Анатомия воздушных шаров.

Аэростат состоит из трех частей: оболочки, корзины и системы горелки. Это довольно простая конструкция, по сравнению с другими воздушными судами.

Как называется основная часть воздушного шара?

Ткань оболочки - огнестойкий нейлон, используемый для производства рюкзаков и легких палаток, которые используются туристами и альпинистами. Клинья - большие секции, сшиваются друг с другом. Между ними проходят горизонтальные и вертикальные силовые ленты, которые выпускаются из материала, используемого при производстве автомобильных ремней безопасности. Они сводят к минимуму нагрузку на ткань, продлевая срок службы судна.

Основная часть воздушного шара , расположена под куполом и называется выпускным клапаном . Оболочка имеет полиуретановое покрытие, уменьшающее ее пористость. Использование на поверхности ингибитор, помогает материалу выдерживать ультрафиолетовое воздействие. В верхней области оболочки расположен парашютный клапан, через который выпускается горячий воздух. Открытие клапана осуществляется при помощи специального шнура (фала), идущего от панели к корзине. Кроме того, боковой клапан на многих воздушных шарах используется для изменения курса.

К внутренней части оболочки, вблизи верхнего клапана установлен индикатор температуры, белого цвета. Когда воздух в оболочке превышает определенной температуры, индикатор чернеет.

С нижней частью воздушного шара соединена юбка с отслаиваемыми вкладками. Она позволяет создать эффект печной трубы. Когда горелка работает, теплый воздух, более эффективно направляется в оболочку. Если основной частью воздушного шара является клапан на верхушке, то самой сложной его частью является система горелки.

Корзина для пассажиров и грелки

Современные корзины для воздушных шаров выпускаются из стали и алюминия со стекловолокном. Стороны стальных корзин заплетаются ивовой лозой или тростником, а нижняя часть обтягивается кожей. Такая конструкция способна выдержать большие нагрузки и удары при посадках. Благодаря эффективной точке опоры, обеспечивается устойчивая посадка.

По форме, корзины обычно бывают квадратные или прямоугольные, а треугольные формы выпускаются по специальному заказу. Закрытые гондолы или роскошные корзины могут иметь встроенные банкетные места и держатели шампанского.

Корзины надежно защищают пассажиров и поддерживают систему горелки, которая устанавливается над головой, в верхней части корзины.

Корзины алюминий/стекловолокно легче стальных, заплетенных ивой или тростником. Хотя по долговечности и устойчивости к нагрузкам стальные корзины крепче алюминиевых, последние все же достаточно крепкие и надежные.

Система горелки - самая сложная часть воздушного шара

Если оболочка и корзина являются наиболее видимыми частями воздушного шара, то горелка, является движущей силой. Горелки обычно устанавливаются непосредственно в верхней части корзины, а комплект газовых баллонов - по углам корзины. При этом, жидкий газ от топливного бака по гибким шлангам поступает к горелкам.

Точный поток газа к горелке, может поддерживать стандартную температуру воздуха в оболочке, а значит, прямой горизонтальный полет.

Оборудование воздушных шаров

  • Высотомер - показывает высоту над уровнем моря.
  • Вариометр - измеряет вертикальную скорость полета и показывает направление движения - вверх или вниз.
  • Пирометр - электрический датчик, установленный вблизи верхней части оболочки конверта, посылает информацию о температуре воздуха в этой области.
  • Датчик уровня топлива - показывает, количество оставшегося в баках газа.
  • Искроуловитель - используется для быстрого улавливания искры.
  • Головной убор - защитный шлем, для обеспечения быстрой посадки.
  • Очки и тяжелые перчатки для пилота.
  • Рубашки с длинными рукавами и длинные брюки для пилота и экипажа из огнезащитных материалов.
  • Прочные сапоги или высокие ботинки для пилота, экипажа и пассажиров.
  • Огнетушитель.
  • Аптечка первой помощи.

На воздушном шаре нет ни моторов, ни привычного нам руля. Из всего технологического арсенала — только горелки, мешки с песком и специальный клапан в верхней части купола для травления воздуха. Как же управлять этим летательным аппаратом?

Из истории воздухоплавания

Появление на свет воздушных шаров стало первым реальным воплощением вековой мечты человечества о покорении пятого океана. В 1306 году французский миссионер Бассу впервые описал, как находясь в Китае, стал свидетелем полета воздушного шара при вступлении на престол императора Фо Киена.

Однако родиной воздухоплавания считается французский городок Аннонэ, где 5 июня 1783 года братья Этьен и Жозеф Монгольфье подняли в небо созданный ими шарообразный аэростат, наполненный нагретым воздухом.

Полет летательного аппарата весом около 155 кг и диаметром 3,5 метров длился всего 10 минут. За это время он преодолел около километра на 300-метровой высоте, что стало выдающимся событием для своего времени. Позже, воздушные шары в честь создателей стали называть монгольфьерами.

Воздушный шар братьев Монгольфье состоял из льняной оболочки, обклеенной бумагой. Чтобы ее наполнить горячим воздухом был разведен костер из мелко нарубленной соломы. А 3 месяца спустя, в конструкцию летательного аппарата было внесено дополнение в виде специальной корзины для пассажиров.

Современные воздушные шары несомненно более совершенны, но сделаны практически по той же схеме. Для изготовления сферической оболочки шара используется специальный тонкий и прочный полиэфирный материал. Изменилась система нагрева воздуха. Функцию костра выполняет регулируемая пропановая газовая горелка, установленная в корзине прямо под куполом.

Несмотря на большую зависимость от ветра, современные воздушные шары управляемы. Высота полета регулируется выпускным отверстием в верхней части купола с помощью разрывного шнура. Для изменения курса предусмотрен боковой клапан. Существуют и более сложные конструкции, где внутри основного купола может размещаться еще один, заполненный гелием.

Как управлять воздушным шаром с корзиной

Управление воздушным шаром – занятие, требующее серьезной подготовки и немалых финансовых затрат. Достаточно сказать, что курс обучения пилота аэростата стоит сегодня около 200 тыс. рублей. Цена самого аэростата (в зависимости от модели) соизмерима с ценой легкового автомобиля.

Подготовка

Полету предшествует тщательная подготовка. Прежде всего необходимо изучить метеоусловия – облачность, видимость и скорость ветра. В соответствии с полученными данными планируется маршрут полета. Ввиду непредвиденных изменений метеоусловий выбирается именно такой маршрут, где на пути есть достаточно мест для безопасных посадок.


Взлет

Чтобы воздушный шар взлетел, необходимы усилия всего экипажа. Оптимальный вариант места для старта – ровная площадка 50 х 50 метров в открытом поле, где рядом нет никаких посторонних объектов – столбов, деревьев, ЛЭП.

Затем начинается сборка шара: к корзине крепятся горелки, которые соединяются специальными шлангами с газовыми баллонами. После пробного запуска горелки экипаж приступает к растягиванию купола (обязательно по направлению ветра). Далее растянутый купол специальными карабинами пристегивается к корзине.


Следующий этап – заполнение купола холодным воздухом с помощью вентилятора, после чего запускается горелка для нагрева воздуха. Разогретый воздух поднимает купол с земли, и экипаж (с пассажирами) занимает свои места. Чтобы шар не улетел, его предварительно привязывают к автомобилю.

Полет

Несмотря на отсутствие мотора и крыльев, воздушный шар управляем, что требует определенных навыков. Основные средства управления – горелки и выпускной клапан. Для набора высоты горелка включается и воздух дополнительно нагревается, а для снижения – клапан приоткрывается. Горизонтальный полет происходит за счет попутного ветра. Именно здесь проявляется мастерство пилота. Так, чтобы лететь быстрее, он может увеличить высоту полета, где скорость ветра сильнее.

Спуск

Место посадки выбирается заранее. Оно должно быть большим и безопасным. Идеальный вариант – футбольное поле рядом с автомобильной дорогой. О месте посадки экипаж по радио сообщает на землю. Далее пилот выпускает воздух из купола при помощи клапана. Шар плавно опускается на землю.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Летом я была в гостях у Дедушки с Бабушкой, которые живут в деревне Пирогово, это не далеко от нашего города, а еще там же рядом есть Ижевский аэроклуб. Однажды я увидела, как со стороны аэроклуба в небо поднимался воздушный шар. Мне стало очень интересно, как и почему летают воздушные шары. На эту тему я прочитала разную литературу, энциклопедии. В Интернете нашла интересные материалы по истории воздухоплавания.

Объектом нашего исследования является воздушный шар.

Цель работы : проверить условия воздухоплавания при помощи воздушного шара, наполненного гелием и горячим воздухом.

Задачи исследования :

1. Изучить теоретический материал о воздухоплавании;

2. Провести эксперимент с поплавком и жидкостью, с воздушным шаром на примере шара с гелием и горячим воздухом;

3. Выявить параметры, от которых зависит условие подъема шара.

Гипотеза исследования : Я думаю, что шар взлетает, когда он становится легче воздуха.

2.История воздухоплавания

2.1 "ПАССАРОЛА" ЛОРЕНЦО ГУЗМАО

K числу пионеров воздухоплавания, чьи имена не были забыты историей, но чьи научные достижения оставались неизвестными или ставились под сомнение на протяжении столетий, относится бразилец Бартоломмео Лоренцо. Это его подлинное имя, а в историю воздухоплавания он вошел как португальский священник Лоренцо Гузмао, автор проекта "Пассаролы", которая до последнего времени воспринималась как чистая фантазия. После длительных поисков в 1971 году удалось найти документы, проливающие свет на события далекого прошлого. Эти события начались в 1708 году, когда, перебравшись в Португалию, Лоренцо Гузмао поступил в университет в Коимбре и зажегся идеей постройки летательного аппарата. Проявив незаурядные способности в изучении физики и математики, он начал с того, что является основой любого начинания: с эксперимента. Им было построено несколько моделей, ставших прообразами задуманного судна.

В августе 1709 года модели были продемонстрированы высшей королевской знати. Одна из демонстраций была успешной: тонкая яйцеобразная оболочка с подвешенной под ней маленькой жаровней, нагревающей воздух, оторвалась от земли почти на четыре метра. В том же году Гузмао приступил к осуществлению проекта "Пассаролы". История не располагает сведениями о ее испытании. Но в любом случае Лоренцо Гузмао был первым человеком, который, опираясь на изучение физических явлений природы, сумел выявить реальный способ воздухоплавания и попытался осуществить его на практике (Рис. 1).

2.2 ИЗОБРЕТЕНИЕ ЖОЗЕФА МОНГОЛЬФЬЕ

"Скорее приготовь побольше шелковой материи, веревок, и ты увидишь одну из удивительнейших в мире вещей", - такую записку получил в 1782году Этьенн Монгольфье, владелец бумажной мануфактуры в маленьком французском городке, от своего старшего брата Жозефа . Послание означало, что наконец-то найдено то, о чем братья не раз говорили при встречах: средство, с помощью которого можно подняться в воздух. Этим средством оказалась наполненная дымом оболочка. В результате нехитрого эксперимента Ж. Монгольфье увидел, как матерчатая оболочка, сшитая в форме коробки из двух кусков ткани, после наполнения ее дымом устремилась вверх. Открытие Жозефа увлекло и его брата. Работая теперь уже вместе, они соорудили еще две аэростатические машины (так они называли свои воздушные шары). Одна из них, выполненная в виде шара диаметром 3,5 метра, была продемонстрирована в кругу родных и знакомых.

Успех был полный - оболочка продержалась в воздухе около 10 минут, поднявшись при этом на высоту почти 300 метров и пролетев по воздуху около километра. Окрыленные успехом, братья решили показать изобретение широкой публике. Они построили огромный воздушный шар диаметром более 10 метров. Его оболочка, сшитая из холста, была усилена веревочной сеткой и оклеена бумагой с целью повышения непроницаемости. Демонстрация воздушного шара состоялась на базарной площади города 5 июня 1783 года в присутствии большого числа зрителей (Рис. 2). Шар, наполненный дымом, устремился ввысь. Специальный протокол, скрепленный подписями должностных лиц, засвидетельствовал все подробности опыта. Так впервые официально было заверено изобретение, открывшее путь воздухоплаванию.

2.3 ИЗОБРЕТЕНИЕ ПРОФЕССОРА ШАРЛЯ

Полет воздушного шара братьев Монгольфье вызвал большой интерес в Париже. Академия наук пригласила их повторить свой опыт в столице. В то же время молодому французскому физику профессору Жаку Шарлю было предписано подготовить и провести демонстрацию своего летательного аппарата. Шарль был уверен, что Монгольфьеров газ, как называли тогда дымный воздух, - это не лучшее средство для создания аэростатической подъемной силы. Он был хорошо знаком с последними открытиями в области химии и считал, что гораздо большие выгоды сулит использование водорода, так как он легче воздуха (Рис. 3). Но избрав водород для наполнения летательного аппарата, Шарль оказался перед рядом технических проблем. В первую очередь, из чего изготовить легкую оболочку, способную длительное время держать летучий газ. Справиться с этой проблемой ему помогли механики братья Робей. Они изготовили материал необходимых качеств, использовав легкую шелковую ткань, покрытую раствором каучука в скипидаре. 27 августа 1783 года на Марсовом поле в Париже стартовал летательный аппарат Шарля. На глазах 300 тысяч зрителей он устремился ввысь и вскоре стал невидимым. Когда кто-то из присутствовавших воскликнул: "Какой же во всем этом смысл?!" - известный американский ученый и государственный деятель Бенджамин Франклин, находившийся среди зрителей, заметил: "А какой смысл в появлении на свет новорожденного?" Замечание оказалось пророческим. На свет появился "новорожденный", которому было предопределено великое будущее.

3. Архимедова сила - подъемная сила

На все тела в воздухе, как и в жидкости, действует выталкивающая или архимедова сила. Для того чтобы летательный аппарат поднялся в воздухе, необходимо, чтобы архимедова сила, действующая на шар, была больше силы тяжести. На этом основано воздухоплавание.

Подъёмная сила воздушного шара равна разности между архимедовой силой и действующей на шар силой тяжести: F=F А −P тяж (Рис. 4).

Чем меньше плотность газа, заполняющего воздушный шар данного объёма, тем меньше действующая на него сила тяжести и, поэтому, тем больше подъёмная сила. Чтобы аэростат поднимался вверх, его нужно наполнить газом, плотность которого меньше, чем у воздуха. Это может быть водород, гелий, нагретый воздух. Водород обладает одним большим недостатком — он горит и вместе с воздухом образует взрывчатую смесь.

Негорючим и в то же время лёгким газом является гелий. Поэтому многие аэростаты в наше время наполняют гелием.

Тёплый воздух удобен тем, что его температуру (а, значит, и его плотность, и подъёмную силу) можно регулировать с помощью газовой горелки, расположенной под отверстием, находящимся в нижней части шара. При увеличении пламени горелки, шар поднимается выше, при уменьшении пламени горелки шар опускается вниз. Можно подобрать такую температуру, при которой сила тяжести, действующая на шар вместе с кабиной, оказывается равной выталкивающей силе. Тогда шар повисает в воздухе, и с него легко проводить наблюдения.

Плотность воздуха уменьшается с увеличением высоты. Поэтому, по мере поднятия аэростата вверх, действующая на него архимедова сила становится меньше. После того как архимедова сила достигает значения, равного силе тяжести, подъём аэростата прекращается. Чтобы подняться выше, с шара сбрасывают специально взятый для этого балласт (высыпают песок из мешков). При этом сила тяжести уменьшается, и выталкивающая сила вновь оказывается преобладающей. Для того чтобы опуститься на землю, выталкивающую силу, наоборот, следует уменьшить. Это достигается путём уменьшения объёма шара. В верхней части шара открывают клапан, часть газа из шара выходит, и он начинает опускаться вниз.

4. ПРАКТИЧЕСКАЯ ЧАСТЬ

4.1 Эксперимент с поплавком и водой.

Проверим действие Архимедовой силы в жидкости на примере поплавка с грузилом. Возьмем любую емкость (для наглядности лучше стеклянную), поплавок с грузилом будет нашим воображаемым воздушным шаром (рис. 5). Опустим в емкость наш воображаемый воздушный шар (поплавок с грузилом) (рис.6), т.к. поплавок с грузилом плотнее и соответственно тяжелее воздуха, он опускается на дно емкости. Наполним емкость более плотным и соответственно более тяжелым веществом (например водой) (рис. 7). Мы видим как наш воображаемый воздушный шар (поплавок с грузилом) начинает подниматься, на него действует Архимедова - подъемная сила. После наполнения емкости поплавок с грузилом поднялся до уровня воды, именно на этом уровне сила тяжести нашего шарика сравнялась с Архимедовой силой (рис. 8). Дальнейший подъем прекратился.

: для того, чтобы шар взлетел, плотность воздуха вокруг должна быть больше плотности воздуха внутри шара.

4.2 Эксперимент с горячим воздухом.

Для эксперимента взяли оболочку от китайского светящегося шара. Он большой, красивый и очень подошел для эксперимента с горячим воздухом. Эксперимент проводили в два этапа, дома при комнатной температуре (22 градуса) и на улице, при температуре минус 11 градусов.

С помощью строительного фена наполнили наш шар. Во время эксперимента необходимо соблюдать технику пожарной безопасности и проводить только в присутствии взрослых, так как температура горячего воздуха от фена достигает 650 градусов (рис. 9). После того как отпустили шар (рис. 10), он поднялся на высоту около 2,5-3 метров (рис. 11, 12) Потолок был гораздо выше и не ограничивал подъем шара. Было сделано несколько попыток, результаты примерно совпадали.

Затем провели эксперимент на улице. С помощью строительного фена наполнили наш шар горячим воздухом (рис.13) и отпустили. Подъем шара оказался значительно выше, примерно до уровня второго этажа дома, это видно по фотографии (рис. 14, 15, 16)

Вывод по данному эксперименту : дома при комнатной температуре шар взлетает ниже, чем на улице, где холодный воздух. Сила Архимеда тем сильнее, чем холоднее воздух вокруг шара и горячее воздух внутри него.

4.3 Эксперимент с шаром надутым гелием.

Для эксперимента мы с Папой собрали конструкцию шара в миниатюре (рис. 17). В качестве балласта мы использовали 4 свинцовых грузика со скрепками, которые крепятся на корзинке с куколкой (рис. 18). Из теории мы знаем, что на шар действует Архимедова сила, она пытается поднять шар вверх, а сила тяжести опускает шар на землю. Сейчас на фото показаны условия, когда сила Архимеда не может победить силу тяжести.

Изменим условия! Снимем 2 грузика и мы видим как шар оторвался от пола. Сила Архимеда победила силу тяжести (рис. 19). Шар поднялся примерно на 1 метр от пола, возникли условия, когда сила Архимеда не может победить силу тяжести, но и сила тяжести не может победить силу Архимеда, у них ничья. Если мы снимем еще один грузик, мы снова изменим условия, сила тяжести уменьшилась, шар поднялся выше до потолка. Если мы снова повесим грузик, сила тяжести увеличится, шар опустится ниже (рис. 20).

Вывод по данному эксперименту : Добавляя или уменьшая грузики можно управлять силой тяжести. Для возникновения полета, сила Архимеда должна быть сильнее силы тяжести.

5. Заключение

Изучив теоретический материал и проведя эксперименты мы достигли поставленной цели и выяснили условие, при котором возможен полет воздушного шара. Полет воздушного шара возможен при условии, когда сила Архимеда больше силы тяжести и зависит от следующих параметров:

Объем шара;

Величина груза;

Плотность воздуха внутри шара;

Плотность воздуха вокруг шара;

Температура воздуха внутри шара;

Температура воздуха вокруг шара.

С помощью балласта мы можем управлять силой тяжести. Повышая или понижая температуру воздуха внутри шара, можно управлять Архимедовой силой.

Список используемой литературы

    Кириллова, И. Г.Книга для чтения по физике. -М,: Просвещение. 1986 г.

    Оксфорд. Энциклопедия школьника. - М. : Астрель. 2002.

    Перышкин, А. В. Физика 7. -М,: Дрофа. 2006 г.

    Перельман. Я.И. Занимательная физика. Книга 1.-М,: Наука. 1986 г.

    Перельман. Я.И. Знаете ли вы физику.// Библиотека «Квант» выпуск 82. -М,: Наука. 1992 г.

    Современная иллюстрированная энциклопедия. Техника.

    Материалы с Интернета.

Приложения:

Рис. 1 Первая демонстрация модели воздушного шара «Пассарола» в 1709 году.

Рис. 3 Наполнение первого водородного баллона профессора Шарля.

Рис. 4 На все тела в воздухе, как и в жидкости, действует выталкивающая или архимедова сила.

Купол

Купол теплового воздушного шара шьется из прочных нейлоновых тканей – полиэстера или полиамида, внутренняя сторона которых покрывается полиуретаном (силиконом). Покрыв ткань полиуретаном, она не пропускает воздух.

Куски ткани - сегменты – сшиваются в колонки, которые потом сшиваются между собой. Отверстие надувания купола обшивают лентой из защитного материала Nomex, который является устойчивым к жару и защищает купол от обжигания во время надувания.

Далее на куполе зашиваются вертикальные и горизонтальные ленты нагрузки. Количество лент разное, в зависимости от количества колонок и формы купола. Чем больше у шара колонок, тем больше надо лент для сшивания, тем менее прочными они могут быть. На верхушке ленты крепятся к кольцу верхушки, а внизу лента обвода крепится к канатам подвески купола. Соединения прячутся в мешочках из материала Nomex. Таким образом получается однородный каркас купола.

Купола квалифицируются по объему и грузоподъемности, т. е. максимальному весу, который купол подпимает.

Тип Объем Количество колонок Количество канатов нагрузки Система выпуска воздуха
A 2970-15000м3
(AX-8- AX-13)
20 5 Парашютный клапан, простая velcro часть с боковым клапаном или комбинированная velcro часть
N 890-5950 м3
(AX-4 - AX-10)
12 - 16 Парашютный клапан
O 890-4530 м3
(AX-4-AX-10)
12 12 Парашютный клапан, иногда (особенно в больших куполах) простая или комбинированная velcro часть
V 590 - 2550 м3
(AX3 -AX-8)
8 8 Парашютный клапан
Z 1840 - 2970 м3
(AX-7 - AX-8)
24 Парашютный клапан

Горелки

Горелки, говоря образно, являются силовой станцией горячего воздуха воздушного шара. С механической точки зрения это самая сложная часть шара. Горелками накаляется воздух при надувании шара и поддерживается температура при полете. Горелки «питаются» жидким пропаном, который до сгорания в спиралях горелки превращается в газ. Поэтому почти половину горелки составляет спираль. В горелку сжиженный газ попадает из газового цилиндра. В спирали жидкий пропан накаляется, и прогревшись он превращается в газ. Накаленная горелка работает более производительно, чем холодная. Современные горелки изготавливаются с защитными коробками, которые защищают руку пилота от ожогов и удерживают тепло, излучаемое вниз от накаленной горелки. Горелка изготавливается из очень крепкой нержавеющей стали, поскольку температура сгорания пропана - около +500 C. Поэтому горелки должны выдержать температуру больших разниц. Современные горелки воздушных шаров являются мощными – их мощность достигает 4500-6000 мегаватт.

Корзина

Корзины обычно изготавливается из лозы, дно корзины – из устойчивой к влаге морской фанеры. Для структурного каркаса корзины используются 6 мм тросы из нержавеющей стали. Ими корзина крепиться к куполу. В гнезда рамы корзины и рамы горелки вставляются стояки из полиуретана. Они укрепляют и делают стабильной систему нагревания. Эти стояки и тросы покрываются кожаными оболочками, которые защищают стояки и тросы от механических повреждений. Газовые цилиндры, как правило, закрепляются кожаными ремнями в углах корзины. Устройства, футляр для карты, огнетушитель и другие принадлежности также крепятся в корзине в предназначенных для них местах.