот:

7. Карбонильные соединения являются промежуточными продуктами окисления углеводородов до кислот.

Химические свойства альдегидов и кетонов. Электронная структура карбонильной группы определяет реакционную способность альдегидов и кетонов. Атом углерода карбонильной группы находится в состоянии sp 2 -гибридизации. Валентный угол между δ- связями 120 0 . Неспаренный р- электрон углерода перекрывается с р- электроном кислорода и образует π- связь, которая располагается перпендикулярно плоскости молекулы альдегида. Электронная плотность π- связи смещена к кислороду. Исходя из этого, типичными реакциями альдегидов и кетонов являются:

─ реакции нуклеофильного замещения (Ad N);

─ реакции окисления;

─ реакции с участием атомов водорода в α- положении в карбонильной группе.

Реакции нуклеофильного присоединения. Реакции нуклеофильного присоединения протекают через стадию образования промежуточного комплекса, который характеризуется изменением типа гибридизации исходного альдегида. Молекула принимает тип гибридизации, который будет в конечных продуктах реакции. Механизм реакции имеет вид:

1. Взаимодействие с синильной кислотой:

Кетоны в реакции Ad N вступают труднее, чем альдегиды. Это связано с пространственными препятствиями алкильных радикалов кетонов при образовании промежуточной структуры.

2. Присоединение гидросульфита натрия:

С гидросульфитом натрия вступают во взаимодействие только метилкетоны.

Реакции карбонильных соединений с гидросульфитом натрия используются для очистки продуктов от карбонильных соединений.

3. Взаимодействие с аммиаком:

Взаимодействие кетонов с аммиаком происходит иначе:

4. Взаимодействие с гидроксиламином. При взаимодействии карбонильных соединений с гидроксиламином образуются оксимы:

Эта реакция используется для количественного определения карбонильных соединений в реакционных смесях, различных продуктах. При этом используется солянокислый гидроксиламин (NH 2 -OH HCl).

5. Взаимодействие альдегидов с гидразином:

Аналогично взаимодействуют кетоны.

6. Взаимодействие с фенилгидрозином:

7. Реакции гидрирования. При восстановлении альдегидов образуются первичные спирты. При восстановлении кетонов образуются вторичные спирты. При восстановлении кетонов водородом в момент выделения возможно образование пинаконов.

8. Взаимодействие альдегидов со спиртами:

Реакции окисления. Окисление карбонильных соединений протекает в мягких условиях. Альдегиды окисляются до карбоновых кислот. Кетоны окисляются до смеси кислот с разрывом углеводородной цепочки:

Реакции серебряного зеркала.