Контроль процессов умягчения, опреснения и обессоливания воды. Умягчение жесткой воды В каких установках происходит умягчение воды

На своем участке — выкопали колодец или пробурили скважину для хозяйственно-бытовых нужд дома.

И столкнулись с такой проблемой:

  • белые следы на сантехнике,
  • накипь в чайнике,
  • ощущение сухости кожи,
  • жесткие волосы после мытья
  • на электронагревательных приборах образуется известковая корка
Данный анализ воды я взял с форума forumhouse из ветки https://www.forumhouse.ru/threads/251194/

Анализ воды, который Вы сделали в химической лаборатории показал: очень жесткая вода! >25мг/л.экв и/или высокая общая минерализация воды, сухой остаток более 1500мг/л .

Фирмы предлагают Вам дорогущие методы очистки ионообменными смолами без гарантии… Вы получаете примерно такие такие письма в ответ на свой запрос об очистке воды:

«Здравствуйте.
в связи с многократным превышением ПДК по жесткости, а так же по солесодержанию и сульфатам, Комплекс водоподготовки с монтажом обойдется от 300 тыс. рублей, в противном случае гарантию на качество очищенной воды не даем . Если Вы готовы на такие расходы- пришлем предложение.»

Для удаления солей жесткости можно умягчать воду с помощью , либо синтетического , но во-первых, максимальное количество солей жесткости,с которыми можно справиться умягчителем не более 15 мг/л экв., во-вторых общую минерализацию воды снизить умягчителем не получится, ведь умягчение — это не удаление, а замещение одних ионов на другие.

Стоимость умягчителя для стандартного удаления солей жесткости начинается от 23 000р с хорошей . Для подбора умягчителя присылайте анализ на почту [email protected] — я предложу Вам подходящий вариант.

Что делать, если умягчитель бесполезен, а система обратного осмоса на весь дом слишком дорогая (>2000$)? С такой водой жить тяжело, потому что она оставляет бело-рыжие наросты на сантехнике, которые невозможно вывести, очень быстро засоряется солями жесткости боилер, нагревательная спираль стиралки и посудомойки, а что творится в чайнике — лучше не смотреть!!!

Особая проблема с такой водой встает перед фермерами, садоводами, разводчиками рыбы, ведь такая вода непригодна для кормления скота и полива растений, подпитки пруда. А воды этой нужно очень много.

В случае высокой общей минерализации воды умягчитель не поможет и остается только два способа:

  • дорогой обратный осмос,
  • дешевый, но требующий регулярного приложения рук процесс химической очистки воды от солей жесткости — известково-содовым методом.

Заключается известково-содовый метод в растворении небольшого количества реагента в накопительной емкости с водой, выпадает осадок, воду забираем на очистку, осадок сливаем в дренаж.

Известково-содовый метод умягчения воды:

В емкость общим объемом, скажем, 1 куб набираем воду.

Рассказать друзьям

Умягчение воды — процесс, направленный на удаление из нее катионов кальция и магния, т.е. снижение ее жесткости .

По требованию САНПиН жесткость питьевой воды не должна превышать 7 мг-экв/л, а к воде, участвующей в процессах теплообмена выставляют требования глубокого ее умягчения, т.е. до 0,05…0,01 мг-экв/л. Жесткость воды, используемой для подпитки барабанных котлов ТЭЦ, не должна превышать 0,005 мг-экв/л, или 5 мкг-экв/л.

Снижение совокупной концентрации катионов Mg(II), Ca(II) и анионов, с которыми они при определенных условиях могут образовывать не стенках труб и аппаратов плотные нерастворимые отложения, проходит на системах водоочистки и водоподготовки различными методами, чей выбор определяется качеством исходной воды, требованию к ее очистке и технико-экономическими соображениями.

Метод ионного обмена.

В основе данного метода лежит способность некоторых материалов (катионитов и анионитов) поглощать из воды ионы (катионы и анионы) в обмен на эквивалентное количество ионов (катионов и анионов).

Процесс катионирования — тот процесс, при котором происходит обмен катионами. В водоподготовке при умягчении — катионами катионита на ионы Ca 2+ и Mg 2+ из воды.

Процесс анионирования — соответственно анионами, в основном при обессоливании и глубоком обессоливании.

Магнитная обработка воды.

Использование магнитной обработки воды целесообразно в случае высокой кальциево-карбонатной жесткости.

В процессе прохождения воды сквозь магнитное поле в ней образуются центры кристаллизации, которые укрупняются и выпадают в неприкипающий шлам, удаляемый при продувке. Т.е. выделение осадка идет не на стенках поверхности нагрева, а в объеме воды.

Влияние на противонакипный эффект оказывают такие факторы, как качественный и количественный состав воды, скорость движения жидкости сквозь магнитные силовые линии, напряженность магнитного поля и время пребывания в нем воды.

Условиями для осуществления успешной магнитной обработки воды должно являться высокое содержание карбоната и сульфата кальция, а концентрация свободного оксида углерода IV должна быть меньше равновесной. Так же увеличивают противонакипный эффект содержащиеся в воде примеси оксидов железа и прочих.

Аппараты магнитной обработки воды работают как на основе постоянных магнитов, так и на основе электромагнитов. Недостатком аппаратов с постоянными магнитами является то, что время от времени их приходится чистить от ферромагнитных примесей. Электромагниты чистят от оксидов железа, отключив их от сети.

Скорость воды в магнитном поле при ее обработке не должна превышать 1м/с. Для увеличения объема обрабатываемой воды на единицу времени применяют аппараты с послойной магнитной обработкой.

Метод магнитной обработки нашел применение на тепловых сетях горячего водоснабжения, на ТЭЦ, в теплообменных аппаратах.

Выбор данного метода при решении задачи умягчения воды должен главным образом основываться на его эффективности при очистке воды данного качества – использоваться как основной, последующей ступени или в качестве дополнительного.

Обратный осмос.

В данное время наиболее широкое распространение в водоподготовке получил метод обратного осмоса.

Суть метода состоит в том, что под высоким давлением, — от 10 до 25 атмосфер, — вода подается на мембраны. Мембраны, являясь селективным материалом по отношению к проходящим сквозь нее примесям, пропускают молекулы воды и не пропускают растворенные в воде ионы.

Таким образом, на выходе после установки обратного осмоса мы получаем два потока — первый поток чистой воды, прошедшей сквозь мембрану, так называемый пермеат, и второй поток — воды с примесями, не прошедшей сквозь мембрану, называемый концентратом.

Пермеат направляется потребителю и составляет от 50 до 80 % от объема подаваемой воды. Его количество зависит от свойств мембраны и ее состояния, качества исходной воды и желаемого результата очистки. Чаще всего это около 70%.

Концентрат, соответственно, от 50 до 20%.

При увеличении нагрузки на мембрану, т.е. увеличения процентного соотношения между пропускаемой водой и водой с примесями, селективность мембраны снижается и достигает минимума при отсутствии концентрата, т.е. тогда, когда вся вода, подающаяся на установку обратного осмоса, проходит сквозь мембрану.

Мембраны обратного осмоса изготовляются из композитного полимерного материала особой структуры, позволяющего при высоких давлениях пропускать воду и не пропускать растворенные в ней ионы и прочие примеси. При увеличении нагрузки на мембрану срок ее службы сокращается, а при достижении критических параметров, при которых попускаемая жидкость с примесями проходит сквозь мембрану полностью, она разрушается. Средний срок службы мембраны — 5 лет.

Поверхность мембран со временем может обрастать микроорганизмами, покрываться слоем труднорастворимых соединений. Для чистки обратноосмотических мембран применяют растворы кислот и щелочей с добавлением биоцидов.

При промывки обратного осмоса нельзя забывать, что полупроницаемая мембрана — это не фильтр. Промывка должна проводиться исключительно по ходу движения жидкости. Обратный ток раствора воды приведет к выходу мембраны из строя.

Реагентные методы обработки воды.

Реагентные методы обработки воды служат в основном для неглубокого умягчения воды путем добавления реагентов и перевода солей жесткости в малорастворимые соединения с последующим их осаждением.

В качестве реагентов используется известь, сода, едкий натр и пр. В настоящий момент мало где применяются, но для общего понимания процессов перевода в малорастворимые соединения кальция и магния и дальнейшее их осаждение, рассмотрим их.

Снижение накипи известкованием.

Метод применим к воде с высокой карбонатной и малой некарбонатной жесткостью.

При добавлении известкового молока pH воды повышается, что приводит к переходу растворенного диоксида углерода и гидрокарбонатного иона в карбонатный ион:
СО 2 + ОН - = СО 3 2- + Н 2 О,
НСО 3- + ОН - = СО 3 2- + Н 2 О.

При насыщении воды карбонатными ионами кальций выпадает в осадок:
Са 2+ + СО 3 2- = СаСО 3 ↓.

Также с увеличением рН в осадок выпадает и магний:
Мg 2+ + OH - = Mg(OH) 2 ↓.

В случае, если превышение карбонатной жесткости незначительно, то вместе с известью дозируют соду, чье присутствие снижает некарбонатную жесткость:

CaSO 4 + Na 2 CO 3 = CaCO 3 ↓ + Na 2 SO 4 .

Для более полного осаждения катионов магния и кальция рекомендуется подогревать воду до температуры 30 - 40 градусов. С ее повышением растворимость CaCO 3 и Mg(OH) 2 падает. Это дает возможность снижать жесткость воды 1 мг-экв/л и менее.

Содово-натриевый метод умягчения воды.

Добавление соды необходимо в том случае, если некарбонатная жесткость больше чем карбонатная. При равенстве этих параметров добавление соды может и не понадобиться совсем.

Гидрокарбонаты кальция и магния в реакции со щелочью образуют малорастворимые соединения кальция и магния, соду, воду и углекислый газ:
Ca(HCO 3) 2 + 2NaOH = CaCO 3 ↓ + Na 2 CO 3 + 2H 2 O,
Mg(HCO 3) 2 + 2NaOH = Mg(OH) 2 ↓ + Na 2 CO 3 + H 2 O + CO 2 .

Образовавшийся в результате реакции гидрокарбоната магния с щелочью углекислый газ снова реагирует с щелочью с образованием соды и воды:
CO 2 + NaOH = Na 2 CO 3 + H 2 O.

Некарбонатная жесткость.
Сульфат и хлорид кальция реагирует с образовавшейся в реакциях карбонатной жесткости и щелочи содой и добавленной содой с образованием неприкипающего в щелочных условиях карбоната кальция:
CaCl 2 + Na 2 CO 3 = CaCO 3 ↓ + 2NaCl,
CaSO 4 + Na 2 CO 3 = CaCO 3 ↓ + Na 2 SO 4

Сульфат и хлорид магния реагируют со щелочью, образуя выпадающий в осадок гидроксид магния:
MgSO 4 + 2NaOH = Mg(OH) 2 ↓ + Na 2 SO 4 ,
MgCl 2 + 2NaOH = Mg(OH) 2 ↓ + 2NaCl .

Ввиду того, что в реакциях гидрокарбоната с щелочью образуется сода, которая в дальнейшем реагирует с некарбонатной жесткостью, ее количество необходимо коррелировать в соотношении карбонатной и некарбонатной жесткости: при их равенстве соду можно не добавлять, при условии Ж к > Ж нк образуется избыток соды, при обратном соотношении Ж к

Комбинированные методы.

Сочетание различных методов обработки воды с целью снижения ее жесткости дает в иной раз довольно высокую результативность. Обусловлено это, как правило, высокими требованиями к качеству воды и пара.

Примером может быть сочетание обратного осмоса с натрий-катионированием . Основная жесткость воды снижается на фильтрах-катионитах, на обратном осмосе идет ее обессоливание.

В другом случаем в качестве дополнительной ступени очистки может служить магнитная обработка воды – установку располагают после системы умягчения на трубопроводе циркуляции горячего водоснабжения.

Жёсткость воды - совокупность химических и физических свойств воды, связанных с содержанием в ней растворённых солей щёлочноземельных металлов, главным образом, кальция и магния. Вода с большим содержанием таких солей называется жёсткой, с малым содержанием - мягкой. Различают временную жёсткость, образованную гидрокарбонатами и постоянную жёсткость, вызванную присутствием других солей.

Известно, что важнейшей характеристикой пресной воды является её жесткость. Под жесткостью понимают количество миллиграмм-эквивалентов ионов кальция или магния в 1 л воды. 1 мг÷экв/л жесткости соответствует содержанию 20,04 мг Са2+ или 12,16 мг Mg2+. По степени жесткости питьевую воду делят на очень мягкую (0–1,5 мг÷экв/л), мягкую (1,5–3 мг÷экв/л), средней жесткости (3–6 мг÷экв/л), жесткую (6–9 мг÷экв/л) и очень жесткую (более 9 мг÷экв/л). Наилучшие вкусовые свойства имеет вода с жесткостью 1,6–3,0 мг÷экв/л, а, согласно СанПиН 2.1.4.1116–02, физиологически полноценная вода должна содержать солей жесткости на уровне 1,5–7 мг÷экв/л. Однако при жесткости воды выше 4,5 мг÷экв/л происходит интенсивное накопление осадка в системе водоснабжения и на сантехнике, нарушается работа бытовых приборов. Обычно умягчение проводят до остаточной жесткости 1,0–1,5 мг÷экв/л, что соответствует зарубежным нормативам по эксплуатации бытовой техники. Вода, имеющая жесткость ниже 0,5 мг÷экв/л является коррозионно-активной по отношению к трубам и котлам, способна вымывать отложения в трубах, накапливающиеся при долгом застаивании воды в системе водоснабжения. Это влечет за собой появление неприятных запаха и вкуса воды.

осуществляют методами: термическим, основанным на нагревании воды, её дистилляции или вымораживании; реагентными, при которых находящиеся в воде ионы Са (II) и Mg (II) связывают различными реагентами в практически нерастворимые соединения; ионного обмена, основанного на фильтровании умягчаемой воды через специальные материалы, обменивающие входящие в их состав ионы Na (I) или Н (I) на ионы Са (II) и Mg (II), содержащиеся в воде; диализа; комбинированным, представляющим собой различные сочетания перечисленных методов.

Выбор метода умягчения определяется качеством воды, необходимой глубиной умягчения и технико-экономическими соображениями, представленными в таблице снизу.

натрий-катионирование - процесс извлечения из воды ионов жесткости - кальция и магния и замена их на ионы натрия.
Кальций и магний составляют жесткость воды, следовательно, после их извлечения вода умягчается.
Ионы натрия находятся непосредственно в смоле (засыпке). В процессе работы установки происходит обмен ионами, натрий поступает в воду, а кальций и магний - в смолу. По истечении некоторого времени смолу необходимо регенерировать, т.е. восстановить ее свойства. Для этого через нее пропускают раствор поваренной соли, и происходит обратный процесс - натрий насыщает смолу, а кальций и магний поступают в раствор, который после сливается.

При пропуске воды сверху вниз через слой катионита происходит её умягчение, заканчивающееся на некоторой глубине. Слой катионита, умягчающий воду, называют работающим слоем или зоной умягчения. При дальнейшем фильтровании воды верхние слои катионита истощаются и теряют обменную способность. В ионный обмен вступают нижние слои катионита и зона умягчения постепенно опускается. Через некоторое время наблюдаются три зоны: работающего, истощенного и свежего катионита. Жесткость фильтрата будет постоянной до момента совмещения нижней границы зоны умягчения с нижним слоем катионита. В момент совмещения начинается «проскок» катионов Са+2 и Мg+2 и увеличение остаточной жесткости, пока она не станет равной жесткости исходной воды, что свидетельствует о полном истощении катионита. Рабочую обменную емкость фильтра Ер г÷экв/ м3, можно выразить так: Ер = QЖи; Ер = ер Vк.

Объем загруженного в фильтр катионита в набухшем состоянии Vк = аhк.

Формула для определения рабочей обменной емкости катионита, г÷экв/ м3: ер = QЖи /аhк; где Жи - жесткость исходной воды, г÷экв/ м3; Q - количество умягченной воды, м3; а - площадь катионитового фильтра, м2; hк - высота слоя катионита, м.Обозначив скорость фильтрования воды в катионитовом фильтре vк, количество умягченной воды можно найти по формуле: Q = vк aTk = ераhк /Жи; откуда длительность работы катионитового фильтра (межрегенерационный период) находим по формуле: Tk = ерhк /vк Жи.

По исчерпании рабочей обменной способности катионита его подвергают регенерации, т.е. восстановлению обменной емкости истощенного ионообменника путем пропуска раствора поваренной соли.

Ионообменные смолы нашли широкое применение во всем мире в устройствах по водоочистке. Это мелкие шарики из полимерных материалов, насыщенных ионами, способные изымть из воды различные ионы, взамен отдавая свои; их для удобства назвали "ионообменными смолами", хотя правильное научное название их - "иониты". По структуре иониты подразделяются на гелевые способные к ионообмену только в набухшем состоянии, макропористые и промежуточной структуры. Если иониты обменивают анионы - это аниониты, если катионы - катиониты.

Аниониты классифицируются как сильноосновные (обмен анионов происходит при любых значениях рН), слабоосновные (обмен анионов из кислот - рН 1-6), смешанной активности. Катионоты бывают сильной кислотности, способные к ионообмену при любых значениях рН, и слабокислотные при рН больше 7.

Приведем характеристики некоторых катионоообменников. Среди сильнокислотных катионообменников отечественного производства, разрешенных к применению для хозяйственно-питьевого водоснабжения, можно выделить КУ-2–8чС. Получают его сульфированием гранульного сополимера стирола с 8% дивинилбензола. КУ–2–8чС по структуре и свойствам близок к следующим зарубежным сульфокатионитам особой степени чистоты: амберлайту IRN-77 (США), зеролиту 325 NG (Англия), дауэксу HCR-S-Н (США), дуолайту ARC-351 (Франция), вофатиту RH (Германия). По внешнему виду - сферические зерна от желтого до коричневого цвета, размером 0,4–1,25 мм, удельный объем не более 2,7 см3/г. Полная статическая обменная емкость не менее 1,8 г÷экв/л, мин, динамическая обменная емкость с полной регенерацией не менее 1,6 г÷экв/л.

В настоящее время нашли широкое применение сильнокислотные катиониты фирмы Пьюролайт: C100, С100Е, С120Е (аналоги отечественных смол КУ-2–8, КУ–2–8чС). Применяется ионообменная смола фирмы Пьюролайт С100Е Аg (обменная емкость 1,9 г÷экв/л, насыпная масса 800–840 г/л), представляющая собой серебросодержащий катионит для водоумягчения, обладающий бактерицидным действием. Существует отечественный аналог КУ-23С - макропористый катионит бактерицидного действия (статическая обменная емкость 1,25 г÷экв/л, насыпная масса 830–930 г/л).

Применяется для умягчения питьевой воды как в промышленности, так и в быту катионит Пьюрофайн С100ЕF - он имеет ряд преимуществ по сравнению с общепринятыми смолами для водоумягчения. Обладает намного большей рабочей емкостью при обычных скоростях потока, повышенной рабочей емкостью при высоких скоростях потока, при меняющемся и прерывающемся потоке. Минимальная общая обменная емкость 2,0 г÷экв/л. Особенность катионита С100ЕF состоит в том, что он требует меньшего объема и количества регенеранта (NaCl).

Применяется сильнокислотный катионит IONAС/С 249 для умягчения воды бытового и муниципального применения. Обменная емкость 1,9 г÷экв/л.

Умягчение воды натрий-катионитовым методом на указанных смолах (жесткость воды снижается при одноступенчатом натрий-катионировании до 0,05...0,1, при двухступенчатом - до 0,01 мг÷экв/л) описывается следующими реакциями обмена:
(cм. печатную версию)

После истощения рабочей обменной емкости катионита он теряет способность умягчать воду и его необходимо регенерировать. Процесс умягчения воды на катионитовых фильтрах слагается из следующих последовательных операций: фильтрование воды через слой катионита до момента достижения предельно допускаемой жесткости в фильтрате (скорость фильтрования в пределах 10...25 м/ч); взрыхление слоя катионита восходящим потоком умягченной воды, отработанного регенерата или отмывных вод (интенсивность потока 3...4 л/(см2); спуска водяной подушки во избежание разбавления регенерирующего раствора; регенерации катионита посредством фильтрования соответствующего раствора (скорость фильтрования 8...10 м/ч). На регенерацию обычно затрачивают около 2ч, из них на взрыхление - 10...15, на фильтрование регенерирующего раствора - 25...40, на отмывку - 30...60 мин.

Высокий уровень жесткости провоцирует образование накипи, ухудшает эффективность моющих средств. В таких неблагоприятных условиях возрастает риск повреждения функциональных компонентов отопительного оборудования, иной техники. Увеличиваются эксплуатационные расходы, затраты на выполнение санитарно-гигиенических правил.

Современные производители предлагают разные способы умягчения воды и соответствующие комплекты оборудования. Выбрать оптимальный вариант будет не сложно после ознакомления с данной публикацией. Здесь есть полезные данные, которые помогут недорого и быстро реализовать проект.

Основные определения

Общий уровень жесткости определяется, как сумма постоянной и временной компоненты. Как правило, первая часть имеет небольшое практическое значение, поэтому ее можно исключить из обзора. Вторая определяется концентрацией катионов магния и кальция. Эти химические вещества при нагреве преобразуются в нерастворимый осадок – накипь.

Именно они засоряют технические протоки, что сопровождается ухудшением производительности котлов. Такие образования отличаются пористостью, низкой теплопроводностью. При накоплении на поверхности ТЭНа этот слой блокирует нормальный отвод тепла. Если не применить эффективный способ умягчения жесткой воды, стиральная машина или другая техника с нагревательным элементом будет выведена из строя из-за накипи.

На практике решают вопросы уменьшения уровня жесткости, либо полное устранение вредных явлений. Второй вариант лучше! Он предполагает надежную защиту дорогих изделий, эффективную профилактику с предотвращением аварийных ситуаций.

Способ 1: Нагрев

Принцип действия этих способов умягчения воды понятен из общего определения. Каждый человек знает, что при кипячении (нагреве) на стенках чайника активно формируется слой накипи. После завершения процедуры жесткость будет снижена.

Теоретическая простота способа является единственным преимуществом. Детальное изучение вопроса позволяет выявить следующие недостатки:

  • длительность процесса;
  • небольшое количество жидкости, которое можно обработать в бытовых условиях;
  • значительные затраты на электроэнергию, газ, другие виды топлива.

Следует не забывать, что на финишном этапе приходится удалять прочную накипь. Это – трудоемкие рабочие операции, которые способны испортить рабочую емкость.

Способ 2: Обработка электромагнитным полем

Из приведенных описаний можно сделать промежуточный вывод. Для удаления вредных соединений с применением химических средств, ионным обменом, кипячением и мембранной фильтрацией приходится решать сложные инженерные задачи. Об этом будет написано ниже. Соответствующим образом увеличиваются затраты. Полифосфатные соединения действуют эффективнее. Они стоят недорого, но надежно блокируют негативный процесс. Метод можно признать идеальным, если бы не загрязнение жидкости.

В технологии электромагнитной обработки нет перечисленных недостатков. Воздействие сильным полем изменяет форму частиц накипи. Созданные игольчатые выступы не позволяют им соединятся в крупные фракции. Этим блокируется процесс образования накипи.

Чтобы получить поле оптимальной мощности и конфигурации применяют высокочастотный генератор электромагнитных колебаний. Он работает по специальному алгоритму, который не вызывает эффект «привыкания». Снижение положительного воздействия наблюдается при работе с постоянными магнитами.

В ходе изучения актуальных предложений рынка следует обратить внимание на современные качественные модели устройств электромагнитной обработки воды:

  • выполняют свои функции с минимальным потреблением электроэнергии (5-20 Вт/час).
  • Катушку создают из нескольких витков провода. Прибор включают в сеть. Дополнительная настройка не нужна.
  • Дальность действия достигает 2 км, чего достаточно для защиты объекта в целом.
  • Долговечность устройств превышает 20 лет.

В любом случае надо выбирать производителя, который обладает солидным опытом в профильной области деятельности!

Химические способы умягчения воды

Хорошо известная профильным специалистам методика – добавление в раствор гашеной извести. Химические реакции связывают молекулы кальция и магния с последующим образованием нерастворимого осадка. По мере накопления на дне рабочего резервуара его удаляют. Мелкие взвешенные частицы задерживают через фосфатный способ. Аналогичную технологию применяют для снижения некарбонатной составляющей с помощью соды.

Главным недостатком этого и других способов данной категории является загрязнение жидкости химикатами. Чтобы такая обработка была безопасной, приходится точно соблюдать оптимальные дозировки, тщательно контролировать все важные этапы. Качественное воспроизведение технологии в домашних условиях не представляется возможным без чрезмерных трудностей и затрат. Ее используют на муниципальных и коллективных станциях водоподготовки профессиональной категории.

Впрочем, одна «химическая» методика стала популярной именно в быту. Исследователи обнаружили, что полифосфатные соединения образуют оболочки вокруг мельчайших нерастворимых фракций. Они препятствуют объединению в крупные частицы, присоединению к стенкам труб и внешним поверхностям нагревательных приборов.

Этим полезным свойством пользуются производители фосфатных стиральных порошков. Также применяют специализированные проточные емкости, в которые помещают полифосфатные соли. Устройства монтируют на входном патрубке перед котлами и стиральными машинами. Способ не подходит для приготовления питьевой воды.

Фильтрация

Нужный эффект можно получить, если уменьшить размеры ячеек до величины молекул. Такие микроскопические протоки создают в мембранах обратного осмоса. Они способны пропускать только чистую воду. Загрязненная жидкость скапливается перед преградой, удаляется в дренаж.

Задача решена? Не следует делать поспешные выводы. Методика фильтрации действительно хороша, но только для обработки 180-220 литров/сутки. Такова производительность серийных с разумной стоимостью. Этого количества не хватит для однократного приема душа, удовлетворения других бытовых потребностей.

Чтобы увеличить производительность несколько мембран устанавливают параллельно. Для функционирования комплекта приходится поднимать давление специальной насосной станцией. Подобное оборудование для фильтрации воды стоит дорого, занимает много места.

Умягчение воды ионообменным способом

Снижают первичные и эксплуатационные расходы с помощью техники этой категории. Применяют особую засыпку, которая задерживает ионы кальция и магния. Одновременно происходит заполнение жидкости безвредными соединениями натрия.

Преимущества приведены в следующем списке:

  • Кроме солоноватого привкуса не меняются в худшую сторону исходные характеристики воды.
  • После обработки определенного количества жидкости полезные функции засыпки восстанавливают промывкой и регенерацией.
  • Эти процедуры выполняются неоднократно в автоматическом режиме, без тщательного контроля и вмешательства со стороны пользователя.
  • При соблюдении правил эксплуатации засыпка из смол сохраняет работоспособность более шести лет.

Необходимо подчеркнуть доступность регенерационной смеси. Это – недорогой раствор обычной поваренной соли (хорошей очистки).

Как и ранее, приведем нюансы, которые заслуживают упоминания для полноценного анализа умягчения воды ионообменным способом:

  • Ионообменный способ умягчения воды прерывает снабжение объекта при регенерации (длительность более часа). Чтобы устранить такой недостаток устанавливают параллельно две функциональные емкости.
  • Комплект с высокой производительностью для семьи из 2-3 человек занимает несколько кв. метров площади.
  • Работа издает сильный шум в процессе промывки, поэтому нужна эффективная звуковая изоляция помещения.
  • Каждое существенное изменение уровня жесткости необходимо корректировать ручной настройкой.
  • Хорошо оснащенный набор с блоком автоматики и несколькими рабочими баками стоит дорого.

Ультразвуковое воздействие

Обработку колебаниями соответствующего диапазона частот применяют для снижения уровня жесткости. Одновременно разрушается слой старой накипи, что пригодится для очистки труб без агрессивных химических соединений.

Ультразвук с профессиональными предосторожностями применяют для очистки и защиты промышленного оборудования. Крупные элементы этих конструкций и резьбовые соединения обладают лучшей устойчивостью к сильным вибрационным воздействиям.

Какие способы умягчения воды подходят для разных объектов недвижимости?

Оптимальную методику выбирают с учетом реальных условий будущей эксплуатации. Опытные специалисты советуют создавать общий проект с механическими и другими фильтрами для точного согласования всех функциональных компонентов.

В городской квартире можно рассчитывать на поддержание приемлемого качества жесткой воды. Соответствующие обязательства указаны в договоре со снабжающей организацией. Однако в домашних условиях не исключены аварии на магистральных трассах, броски давления. Для защиты от этих негативных воздействий на входе устанавливают фосфатный или механический фильтр с регулятором напора и контрольными манометрами. Надо подчеркнуть преимущества электромагнитного преобразователя с учетом особенностей объектов данной категории:

  • компактность;
  • небольшой вес;
  • отсутствие шумов;
  • симпатичный внешний вид.

Для автономного загородного водоснабжения расчетливые собственники предпочитают пользоваться артезианской скважиной. Такой источник обеспечивает высокую степень очистки природной фильтрацией. Но на большой глубине увеличивается концентрация примесей, вымытых из горных пород. Среди них – соединения солей в достаточно большой концентрации.

В частном доме проще найти свободное место для технологического оборудования. Здесь можно устанавливать комплекты для умягчения воды ионообменным способом. В помещение проводят необходимые инженерные сети. Надо не забывать о хорошей изоляции. Необходимо поддерживать установленный производителем температурный режим. Следует удалить хлорные и другие химические соединения, способные повредить действующую засыпку.

Умягчение воды – процесс понижения жесткости. Жесткость воды обусловлена наличием солей кальция и магния. Для снижения жесткости воды применяют следующие методы: реагентный; катионитовый; электродиализ; мембранные технологии.

Реагентные методы умягчения воды основаны на переводе ионов кальция и магния в малорастворимые и легко удаляемые соединения с помощью химических веществ. Из реагентных способов умягчения наиболее распространен известково − содовый метод. Сущность его состоит в переводе солей Ca 2+ и Mg2+ в малорастворимые соединения CaCO 3 и Mg(OH) 2 , выпадающие в осадок. При известково − содовом методе процесс проводят в две стадии. Первоначально из воды удаляют органические примеси и значительную часть карбонатной жесткости, используя соли алюминия или железа с известью. После этого вводят соду. Более глубокое умягчение воды может быть достигнуто ее подогревом.

Содово−натриевый метод применяют для умягчения воды, карбонатная жесткость которой немного больше некарбонатной.

Бариевый метод умягчения воды применяют в сочетании с другими методами. Вначале вводят барий − содержащие реагенты (Ba(OH) 2 , BаCO 3 , BaAl 2 O 4) для устранения сульфатной жесткости, затем после осветления воду обрабатывают известью и содой для доумягчения. Из-за высокой стоимости реагентов этот метод применяют очень редко.

Фосфатирование применяют для доумягчения воды, после реагентного умягчения известково−содовым методом, что позволяет получить остаточную жесткость 0,02−0,03 мг-экв/л. Такая глубокая доочистка позволяет в некоторых случаях не прибегать к катионитовому умягчению. Фосфатное умягчение обычно осуществляется при подогреве воды до 105−150 ◦ С. Из-за высокой стоимости тринатрийфосфата фосфатный метод используется для доумягчения воды, прошедшей предварительное умягчение известью и содой.

Катионитовый метод основан на способности ионообменных материалов обменивать присутствующие в воде катионы кальция и магния на обменные катионы натрия или водорода. В качестве катионитов применяют органические катиониты искусственного происхождения. Катионитовый метод позволяет достичь глубокого умягчения воды.

N-катионитовый метод применяют для умягчения воды с содержанием взвеси не более 8 мг/л и цветностью не более 30 град. Жесткость воды снижается при одноступенчатом Na- катионировании до 0,05…,1, при двухступенчатом – до 0,01 мг − экв/л. Процесс Na- катионирования описывается следующими реакциями обмена:

2Na[K] + Ca (HCO 3) ↔ Ca[K] +2NaHCO 3 ,

где [K] – нерастворимая матрица полимера.

После истощения рабочей обменной емкости катионита он теряет способность умягчать воду и его необходимо регенерировать. Процесс умягчения воды на катионитовых фильтрах слагается из следующих последовательных операций: фильтрование воды через слой катионита до момента достижения предельно допускаемой жесткости в фильтрате; взрыхление слоя катионита восходящим потоком умягченной воды; спуск водяной подушки во избежание разбавления регенерирующего раствора; регенерация катионита посредством фильтрования соответствующего раствора; отмывка катионита неумягченной водой.


Наибольшее практическое применение нашло сочетание процессов

Н – Na − катионирования, в результате чего может быть достигнута требуемая щелочность или кислотность воды. Процесс Н – Na-катионирования может осуществляться по схемам: параллельное Н– Na-катионирование, последовательное Н – Na − катионирование и совместное Н – Na − катионирование.

Электродиализ – метод разделения растворенных веществ, значительно отличающихся молекулярными массами. Он основан на разных скоростях диффузии этих веществ через полупроницаемую мембрану, разделяющую концентрированный и разбавленный растворы. Диализ осуществляется в мембранных аппаратах с нитро − и ацетатцеллюлозными пленочными мембранами.

Опреснение и обессоливание воды. Существующие методы опреснения и обессоливания воды подразделяются на две группы: с изменением и без изменения агрегативного состояния воды. К первой группе методов относят дистилляцию, замораживание, газогидратный метод; ко второй группе – ионный обмен, электродиализ, обратный осмос, гиперфильтрацию.

Дистилляционный метод основан на способности воды при нагревании испаряться и распадаться на пресный пар и соленый рассол. При нагревании соленой воды до температуры более высокой, чем температура кипения, вода начинает кипеть. Образовавшийся пар при давлении менее 50кг/см 2 практически не способен растворять содержащиеся в опресняемой воде соли, поэтому при его конденсации получается пресная вода.

Ионообменный метод опреснения и обессоливания основан на последовательном фильтровании воды через Н − катионитовый и ОН - − анионитовый фильтры. Вода, содержащая NaCl, обессоливается по следующим схемам:

Н[K] + NaCl ↔ Na[K] +HCl.

OH[A] +HCl ↔ Cl[A] + H 2 O

На ионообменные установки подается вода, содержащая соли до 3,0 г/л, сульфаты и хлориды – до 5 мг/л, взвешенных веществ – не более 8 мг/л и имеющая цветность не выше 30 град и перманганатную окисляемость до 7 мгО 2 /л.

В соответствии с необходимой глубиной обессоливания воды применяют одно-, двух- и трехступенчатые установки.

В одноступенчатых ионитовых установках воду последовательно пропускают через группу фильтров с сильнокислотным Н − катионитом, а затем через группу фильтров со слабоосновным анионитом: свободный диоксид углерода удаляется в дегазаторе, который устанавливается после катионитовых или анионитовых фильтров. В каждой группе должно быть не менее двух фильтров.

Ионитовые установки с двухступенчатой схемой обессоливания воды состоят из Н −катионитовых и анионитовых фильтров первой ступени (со слабоосновным анионитом) дегазатора для удаления свободной углекислоты, Н − катионитовых и анионитовых фильтров второй ступени (с сильноосновным анионитом). Анионитовые фильтры первой ступени задерживают анионы сильных кислот, второй ступени – анионы слабых кислот (органических кислот и кремневой кислоты).

В установках с трехступенчатой схемой на третьей ступени применяют фильтр со смешанной загрузкой катионита и анионита или Н − катионитовые фильтры третьей ступени и за ними анионитовые фильтры третьей ступени с сильноосновным анионитом.

Электродиализным называется процесс удаления из раствора ионов растворенных веществ путем избирательного их переноса через мембраны, селективные к этим ионам, в поле постоянного электрического тока.

При наложении постоянного электрического поля на раствор ионизированных веществ (электролитов) возникает направленное движение ионоврастворенных солей, а также ионов H + и ОН - . Причем катионы движутся к катоду, а анионы – к аноду. Если раствор разделить на секции с помощью специальных мембран, проницаемых только для катионов или только для анионов, то катионы, двигаясь к катоду, будут свободно проходить через катионитовую мембрану. Для анионов же она практически непроницаема. Анионы, пройдя через анионитовую мембрану, будут двигаться к аноду. Таким образом раствор разделится на обессоленную воду, находящуюся между мембранами, и концентрированные рассолы – щелочной католит и кислый анолит.

В настоящее время для обессоливания воды используются многокамерные плоскорамерные аппараты.

Область применения электродиализа ограничивается солесодержанием растворов 0,5 − 10 г/л, так как при меньших концентрациях падает проводимость растворов и уменьшается эффективность использования электроэнергии, а при больших − процесс становиться экономически не выгоден вследствие существенного роста энергозатрат, так как затраченная электроэнергия пропорциональна количеству удаляемых ионов.

Опреснение воды гиперфильтрацией заключается в фильтровании соленой воды через специальные полупроницаемые мембраны, которые пропускают воду, а задерживают ионы растворенных в ней солей. При этом необходимо создать избыточное давление для фильтрования воды через мембрану.

Обезжелезивание воды. В природной воде, особенно в воде подземных источников в больших количествах встречается железо в растворенном виде и часто, марганец. Норма содержания в питьевой воде для железа по СанПиН 2.1.4.1074 − 01 составляет 0,3 мг/л и 0,1 мг/л для марганца.

Железо находится в воде в форме:

Двухвалентного железа – в виде растворенных ионов Fe 2+ ;

Трехвалентного;

Органического железа (в виде растворимых комплексов с природными органическими кислотами (гуматов));

Бактериального железа – продукта жизнедеятельности железобактерий (железо находится в оболочке).

В подземных водах присутствует в основном растворенное двухвалентное железо в виде ионов Fe 2+ . Трехвалентное железо появляется после контакта такой воды с воздухом и в изношенных системах водораспределения при контакте воды с поверхностью труб.

В поверхностных водах железо находится в трехвалентном состоянии, а также входит в состав органических комплексов и железобактерий. Если в воде присутствует только трехвалентное железо в виде взвеси, то хватает простого отстаивания или фильтрации.

Для удаления двухвалентного железа и марганца сначала их переводят в нерастворимую форму, окисляя их кислородом воздуха, хлором, озоном или перманганатом калия с последующей фильтрацией через механический фильтр с песчаной, антрацитовой или гравийной загрузкой. Процесс окисления и формирования хлопьев достаточно длителен.

2 Fe 2+ +О 2 +2Н + =2 Fe 3+ +2ОН -

Fe 3+ +ОН -= Fe(ОН) 3 ↓.

Принципиально новыми продуктами, появившимися в последнее время, являются каталитические загрузки, позволяющие проводить обезжелезивание и деманганацию с высокой эффективностью. К таким загрузкам относятся Бирм (Birm), пиролюзит, магнетит, Гринсенд (Manganese Greensand, MZ−10) и МТМ. Эти природные материалы содержат перманганат марганца и пм фильтрации через эти загрузки происходит окисление железа и марганца, перевод их в нерастворимую гидроокись, которая осаждается на загрузке. Пленка из окислов марганца расходуется на окисление железа и марганца, и поэтому ее необходимо восстанавливать. Для этого загрузку периодически обрабатывают раствором перманганата калия либо дозируют его в воду с помощью системы пропорционального дозирования перед поступлением ее в фильтр.

Фторирование и обесфторивание воды. Недостаток фтора в воде так же как, и его избыток оказывает негативное воздействие на здоровье человека. Оптимальное содержание фтора в воде 0,7 − 1,5 мг/л.

Обесфторивание воды осуществляется с применением следующих методов: реагентный, фильтрование через фторселективные материалы, к которым относится: активированный оксид алюминия; фосфатсодержащие сорбенты; магнезиальные сорбенты (оксифториды магния); активированные угли; алюмомодифицированные материалы.

При реагентном методе обесфторивания воды применяются следующие реагенты: сульфат алюминия, полиоксихлориды алюминия.

Дезодорация воды. Запахи и привкусы воды обусловлены присутствием в ней микроорганизмов, некоторых неорганических (сероводород и железо) и органических веществ. Иногда органолептические свойства воды ухудшаются при передозировке реагентов или при неправильной эксплуатации водоочистных сооружений. Универсальных методов дезодорации не существует, но использование некоторых из них в сочетании обеспечивают требуемую степень очистки. Если вещества, вызывающие неприятные привкусы и запахи, находятся во взвешенном и коллоидном состоянии, то хорошие результаты дает их коагулирование. Привкусы и запахи, обусловленные неорганическими веществами, которые находятся в растворенном состоянии, извлекают дегазацией, обезжелезиванием, обессоливанием. Запахи и привкусы, вызванные органическими веществами, отличаются большой стойкостью. Их извлекают путем оксидации и сорбции. Для устранения запахов и привкусов, вызванных находящимися в воде микроорганизмами, применяют окисление с последующей сорбцией веществ. Запахи и привкусы природной воды могут быть устранены совместно с хлорированием или озонированием, а также окислением перманганатом калия. Действие окислителей эффективно лишь по отношению к ограниченному числу загрязнений. Недостатком окислительного метода является необходимость дозирования окислителя.

Подготовка воды в оборотных системах охлаждения. Оборотные системы промышленных предприятий обеспечиваются водой для охлаждения, которая перекачивается из искусственного охладителя, где вода отдает тепло воздуху. В оборотных системах вода охлаждается в градирнях, брызгальных бассейнах, прудах – охладителях.

Вода, циркулирующая в оборотной системе охлаждения, подвергается физико − химическим воздействиям: упариванию, нагреванию, охлаждению, аэрации, многократному контакту с охлаждаемой поверхностью в результате этого изменяется ее состав. Особенно часто нарушается нормальная работа циркуляционных систем в результате появления на стенках теплообменных аппаратов накипи, биологических обрастаний, коррозии металлических элементов систем. Отложения на стенках аппаратов и труб вызывают также увеличение потерь напора при движении по ним воды, ухудшение условий теплопередачи и уменьшение расходов охлаждающей воды, что приводит к снижению эффекта охлаждения, нарушению технологических режимов работы теплообменных аппаратов. Потери воды за счет испарения и разбрызгивания компенсируются добавочной водой из источника.

Потери воды на испарение Q 1 определяют по формуле:

Q 1 =k 1 ∆tQ o ,

где k 1 – коэффициент, зависящий от температуры воздуха; ∆t − разность температур до и после охлаждения; Q o – расход охлаждаемой воды, м 3 /ч.

Потери воды из системы на разбрызгивание Q 2 зависят от типа, конструкции и размеров охладителя и определяются по формуле:

где k 2 – коэффициент потерь воды на разбрызгивание.

Необходимость обработки охлаждающей воды для борьбы с отложениями накипи возникает в системах оборотного водоснабжения. Основным соединением, встречающимся в составе накипи в охлаждающих системах, является карбонат кальция CaCO 3 . Для предотвращения образования карбоната кальция применяют следующие методы обработки воды:

1. Освежение оборотной воды, т.е. непрерывное добавление в систему свежей воды с меньшей карбонатной жесткостью и сбросом (продувкой) части отработавшей воды.

2. Введение в добавочную воду фосфатов, тормозящих процесс кристаллизации CaCO 3 .

3. Подкисление воды. При этом карбонатная жесткость свежей воды переходит в некарбонатную, соли которой не выпадают в осадок, что приводит к снижению рН и возрастанию концентрации свободной углекислоты СО 2 .

4. Умягчение воды в целях снижения содержания ионов Са 2+ и Мg 2+ , которые в виде нерастворимых солей удаляются из воды отстаиванием при известковании или в результате катионирования.

5. Рекарбонизация оборотной воды – возмещение потерь равновесной углекислоты.

6. Магнитная акустическая обработка воды.

Для борьбы с развитием в оборотных системах биологических обрастаний наибольшее распространение получила обработка воды хлором и медным купоросом.

Системы охлаждения теплообменных аппаратов подвержены процессам электрохимической и биологической коррозии. Предотвращения коррозионного действия воды может быть достигнуто одним из следующих способов:

1. Нанесение защитных покрытий на омываемые водой металлические поверхности.

2. Удаление из воды коррелирующих агентов (кислорода, сероводорода, свободной углекислоты).

3. Нанесение карбонатной, силикатной или фосфатной пленки на внутренние поверхности труб.