Методы гидравлического расчета системы отопления. Гидравлический расчет системы отопления Как делать гидравлический расчет отопления

Отопление на основе циркуляции горячей воды – наиболее распространенный вариант обустройства частного дома. Для грамотной разработки системы необходимо иметь предварительные результаты анализа, так называемый гидравлический расчет системы отопления, увязывающий давление на всех участках сети с диаметрами труб.

В представленной статье подробно описана методика вычислений. Чтобы лучше понять алгоритм действий, мы рассмотрели порядок расчета на конкретном примере.

Придерживаясь описанной последовательности, получится определить оптимальный диаметр магистрали, количество отопительных приборов, мощность котла и прочие параметры системы, необходимые для обустройства эффективного индивидуального теплоснабжения.

Определяющим фактором технологического развития систем отопления стала обычная экономия на энергоноситель. Стремление сэкономить заставляет тщательней подходить к проектированию, выбору материалов, способов монтажа и эксплуатации отопления для жилища.

Поэтому, если вы решили создать уникальную и в первую очередь экономную систему отопления для своей квартиры или дома, тогда рекомендуем ознакомится с правила расчета и проектирования.

Галерея изображений

В результате проведения гидравлического расчёта получаем несколько важных характеристик гидравлической системы, которые дают ответы на следующие вопросы:

  • какая должна быть мощность источника отопления;
  • какой расход и скорость теплоносителя;
  • какой нужен диаметр основной магистрали теплового трубопровода;
  • какие возможные потери теплоты и самой массы теплоносителя.

Еще одним важным аспектом гидравлического расчёт является процедура баланса (увязки) всех частей (веток) системы во время экстремальных тепловых режимов с помощью регулирующих приборов.

Выделяют несколько основных видов отопительных изделий: чугунные и алюминиевые многосекционные, стальные панельные, биметаллические радиаторы и ковекторы. Но наиболее распространёнными являются алюминиевые многосекционные радиаторы

Расчетной зоной трубопроводной магистрали есть участок с постоянным диаметром самой магистрали, а также неизменяемым расходом горячей воды, который определён по формуле теплового баланса комнат. Перечисление расчётных зон начинается от насоса или источника тепла.

Начальные условия примера

Для более конкретного пояснения всех деталей гидравлического просчёта возьмем конкретный пример обычного жилищного помещения. В наличии имеем классическую 2-комнатную квартиру панельного дома, общей площадью 65,54 м 2 , которая включает две комнаты, кухню, раздельные туалет и ванная, двойной коридор, спаренный балкон.

После сдачи в эксплуатацию получили следующую информацию относительно готовности квартиры. Описываемая квартира включает обработанные шпаклевкой и грунтом стены из монолитных железо-бетонных конструкций, окна из профиля с двух камерными стеклами, тырсо-прессованные межкомнатные двери, керамическая плитка на полу санузла.

Типичный панельный 9-этажный дом на четыре подъезда. На каждом этаже по 3 квартиры: одна 2-комнатная и две 3-комнатных. Квартира расположена на пятом этаже

Кроме того, представленное жильё уже оснащено медной проводкой, распределителями и отдельным щитком, газовой плитой, ванной, умывальником, унитазом, полотенцесушителем, мойкой.

И самое главное в жилых комнатах, ванной и кухне уже имеются алюминиевые отопительные радиаторы. Вопрос относительно труб и котла остаётся открытым.

Как производится сбор данных

Гидравлический расчёт системы в большинстве своём основывается на вычислениях связанных с расчетом отопления по площади помещения.

Поэтому необходимо иметь следующую информацию:

  • площадь каждого отдельного помещения;
  • габариты оконных и дверных разъёмов (внутренние двери на потери теплоты практически не влияют);
  • климатические условия, особенности региона.

Будем исходить из следующих данных. Площадь общей комнаты – 18,83 м 2 , спальня – 14,86 м 2 , кухня – 10,46 м 2 , балкон – 7,83 м 2 (сумма), коридор – 9,72 м 2 (сумма), ванная – 3,60 м 2 , туалет – 1,5 м 2 . Входные двери – 2,20 м 2 , оконная витрина общей комнаты – 8,1 м 2 , окно спальни – 1,96 м 2 , окно кухни – 1,96 м 2 .

Высота стен квартиры – 2 метра 70 см. Внешние стены изготовлены с бетона класса В7 плюс внутренняя штукатурка, толщиной 300 мм. Внутренние стены и перегородки – несущие 120 мм, обычные – 80 мм. Пол и соответственно потолок из бетонных плит перекрытия класса В15, толщина 200 мм.

Экономия тепла в жилище во многом зависит от грамотного расчета гидравлики, ее правильного монтажа, а также использования. Все элементы обогревающей системы (котел, теплопроводные трубы и радиаторы, отдающие тепло) должны быть связаны между собой так, чтобы сохранялись исходные параметры системы, независимо оттого, какое время года за окном и какие оказываются нагрузки.

Что обозначает расчет гидравлики и зачем он нужен

Сделать гидравлический расчет отопления – это значит правильно подобрать параметры определенных участков сети с учетом давления, чтобы по ним осуществлялся определенный расход теплоносителя.

Этот расчет дает возможность определить:

  • Потери давления на различных участках сети;
  • Пропускную способность трубопровода;
  • Оптимальный расход жидкости;
  • Необходимые показатели для выполнения гидравлической увязки.

Совмещая все полученные данные можно подобрать отопительные насосы.

Главная цель расчета гидравлики – обеспечение соответствия посчитанных расходов источника тепла с фактическими.

Количество попадающего в радиаторы источника тепла должно быть таким, чтобы получился обогревающий баланс внутри здания с учетом уличной температуры и температуры, заданной пользователем для каждой комнаты в отдельности.


Если отопление автономное, можно использовать такие методы расчета:

  • Используя характеристики сопротивления и проводимости;
  • По удельным расходам;
  • Путем сравнивания динамического давления;
  • По различным длинам, приведенным к одному показателю.

Расчет гидравлики – один из важнейших этапов при разработке систем отопления с жидким теплоносителем.

Прежде чем приступить к его осуществлению необходимо:

  • Определить баланс тепла в необходимых помещениях;
  • Выбрать тип приборов отопления и разместить их на чертежах здания;
  • Решить вопросы по конфигурации обогревательной системы, а также по видам применяемых труб и арматуры;
  • Начертить схему системы отопления, где будут видны номера, нагрузки и длины необходимых участков;
  • Определить основное циркуляционное кольцо, по которому движется теплоноситель.

Обычно для зданий с малым количеством этажей применятся двухтрубная отопительная система, а для построек с большой этажностью – однотрубная.

Автоматизированный гидравлический расчет системы отопления Excel

Чтобы было удобнее делать гидравлические расчеты, можно воспользоваться различными компьютерными программами, позволяющими выполнять точные вычисления. Одной из самых таких популярных программ считается Excel.

Кстати, если вы не знаете основ гидравлики, то сделать вам это будет трудно, даже в компьютерных программах. Это связано с тем, что в некоторых из них нет расшифровок формул и вычислений сопротивления в особо сложных цепочках.

Нюансы некоторых программ:

  • OvertopCO и DanfossCO могут вести расчеты систем с естественной циркуляцией;
  • HERZ C.O. 3.5 – работает по способу расчета удельных потерь давления;
  • Potok – отлично справляется с расчетами по изменяющимся перепадам температур по стоякам.

При вводе температурных данных нужно обязательно уточнять – по Цельсию идет вычисление или по Кельвину.

Что касается работы в Excel, то использовать электронные таблицы очень удобно. Нужно просто знать поочередность действий и точные вычислительные формулы. Вначале выбирается нужная ячейка, в которую вводятся данные. Дальнейший расчет происходит путем автоматического применения формул.


  • Разницу между горячим и холодным источником тепла для двухтрубной системы или расход жидкости для однотрубной;
  • Скорость движения источника тепла и его потока;
  • Плотность жидкости и параметры исследуемых участков (их длина в метрах и число находящихся там приборов).

Для расчета размеров труб внутри каждого участка как раз удобно пользоваться экселевскими таблицами.

Как вычислить гидравлическое сопротивление системы отопления

Чтобы решить из какого материала брать трубы, нужно узнать сопротивление гидравлики на всех участках системы обогрева и сравнить его.

Сопротивление может возникать в самой трубе из-за ее поворотов, сужений или расширений, а также в соединениях между шаровыми кранами, тройниками или балансирующими приборами.

Расчетным участком обычно считается труба с неменяющимся расходом жидкости, равным запланированному балансу тепла помещения.

Для расчета потерь берутся следующие данные, учитывая сопротивление арматуры:

  • Диаметр и длина трубы на нужном участке;
  • Параметры регулировочной арматуры от фирмы-производителя;
  • Скорость, с которой движется теплоноситель;
  • Шероховатость трубопровода и толщина его стенок;
  • Данные из справочника: потери трения и его коэффициент, плотность жидкости.

Если нужно самостоятельно вычислить удельные потери трения нужно знать внешний диаметр трубы, толщину ее стенки и скорость, с которой подается жидкость.

Чтобы найти гидравлическое сопротивление на одном участке, можно воспользоваться формулой Дарси-Вейсбаха:

Гидравлика системы отопления и ее увязка

Балансирование перепадов давления в системе отопления осуществляется с помощью запорной и регулировочной арматуры.


Увязка гидравлики рассчитывается исходя из:

  • Параметров труб по динамическому сопротивлению;
  • Технических свойств арматуры;
  • Общего расхода источника тепла;
  • Количестваимеющихся сопротивлений на расчетном участке.

Здесь нужно иметь в виду, что способность пропускать, давленческие перепады и крепления определяются для клапанов по отдельности. Именно по этим характеристикам вычисляются коэффициенты попадания источника тепла в каждый стояк, а затем в радиаторы.

Отсутствие гидравлической увязки в отопительной системе может привести к тому, что в некоторых помещениях будет очень сложно достичь нужной температуры.

Сопротивление гидравлики в основном циркуляционном кольце равно сумме потерь местных систем, первичного контура, теплообменника и теплогенератора.

Гидравлический расчет системы отопления (видео)

Выполняя гидравлический расчет, вы делаете отопительную систему более совершенной, правильно подбирая ее параметры таким образом, чтобы в любую погоду, при любых нагрузках расход источника тепла не превышал заданные нормы.

От правильного выбора всех элементов системы водяного отопления, их установки, во многом зависит эффективность её работы, сроки безаварийной и экономичной эксплуатации. Насколько экономичным и эффективным будет отопление в доме, покажут уже начальные вложения средств на этапе установки и монтажа системы. Рассмотрим подробнее как осуществляется гидравлический расчет систым отопления, с целью определения оптимальной мощности отопительной системы.

Эффективность системы отопления «на глазок»

Во многом суммы таких затрат зависят от:

  • требуемых диаметров трубопроводов
  • фитингов и соответствующих им приборов отопления
  • переходников
  • регулировочной и запорной арматуры

Желание минимизировать такие затраты не должно идти в ущерб качеству, но принцип разумной достаточности, некий оптимум, должен выдерживаться.

В большинстве современных индивидуальных отопительных комплексов применяются электронасосы для обеспечения принудительной циркуляции теплоносителя, в качестве которого часто используются незамерзающие составы антифризов . Гидравлическое сопротивление таких систем отопления для разных их типов теплоносителей будет разным.

Учитывая постоянно растущую стоимость энергоносителей (все виды топлива, электроэнергия) и расходных материалов (теплоносители, запчасти и пр.), следует с самого начала стремиться заложить в систему принцип минимизации расходов на эксплуатацию системы . Опять же, исходя из их оптимального соотношения для решения задачи создания комфортного температурного режима в отапливаемых помещениях.

Разумеется, соотношение мощности всех элементов отопительной системы должны обеспечивать оптимальный режим подачи теплоносителя к приборам отопления в объёме достаточном для выполнения основной задачи всей системы - обогрева и поддержания заданного температурного режима внутри помещения, независимо от изменения наружных температур. К элементам отопительной системы относятся:

  • котел
  • насос
  • диаметр труб
  • регулировочная и запорная арматура
  • тепловые приборы

Помимо того, очень неплохо, если в проект изначально будет заложена определённая «эластичность», допускаюшая переход на иной вид теплоносителя (замена воды на антифриз). Кроме того, отопительная система, при меняющихся режимах эксплуатации никоим образом не должна вносить дискомфорт во внутренний микроклимат помещений.

Гидравлический расчёт и решаемые задачи

В процессе выполнения гидравлического расчёта отопительной системы, решается достаточно большой круг вопросов обеспечения выполнения приведенных выше и целого ряда дополнительных требований. В частности, находится диаметр труб на всех секторах по рекомендованным параметрам, включающим определение:

  • скорости движения теплоносителя;
  • оптимального теплообмена на всех участках и приборах системы, с учётом обеспечения его экономической целесообразности.

В процессе движения теплоносителя происходит неизбежное его трение о стенки трубы , возникают потери скорости, особенно заметные на участках, содержащих повороты, колена и т. п. В задачи гидравлического расчёта входит определение потерь скорости движения среды, вернее, давления на отрезках системы, подобных указанным, для общего учёта и включения в проект требуемых компенсаторов. Параллельно определению потери давления, необходимо знать требуемый объём, называемый расходом, теплоносителя во всей проектируемой системе водяного отопления.

Учитывая разветвлённость современных отопительных систем и конструктивные требования реализации наиболее распространённых схем разводки, например, примерное равенство длин ветвей в коллекторной схеме , расчёт гидравлики даёт возможность учесть такие особенности. Это позволит обеспечить более качественную автобалансировку и увязку ветвей , включенных параллельно или по другой схеме. Такие возможности часто требуются в ходе эксплуатации с применением запорных и регулирующих элементов, в случае необходимости отключения или перекрытия отдельных веток и направлений, при возникновении необходимости работы системы в нестандартных режимах.

Подготовка выполнения расчёта

Проведению качественного и детального расчёта должны предшествовать ряд подготовительных мероприятий по выполнению расчётных графиков . Эту часть можно назвать сбором информации для проведения расчёта. Являясь самой сложной частью в проектировании водяной отопительной системы , расчёт гидравлики позволяет точно спроектировать всю её работу. В подготавливаемых данных обязательно должно присутствовать определение требуемого теплового баланса помещений, которые будут обогреваться проектируемой отопительной системой.

В проекте расчёт ведётся с учётом типа выбранных приборов отопления, с определёнными поверхностями теплообмена и размещения их в обогреваемых помещениях, это могут быть батареи секций радиаторов или теплообменники других типов. Точки их размещения указываются на поэтажных планах дома или квартиры.

Принимаемая схема конфигурирования системы водяного отопления должна быть оформлена графически. На этой схеме указывается место размещения генератора тепла (котёл), показываются точки крепления приборов отопления, прокладка основных подводящих и отводящих магистралей трубопроводов, прохода веток приборов отопления. На схеме подробно приводится расположение элементов регулирующей и запорной арматуры. Сюда входят все виды устанавливаемых кранов и вентилей, переходных клапанов, регуляторов, термостатов. В общем, всего, что принято называть регулирующей и запорной арматурой.

После определения на плане требуемой конфигурации системы, её необходимо вычертить в аксонометрической проекции по всем этажам . На такой схеме каждому отопительному прибору присваивается номер, указывается максимальная тепловая мощность. Важным элементом, также указываемым для теплового прибора на схеме, является расчётная длина участка трубопровода для его подключения.

Обозначения и порядок выполнения

На планах обязательно должно быть указано, определённое заранее, циркуляционное кольцо, называемое главным. Оно обязательно представляет собой замкнутый контур, включающий все отрезки трубопровода системы с наибольшим расходом теплоносителя. Для двухтрубных систем эти участки идут от котла (источника тепловой энергии) до самого удалённого теплового прибора и обратно к котлу. Для однотрубных систем берётся участок ветки - стояка и обратной части.

Единицей расчёта является отрезок трубопровода , имеющий неизменный диаметр и ток (расход) носителя тепловой энергии. Его величина определяется исходя из теплового баланса помещения. Принят определённый порядок обозначения таких отрезков, начиная от котла (источника тепла, генератора тепловой энергии), их нумеруют. Если от подающей магистрали трубопровода есть ответвления, их обозначение выполняется заглавными буквами в алфавитном порядке. Такой же буквой со штрихом обозначается сборная точка каждой ветки на обратном магистральном трубопроводе.

В обозначении начала ветки приборов отопления указывается номер этажа (горизонтальные системы) или ветки - стояка (вертикальные). Тот же номер, но со штрихом ставится в точке их подключения к обратной линии сбора потоков теплоносителя. В паре, эти обозначения составляют номер каждой ветки расчётного участка. Нумерация ведётся по часовой стрелке от левого верхнего угла плана. По плану определяется и длина каждой ветки, погрешность составляет не более 0,1 м.

На поэтажном плане отопительной системы по каждому её отрезку считается тепловая нагрузка, равная тепловому потоку, переданному теплоносителем, она принимается с округлением до 10 Вт. После определения по каждому прибору отопления в ветке, определяется суммарная нагрузка по теплу на магистральной подающей трубе. Как и выше, тут округление полученных значений ведётся до 10 Вт. После вычислений, каждый участок должен иметь двойное обозначение с указанием в числителе величины тепловой нагрузки , а в знаменателе - длины участка в метрах.

Требуемое количество (расход) теплоносителя на каждом участке легко определяется путём деления количества тепла на участке (скорректированное на коэффициент, учитывающий удельную теплоёмкость воды) на разность температур нагретого и охлаждённого теплоносителя на этом участке. Очевидно, что суммарное значение по всем рассчитанным участкам даст требуемое количество теплоносителя в целом по системе.

Не вдаваясь в детали, следует сказать, что дальнейшие расчёты позволяют определить диаметры труб каждого из участков системы отопления, потери давления на них, произвести гидравлическую увязку всех циркуляционных колец в сложных системах водяного отопления.

Последствия ошибок расчёта и способы их исправления

Очевидно, что гидравлический расчёт является достаточно сложным и ответственным этапом разработки отопления. Для облегчения подобных вычислений разработан целый математический аппарат , существуют многочисленные версии компьютерных программ, предназначенных для автоматизации процесса его выполнения.

Несмотря на это, от ошибок никто не застрахован. Среди наиболее распространённых выбор мощности тепловых приборов без проведения расчёта, указанного выше. В этом случае, помимо более высокой стоимости самих радиаторных батарей (если мощность больше требуемой), система будет затратной, расходуя повышенное количество топлива и требуя более значительных на свое содержание. Проще говоря, в комнатах будет жарко, форточки постоянно открыты и придётся дополнительно оплачивать обогрев улицы. В случае заниженной мощности попытки обогрева приведут к работе котла на повышенной мощности и также потребуют высоких финансовых затрат. Исправить такую ошибку достаточно сложно, возможно потребуется полностью переделывать всё отопление.

Если неверно проведен монтаж радиаторных батарей , эффективность работы всего отопительного комплекса также падает. К таким ошибкам относится нарушение правил установки батареи . Ошибки этой группы могу вдвое снизить теплоотдачу самых качественных тепловых приборов. Как и в первом случае, стремление повысить температуру в помещении, приведёт к дополнительным расходам энергоносителя. Чтобы исправить ошибки установки, зачастую достаточно переустановить и подключить заново радиаторные батареи.

Следующая группа ошибок относится к ошибке определения требуемой мощности источника тепла и приборов отопления. Если мощность котла заведомо выше мощности отопительных приборов, он будет работать неэффективно, потребляя большее количество топлива. Налицо двойной перерасход средств : в момент покупки такого котла и в ходе эксплуатации. Чтобы исправить положение, такой котёл, радиаторы или насос, а то и все трубы системы, придётся менять.

При расчёте требуемой мощности котла, может быть допущена ошибка в определении потерь тепла зданием. В результате мощность генератора тепловой энергии будет завышена. Результатом будет перерасход топлива. Чтобы исправить ошибку, придётся заменить котёл.

Ошибочный расчёт балансировки системы, нарушение требований примерного равенства веток и т. п. может привести к необходимости установки более мощного насоса, позволяющего доставить носитель к дальним приборам отопления в нагретом состоянии. Однако в этом случае возможно появление «звукового сопровождения» в виде гула, свиста и т. п. Если подобные ошибки допущены в системе тёплого водяного пола, то результатом установки мощного насоса может стать «поющий пол».

При ошибках определения требуемого количества теплоносителя или переводе гравитационной системы на принудительную циркуляцию, объём его может оказаться слишком велик, и дальние приборы отопления не будут работать . Как и ранее, попытки решения проблемы увеличением интенсивности прогрева, приведут к перерасходу газа, износу котла. Решить вопрос можно применением нового насоса и гидрострелки, т. е. тепловой пункт придётся всё равно переделывать.

После всего можно однозначно сказать, что проведение гидравлического расчёта системы отопления позволит гарантированно минимизировать расходы на всех этапах проектирования, устройства, монтажа и долговременной эксплуатации высокоэффективной системы водяного отопления.

Пример гидравлического расчета (видео)

Централизованный тип постепенно уступает место автономной системе отопления. Многие принимают решение обогревать помещения собственными силами, желая создать идеальное сочетание экономичности, тепла и комфорта. Именно поэтому особую актуальность приобретает гидравлический расчет системы отопления.

На начальном этапе предстоят финансовые траты. Однако новейшее отопительное оборудование обладает инновационным подходом к процессу регулирования подачи тепла по сравнению со старым, поэтому вложенные деньги быстро окупаются. Но такую гармонию могут обеспечить лишь системы, созданные по всем правилам. Они смогут профессионально преодолеть возникающее гидравлическое сопротивление.

Для чего делается расчет

Вычисления производят в первую очередь для того, чтобы определить такие характеристики циркуляционного насоса, как производительность и напор, которые позволят системе отопления работать с наибольшей эффективностью.

Конечно, какую-то циркуляцию в контуре создаст любой насос, даже самый маломощный, но насколько экономичной будет такая схема? Часто бывает так, что и котел исправно работает и радиаторов в доме достаточно, но они не греют из-за слабой циркуляции в системе.

Чтобы контуры отопления работали в полную силу, необходимо, чтобы насос преодолел гидравлическое сопротивление элементов системы потоку воды в трубах, а также потери давления. Но и насос большей мощности, чем нужно, также приведет к нежелательным эффектам. Кроме повышенного расхода электроэнергии, превышение давления плохо скажется на долговечности соединений, а увеличение скорости продвижения теплоносителя приведет к возникновению шумов.


Правильно рассчитанное гидравлическое сопротивление и качественная регулирующая арматура – наиболее эффективное сочетание.

Соблюдение ключевых условий обеспечивают следующие факторы:

  • снабжение отопительных приборов должно осуществляться в достаточном объеме для идеального баланса в помещении при температурных колебаниях воздуха снаружи и в жилище;
  • минимизация затрат на эксплуатацию, чтобы преодолеть системное гидравлическое сопротивление;
  • снижение капитальных затрат во время прокладки отопления.

Что учитывается в расчете?

Перед тем как начинать вычисления, следует выполнить ряд графиче

ских действий (часто для этого применяется специальная программа). Гидравлический расчет предполагает определение показателя баланса тепла помещения, в котором происходит отопительный процесс.

Для расчета системы рассматривается самый протяженный контур отопления, включающий наибольшее количество приборов, фитингов, регулирующей и запорной арматуры и наибольший перепад давления по высоте. В расчете участвуют такие величины:

  • материал трубопроводов;
  • суммарная длина всех участков трубы;
  • диаметр трубопровода;
  • изгибы трубопровода;
  • сопротивление фитингов, арматуры и отопительных приборов;
  • наличие байпасов;
  • текучесть теплоносителя.

Чтобы учесть все эти параметры существуют специализированные компьютерные программы, как пример - «НТП Трубопровод», «Oventrop CO», HERZ С.О. версии 3.5. или множество их аналогов, облегчающие специалистам производство расчетов.

Сделать верные расчеты в части преодоления сопротивления – это самый трудоемкий, но нео

бходимый шаг при проектировании отопительных систем водяного типа.

Выбор радиаторов и длины участков трубопровода

Необходимо определиться с видом устройств для отопления и проставить места их расположение на плане помещения. Далее должно быть принято решение об итоговой конфигурации отопительной системы, вида трубопровода (однотрубный или двухтрубный), арматуры для запора и регулирования (клапана, регуляторы, вентили, датчики давления, расхода и температуры).


Затем на вычерченной схеме указывается номер тепловых нагрузок и точная длина участков, для которых производится расчет. В заключении определяется «циркулирующее кольцо». Оно представляет собой контур замкнутого вида, который включает в себя все последовательные трубопроводные участки, на которых ожидается повышенный расход носителя тепла на расстоянии от источника, излучающего теплоэнергию, до самого дальнего прибора отопления (при двухконтурной системе) или до приборной ветки (при однотрубной системе) и назад к отопительному механизму.

Нюансы

При гидравлическом расчете с помощью компьютера excel – не единственная, хоть и наиболее простая. Для данного вида подсчетов разработаны специализированные программы, с которыми работать значительно проще.

В роли расчетного трубопровода обычно выступает участок, имеющий неизменный расход носителя тепла и постоянный диаметр. Так будет проще получить правильные данные. Он определяется по тепловому балансу помещения.


Нумерация участков должна происходить от теплового источника. Чтобы обозначить узловые точки на трубопроводе, который осуществляет подачу, в местах ответвлений применяют буквы алфавита. На магистралях сборного типа в соответствующих узлах их обозначают штрихами (пример хорошо это иллюстрирует).

Узловые точки на ответвлениях приборных веток обозначаются арабскими цифрами. Каждая соответствует номеру этажа, если применяется система горизонтального типа, или номеру ветки-стояка с приборами, если речь идет о вертикальной системе. В номер всегда входят две цифры – начало и конец участка. Длина трубопроводных участков определяется по плану, который вычерчивается в масштабе. Точность составляет 0,1 м.

Расчет однотрубной системы отопления рекомендуется проводить при одинаковых (постоянных) или различных (переменных) перепадах температуры воды в стояках методом характеристик сопротивления. При этом следует применять верхнюю разводку, при которой обеспечивается движение воды к отопительному прибору «сверху-вниз».

В многоквартирных домах большей части областей Российского государства, как правило, используется центральное теплоснабжение, однако с недавних пор стали набирать популярность системы автономного отопления. Как для первого, так и для второго случая требуется проведение гидравлического расчета системы отопления.

Гидравлический расчет

Практической целью расчета гидравлики системы отопления является обеспечение совпадения расхода в элементах схемы с расходом фактическим. Объем теплоносителя, попадающего в отопительные приборы, должен сформировать определенный температурный режим внутри частного дома, учитывая наружные температуры и заданные заказчиком для каждой комнаты, согласно ее функциональному назначению.

Для корректного проведения гидравлического расчета отопления потребуется изучить основную терминологию, чтобы лучше понять происходящие процессы в пределах системы. К примеру, увеличение скорости нагретой рабочей жидкости может спровоцировать параллельное увеличение гидросопротивления в магистралях трубопровода. Измеряется сопротивление системы отопления в метрах водного столба.

Основные ошибки монтажа отопления дома. Системы.отопление дома.

Большинство классических схем теплоснабжения состоит из следующих обязательных элементов:

  1. 1. теплогенератора;
  2. 2. магистрального трубопровода;
  3. 3. отопительных элементов (регистров или радиаторов);
  4. 4. гидравлической арматуры (запорной и регулировочной).

С помощью регулировочной арматуры проводится увязка отопительной системы. Каждому элементу присуща своя индивидуальная техническая характеристика, которая используется для гидравлического расчета системы отопления. Онлайн-калькулятор или таблица excel с формулами и алгоритмами вычислений смогут в значительной степени упростить эту задачу. Эти программы предоставляются абсолютно бесплатно и никак не повлияют на бюджет проекта.

Как произвести гидравлические испытания систем отопления

Диаметр труб

Чтобы рассчитать гидравлику отопительной системы, понадобится информация по тепловому расчету и аксонометрической схеме. Для подбора сечения труб используются целесообразные, с экономической точки зрения, итоговые данные теплорасчета:

Чтобы определить внутренний диаметр каждого участка, используют таблицу. Предварительно каждая отопительная ветвь разбивается на сегменты начиная с самой конечной точки. Разбивка осуществляется исходя из расхода теплоносителя, который варьируется от одного отопительного элемента к другому. Новый сегмент начинается после каждого отопительного прибора.

На первом сегменте определяют значение массового расхода теплоносителя, отталкиваясь от показателя мощности последней батареи: G = 860q / ∆t, где q - мощность отопительного элемента (кВт).

Теплоноситель на первом участке рассчитывается следующим образом: 860 x 2 / 20 = 86 кг/ч. Полученные результаты непосредственно наносятся на аксонометрическую схему, однако, чтобы продолжить дальнейшие вычисления, полученное итоговое значение потребуется перевести в другие единицы измерения - литры в секунду.

Для выполнения конвертации применяют формулу: GV = G / 3600 х ρ, где GV - ёмкостное потребление жидкости (л/сек), ρ - показатель плотности теплоносителя (при температуре 60 ºС составляет 0,983 кг/литр). Получается: 86 ÷ 3600 x 0,983 = 0,024 л/сек. Необходимость в конвертации меры физической величины обосновывается использованием табличных значений, при помощи которых определяется сечение трубопровода.

Гидравлический расчет систем водоснабжения в Revit (Revit+liNear Analyse Potable Water)

Определение сопротивления

Зачастую инженеры сталкиваются с расчетами систем теплоснабжения крупных объектов. Такие системы требуют большого количества отопительных приборов и сотни погонных метров труб. Выполнить расчет гидравлического сопротивления системы отопления можно с помощью уравнений или специальных автоматизированных программ.

Чтобы определить относительные теплопотери на сцепление в магистрали, применяют следующее приближенное уравнение: R = 510 4 v 1.9 / d 1,32 (Па/м). Применение данного уравнения оправдано для скоростей не более 1,25 м/с.

Если известно значение потребления горячей воды, то применяют приближенное уравнение для нахождения сечения внутри трубы: d = 0,75 √G (мм). После получения результата потребуется обратиться к специальной таблице, чтобы получить сечение условного прохода.

Самым утомительным и требующим больших затрат труда будет вычисление местного сопротивления в соединительных частях трубопровода, регулирующих клапанах, задвижках и отопительных приборах.

Существуют два класса отопительных насосов: с роторами мокрого и сухого типа. Для отопительной системы частного домовладения с небольшой протяженностью трубопровода лучше всего подойдет насос мокрого типа. С помощью ротора, вращающегося в середине корпуса, циркуляция рабочей жидкости ускоряется . Благодаря жидкой среде, в которую помещен ротор, механизм смазывается и охлаждается. Устанавливая насос такого типа, необходимо контролировать горизонтальность вала.

Насосы сухого типа применяются в системах с большой протяженностью. Электродвигатель и рабочая часть разделены уплотнительными кольцами, которые необходимо менять один раз в три года. Теплоноситель с ротором не контактирует. К преимуществам насосов данного типа можно отнести высокую производительность - примерно 80%. Из недостатков выделяют высокий уровень шума и контроль за отсутствием пыли в двигателе.

Основным назначением циркуляционного насоса является создание напора теплоносителя, способного справляться с гидравлическим сопротивлением, возникающим в определенных участках магистрали, и обеспечение нужной производительности путем транспортировки тепла в системе, необходимого для прогревания жилища.

Расчет однотрубной системы отопления

Следовательно, выбирая циркуляционный насос, необходимо сделать расчет потребности помещения в теплоэнергии, а также выяснить значение общего гидравлического сопротивления системы теплоснабжения. Не зная этих данных, подобрать соответствующий насос будет крайне сложно.

Производительную мощность электронасоса можно собственноручно вычислить, используя уравнение: Q = 0,86 x P / Δt, где Q - требуемая эффективность (м3 /час), P - искомый тепловой расход (кВт), Δt - температурный перепад между подающим и обратным контурами, с помощью которого определяется объем тепловой энергии, отдаваемой участком системы теплоснабжения.

Электронасос с контроллером мощности подбирают, ориентируясь на производительность, предварительно выставив регулятор в среднее положение. Такая манипуляция позволит подкорректировать мощность в большую или меньшую сторону при ошибочном действии. Скорости в циркуляционном насосе могут переключаться как в ручном, так и автоматическом режиме. В зависимости от протяженности трубопровода применяются разные типы отопительных насосов.