Редуктор от «А» до «Я. Что такое редуктор в автомобиле Что такое угловой редуктор в автомобиле

Тип редуктора определяется составом передач, порядком их размещения в направлении от ведущего – быстроходного вала к ведомому – тихоходному валу и положением колёс в пространстве. Редукторы классифицируют по следующим основным признакам:

1) по типу передачи – зубчатые, червячные, зубчато-червячные;
2) по числу ступеней – одноступенчатые, двухступенчатые, и т. д.;
3) по типу зубчатых колес – цилиндрические, конические, коническо-цилиндрические и т.д.;
4) по относительному расположению валов в пространстве –горизонтальные, вертикальные.

Исполнение редуктора определяется передаточным числом, формой концов валов и вариантом сборки.

Цилиндрические редукторы получили широкое распространение в машиностроении благодаря широкому диапазону передаваемых мощностей, долговечности, простоте изготовления.

Одноступенчатые цилиндрические редукторы горизонтальные рис. 2.8.1 и вертикальный рис.2.8.2 имеют, как правило, косозубое зацепление. Передаточное число таких редукторов u<8.

Рисунок 2.8.1 Одноступенчатые цилиндрические редукторы горизонтальные

Рисунок 2.8.2 Одноступенчатый цилиндрический редукторы вертикальный

Двухступенчатые цилиндрические редукторы рис.2.8.3 – горизонтальный, рис. 2.8.4– вертикальный. Передаточное число u = 8…40

Рисунок 2.8.3 Двухступенчатый цилиндрический редуктор горизонтальный

Рисунок 2.8.4 Двухступенчатый цилиндрический редуктор вертикальный

Трёхступенчатые цилиндрические редукторы. Эти редукторы выполняют преимущественно на базе горизонтальной схемы. Диапазон передаточных чисел u = 31,5…180.

Конические редукторы рис.2.8.5 применяют, когда необходимо передавать вращающий момент между валами со взаимно перпендикулярным расположением осей. Передаточное число таких редукторов u<=5 .

Рисунок 2.8.5 Конические редукторы

Коническо-цилиндричекие редукторы рис.2.8.6 независимо от числа ступеней и компоновки выполняют с быстроходной конической ступенью. Передаточное число u = 8…31,5.

Рисунок 2.8.6 Коническо-цилиндричекие редукторы

Червячные редукторы вследствие низкого КПД и меньшего ресурса, чем у зубчатых редукторов, не рекомендуется применять их в машинах непрерывного действия.

Компоновочные возможности ограничены и сводятся к трём основным схемам редукторов: с нижним, верхним и боковым расположением червяка рис 2.8.7. Выбор схемы редуктора обычно диктуется удобством компоновки привода в целом. Диапазон передаточных чисел u = 8…80, рекомендуется u<=63 .

Рисунок 2.8.7 Червячные редукторы

Червячно-цилиндрический двухступенчатый редуктор рис.2.8.8 имеет червячную быстроходную ступень и одну червячно-цилиндрическую или две червячно- цилиндрические ступени с параметрами редуктора развёрнутой схемы. Редукторы имеют большое передаточное число и низкий уровень шума. Червяк обычно располагают внизу, что вызвано условиями смазывания зацепления, расположением подшипников червяка и условиями сборки.


Рисунок 2.8.8 Червячно-цилиндрический двухступенчатый редуктор

Мотор-редукторы представляют собой агрегат, в котором объединены электродвигатель и редуктор. Это делается с целью уменьшения габаритов привода и улучшения его внешнего вида.

Планетарные редукторы позволяют получить большое передаточное число при малых габаритах. По конструкции они сложнее вышеописанных редукторов. Наиболее распространен простой планетарный зубчатый редуктор рис. 2.8.9.

Рисунок 2.8.9 Планетарный редуктор

Волновые редукторы являются разновидностью планетарных редукторов. Для обозначения передач используются прописные буквы русского алфавита: Ц – цилиндрическая, К – коническая, Ч – червячная, П – планетарная, В – волновая.

Если в редукторе две или более одинаковых передач, то после буквы ставится соответствующая цифра. Пример: Ц (рис.2.8.1, 2.8.2); Ц2 (рис.2.8.3); КЦ (рис.2.8.6); Ч (рис.2.8.7); ЦЧ 9 (рис.2.8.8). Если все валы редуктора находятся в вертикальной плоскости, то к обозначению добавляется индекс В. Если ось тихоходного вала вертикальна, то добавляется индекс Т, если ось быстроходного вала вертикальна, то – индекс Б. КЦт, КБ Ц (рис.2.8.6).

Редукторы - продукция материально-технического назначения. Эти механизмы служат для изменения скорости вращения при передачи вращательного движения от одного вала к другому.

Мотор редуктор - представляет собой электродвигатель и редуктор, соединенные в единый агрегат (в некоторых странах его называют редукторным электродвигателем). Мотор-редуктор более компактен по сравнению с приводом на базе редуктора, его монтаж значительно проще, кроме того, уменьшается материалоемкость фундаментной рамы, а для механизма с насадным исполнением (с полым валом) не требуется никаких рамных конструкций. Большое количество конструкционных решений и типоразмеров дает возможность оснащения предприятий прецизионными редукторами приводов различных назначений, размеров и мощностей. Мотор редуктор, как универсальный элементы электропривода, находят свое применение практически во всех областях промышленности.

Редуктор является передаточным механизмом, который передает вращательную энергию двигателя на узлы машины. В зависимости от строения выделяют несколько типов редукторов. Они являются составными частями любого сложного механизма, в котором присутствует силовой агрегат. И независимо от сложности устройства все редукторы выполняют одинаковые функции. Всего существует три основных вида, которые дальше подразделяются на более конкретные типы.

Червячный редуктор имеет очень простое строение в виде одной шестерни и рабочего механизма - червяка. Но он используется только в небольших машинах, так как обладает небольшой прочностью. Цепной редуктор состоит из двух звезд и натянутой между ними цепи. Он более надежен и способен выдерживать серьезные нагрузки. Но самым прочным видом является шестеренчатый редуктор, который состоит из нескольких зазубренных круглых элементов, связанных непосредственно друг с другом. Он обладает максимальным запасом прочности и используется для любых нужд промышленности.

Одноступенчатые редукторы имеют в своем строении всего одну пару рабочих шестеренок. Они обладают максимальным коэффициентом полезного действия, так как небольшое количество составных элементов уменьшает потери энергии в пути. Но для нормальной работы зачастую требуются редукторы слишком больших размеров, поэтому одноступенчатая модель применяется не часто. Она может устанавливаться как в горизонтальной, так и в вертикальной плоскостях.

Двухступенчатый редуктор соответственно имеет три рабочих шестерни. Это позволяет значительно уменьшить габариты механизма, но и приводит к увеличению потерь энергии при транспортировке. Подобная модель на практике применяется гораздо чаще, так как ради уменьшения размеров в некоторых ситуациях можно пренебречь снижением КПД.

Трехступенчатый редуктор имеет две пары шестеренок и используется еще чаще, чем два вышеуказанных типа. Он позволяет добиться практически идеального соотношения между размерами рабочего механизма и промежуточными потерями энергии. Многоступенчатые редукторы применяются в основном в поворотных механизмах различного назначения. Количество ступеней обычно составляет 2-7 позиций. Но встречаются и уникальные узлы, имеющие более 1000 шестеренок. К ним относится, например, поворотная башня артиллерийского комплекса военного крейсера.

Угловые редукторы предназначены для тех ситуаций, когда необходимо перенаправлять вращательную энергию между двумя валами, расположенными под прямым углом по отношению друг к другу. Область применения данного устройства невероятно широка и охватывает горнодобывающую, металлургическую, машиностроительную и пищевую промышленность.

Редукторы углового типа входят в состав самого разнообразного оборудования, которое задействовано в перечисленных отраслях народного хозяйства. Конические редукторы - это второе название углового типа механизмов. Стоит также отметить, что в редких случаях угол вращения валов может отличаться от 90 градусов. Но такие механизмы производят только по спецзаказам.

Колесные редукторы - это не конкретный тип механизма, а общее название группы, которая используется при производстве транспортных средств. Как не трудно догадаться, они служат для передачи энергии от двигателя не ведущие колеса. Чаще всего в автомобилестроении применяются соосные редукторы, так как при сравнительно небольших габаритах они отлично справляются с поставленной задачей и имеют высокий запас прочности благодаря цельнометаллическому корпусу.

При создании техники с повышенной проходимостью используются несоосные редукторы, так как они позволяют повысить дорожный просвет и увеличить передаточное число. В современных полноприводных машинах применяются самоблокирующиеся редукторы, которые автоматически отключают один из ведущих мостов при движении по ровной дороге. Когда автомобиль попадает на бездорожье, в автоматическом режиме происходит подключение всех приводов. Редукторы также входят в состав газораспределительной системы. Существует две модели. Электронный редуктор позволяет выбрасывать отработанные газы в атмосферу мгновенно, а вакуумный редуктор производит эту процедуру постепенно.

Редукторы вращения основное применение находят при производстве кранов с поворотным механизмом и разнообразной военной техники. Для подъемных машин скорость вращения не играет особой роли, поэтому там используются редукторы средней мощности. Но для армейской техники скорость является определяющим фактором. От быстроты реакции экипажа и возможности развернуть орудие в сторону врага, чтобы произвести выстрел зависит исход боя. Так что в военном деле применяются очень мощные поворотные редукторы, способные за считанные секунды развернуть массивную пушку в нужном направлении.

По способу установки различают вертикальный и горизонтальный редукторы. Их положение относительно оси координат не влияет на выполняемые функции. От него зависит лишь степень воздействия на механизм различных сил сопротивления. Чтобы уменьшить противодействие в сложных системах применяются дополнительные агрегаты.

Волновые редукторы передают энергию за счет создания колебательных волн при помощи деформации гибкого элемента внутри механизма. Такой тип агрегатов используется, когда важна высокая точность и плавность хода и при этом низкий уровень рабочего шума.

Косозубый редуктор отличается тем, сто его рабочие шестерни располагаются под углом к плоскости вращения. Такое строение помогает повышать упорную стойкость и применяется в подвесных механизмах.

Раздел 18. Приводы. Редукторы и мотор-редукторы общего назначения

Приводы. Классификация.

Объектами курсового проектирования в курсе «Детали машин» обычно являются приводы машин и механизмов (например: приводы ленточных транспортеров, цепных конвейеров, индивидуальные приводымашин и механизмов ), использующие большинство деталей и узлов общего назначения.

Привод машины - система, состоящая из двигателя и связанных с ним устройств дл я приведения в движение одного или нескольких твердых тел, входящих в состав машины.

Структурная схема привода включает двигатель того или иного типа и трансмиссию.

Трансмиссия - устройство для передачи вращения от двигателя к потребителям энергии; может быть механической, электрической, гидравлической, пневматической и комбинированной.

В курсовом проекте трансмиссия состоит из комбинации редуктора и открытой передачи.

Приводы транспортных машин, разнообразного станочного оборудования, вспомогательных устройств и средств механизации различных работ (стенды, установки, приспособления с машинным приводом) и т.п. допускают применение стандартных двигателей и однотипных механических передач, в том числе стандартных редукторов, что позволяет отнести эти приводы к категории общего назначения.

Машинные приводы общего назначения классифицируют по ряду признаков.

Основными из них являются:

Число двигателей и схемы соединения их с передачами;

Тип двигателя; тип передачи.

Особую группу составляют приводы, в которых используют встраиваемые двигатели или встраиваемые механические передачи - мотор-редукторы .

По числу двигателей различают приводы:

Групповой,

Однодвигательный,

Многодвигательный.

Групповым называют привод, при котором от одного двигателя посредством механических передач приводятся в движение несколько отдельных механизмов или машин. Привод этого типа применяется в различных строительных и погрузочно-разгрузочных машинах. Групповой привод имеет низкий КПД, громоздок и сложен по конструкции.

Однодвигательный привод наиболее распространен, особенно при использовании электродвигателей. Каждая производственная машина снабжается индивидуальным приводом.

Многодвигательным называется привод, если отдельные механизмы машины приводятся в движение от отдельных двигателей. При этом два или более двигателей могут соединяться с одной и той же передачей соответствующей конструкции. Многодвигательный привод используется в исполнительных механизмах строительных, путевых, грузоподъемных, транспортных и других машин и станочного оборудования и включает электродвигатели и гидромоторы .

По типу двигателей различаются приводы:

Электрические,

С двигателями внутреннего сгорания,

С паровыми двигателями,

Гидропривод,

Пневмопривод .

Приводы могут иметь следующие типы передач :

Цилиндрические зубчатые,

Конические зубчатые,

Червячные,

Планетарные,

Волновые,

Комбинированные,

Гидродинамические,

Ременные,

Винт-гайка.

По расположению механизма привода в пространстве различают:

Приводы с горизонтальным тихоходным выходным валом;

Приводы с вертикальным тихоходным выходным валом.

В зависимости от расположения привода конструируют элементы передач и выбирают тип и исполнение двигателя.

Редукторы

Редуктором называют агрегат, содержащий передачи зацеплением и предназначенный для повышения вращающего момента и уменьшения угловой скорости двигателя. Редукторы широко применяют в различных отраслях машиностроения благодаря высоким экономическим, потребительским и другим характеристикам. В корпусе редуктора размещены зубчатые или червячные передачи, неподвижно закрепленные на валы. Валы опираются на подшипники, размещенные в гнездах корпуса. Установка передачи в отдельном корпусе гарантирует точность сборки, лучшую смазку, более высокий КПД, меньший износ, а также защиту от попадания в нее пыли и грязи. Во всех ответственных установках вместо передач назначают редукторы. Редукторы имеют исключительно широкое применение.

Назначение редуктора - понижение угловой скорости и соот­ветственно повышение вращающего момента ведомого вала по сравнению с ведущим. Механизмы для повышения угловой скорости, выполненные в виде отдельных агрегатов, называют ускорителями или мультипликаторами.

Редуктор состоит из корпуса (литого чугунного или свар­ного стального), в котором помещают элементы передачи - зубчатые колеса, валы, подшипники и т. д. В отдельных слу­чаях в корпусе редуктора размещают также устройства для смазывания зацеплений и подшипников (например, внутри корпуса редуктора может быть помещен шестеренный масляный насос) или устройства для охлаждения (например, змеевик с охлаждающей водой в корпусе червячного редуктора).

Редуктор проектируют либо для привода определенной машины, либо по заданной нагрузке (моменту на выходном валу) и передаточному числу без указания конкретного назна­чения. Второй случай характерен для специализированных заво­дов, на которых организовано серийное производство редукто­ров.

Редуктор общемашиностроительного применения - редуктор, выпол­ ненный в виде самостоятельного агрегата, предназначенный для приводаразличных машин и механизмов и удовлетворяющий комплексу техни­ ческих требований .

Редукторы общемашиностроительного применения, несмотря на к онструктивные различия, близки по основным технико-экономическим характеристикам: невысокие окружные скорости, средние требования к надёжности, точности и металлоемкости при повышенных требованиях по трудоемкости изготовления и себестоимости. Это их отличает от специаль ных редукторов (авиационных, судовых, автомобильных и др.) , выполненных с учетом специфических требований, характ ерных для отдельных отраслей сельского хозяйства.

Внешние (потребительские) характеристики редукторов каждого типа определяются следующим:

Кинематической схемой редуктора,

Передаточным числом u (частотой вращения выходного вала),

Вращающим моментом на выходном валу,

Допускаемой консольной нагрузкой на выходном валу,

Силовой характеристикой редуктора,

Коэффициентом полезного действия (КПД).

По ГОСТ 16162-86Е к редукторам общемашиностроительного применения относят:

Цилиндрические одно-, двух- и, трехступенчатые с межосевым расстоянием тихоходной ступени a ω т ≤ 710 мм;

Цилиндрические планетарные одно- и двухступенчатые с радиусом расположения осей сателлитов водила тихоходной ступени r ≤ 200 мм;

Конические одноступенчатые с номинальным внешним делительным диаметром ведомого колеса d вм ≤ 630 мм;

Коническо -цилиндрические двух- и трехступенчатые с межосевым расстоянием тихоходной ступени a ω т ≤ 250 мм;

Червячно-цилиндрические двухступенчатые с межосевым расстоянием тихоходной ступени a ω т ≤ 250 мм.

В соответствии с ГОСТ 29076–91 редукторы и мотор-редукторы обще­ машиностроительного применения классифицируют в зависимости от :

Вида применяемых передач (зубчатые , червячные или зубчато -червячные);

Числа ступеней (одноступенчатые, двухступенчатые и т. д.);

Взаимного расположения геометрических осей входного и выходного валов в пространстве (горизонтальное и вертикальное);

Типу зубчатых колес (цилиндрические , конические, коническо -цилиндрические и т. д.);

Способа крепления редуктора (на приставных лапах или на плите, фланец со стороны входного/выходного вала насадкой);

Расположения оси выходного вала относительно плоскости основания и оси входного вала (боковое, нижнее, верхнее) и числа входных и выходных концов валов.

Особенностям кинематической схемы (разверну­тая , соосная, с раздвоенной ступенью и т. д.).

Тип и конструкция редуктора определяются видом, расположением и количеством отдельных его передач (ступеней).

Самый простой зубчатый редуктор – одноступенчатый (цилиндрический (рис.1.1, а )). Используется при малых передаточных числах i ≤ 8 … 10, обычно i ≤ 6,3.

Двухступенчатый цилиндрический зубчатый редуктор (1.1,б ) является наиболее распространенным (их потребность оценивается в 65%). Для них наиболее характерны числа i = 8-40.

Трехступенчатые редукторы (рис.1.1, в ) применяются при больших передаточных числах. Однако имеется тенденция замены их более компактными планетарными редукторами.

Конические зубчатые редукторы применяются в том случае , когда быстроходный тихоходный валы должны быть взаимно перпендикулярны. Обычно передаточное число таких редукторов невелико i ≤ 6,3. При i >12,5 применяют коническо -цилиндрические редукторы (рис.1.1,ж ).

Рис.1.1. Зубчатые редукторы

Для улучшения работы наиболее нагруженной тихоходной ступени (T ) используются редукторы с раздвоенной быстроходной ступенью (рис.1.1, г ). Для создания равномерной нагрузки обеих зубчатых пар быстроходной ступени, их делают косозубыми, причем, одну пару правой, а вторую – левой. Зубчатые колеса на тихоходном валу располагаются симметрично. При этом деформация вала (Т ) не вызывает существенной концентрации нагрузки по длине зубьев. Это положительное явление. Такие редукторы получаются на 20% легче, чем по обычной развернутой схеме (рис.1.1, в ).

Соосные редукторы (рис.1.1, д ) применяют с целью уменьшения длины корпуса или других конструктивных особенностей привода.

Мотор-редукторы представляют собой компактные агрегаты, в которых редуктор и мотор монтируются в одном корпусе. В большинстве случаев мотор-редукторы имеют зубчатые передачи. Они более экономичны, чем тихоходные электродвигатели, имеют более высокий КПД. Но из-за сложности конструкции мотор-редукторы применяются редко.

Одноступенчатые червячные редукторы наиболее распространены. Диапазон передаточных чисел: U = 8-63. При больших значениях "U " применяют двухступенчатые червячные редукторы или комбинированные зубчато -червячные. Редукторы выполняются со следующим расположением червяка и червячного колеса:

С нижним расположением червяка (под колесом) – применяются при окружных скоростях червяка V ≤ 5 м/ c ; смазка – окунанием червяка, допускают передачу большой мощности по критерию нагрева (рис.1.2, а ).

С верхним расположением червяка (червяк над колесом) – применяются в быстроходных передачах; смазка осуществляется окунанием колеса (рис.1.2,б ).

Червяк с горизонтальной осью, сцепляющейся с колесом, имеющим вертикальную ось (рис.1.2,в ).

Червяк с вертикальной осью, расположенный сбоку колеса. Колесо имеет горизонтальную ось (рис.1.2,г ).

Две последних конструкции применяют ограниченно, в связи с трудностью смазки подшипников вертикальных валов

Возможности получения больших передаточных чисел при малых габаритах обеспечивают планетарные и волновые ре­дукторы.


Рис.1.2. Схемы червячных редукторов: а ) с нижним; б ) с верхним; в, г ) с боковым расположением червяка

Для обозначения передач в редукторе используют заглавные буквы русского алфавита по простому мнемоническому правилу: Ц – цилиндрическая, П – планетарная, К - коническая, Ч – червячная, Г – глобоидная, В – волновая. Количество одинаковых передач обозначается цифрой. Оси валов, расположенные в горизонтальной плоскости, не имеют обозначения. Если все валы расположены в одной вертикальной плоскости, то к обозначению типа добавляется индекс В. Если ось быстроходного вала вертикальна, то добавляется индекс Б, а к тихоходному соответственно – Т.

Мотор – редукторы обозначаются добавлением спереди буквы М. Например, МЦ2СВ означает мотор – редуктор с двухступенчатой соосной цилиндрической передачей, где горизонтальные оси вращения валов расположены в одной вертикальной плоскости, здесь В не индекс, поэтому пишется рядом с заглавной буквой.

Обозначение типоразмера редуктора складывается из его типа и главного параметра его тихоходной ступени. Дляцилиндрической, червячной глобоидной передачи главным параметром является межосевое расстояние; планетарной – радиус водила, конической – диаметр основания делительного конуса колеса, волновой – внутренний посадочный диаметр гибкого колеса в недеформированном состоянии.

Под исполнением принимают передаточное число редуктора, вариант сборки и формы концов валов. Пример условного обозначения одноступенчатого цилиндрического редуктора с межосевым расстоянием 160 мм и передаточным числом 4: редуктор Ц-160-4.

Вариант сборки цилиндрических редукторов и формы концов валов по ГОСТ 20373-74; червячных редукторов – по ТУ 2.056.218-83, а коническо – цилиндрических редукторов – ГОСТ 20373-80.

Редукторы общемашиностроительного применения в приводах комплектуются преимущественно четырехполюсными электродвигателями.

По ГОСТ 16162-86Е основные параметры редукторов определяют при номинальной частоте вращения быстроходного вала n б =1500 об/мин. Допускается использование редукторов при n б =3000 об/мин, с условием, что окружная скорость зубчатых передач не превышает 16 м/с.

Выбор горизонтальной или вертикальной схемы для редукторов всех типов обусловлен удобством общей компоновки привода (относительным расположениемдвигателяирабочего вала приводимой в движение машины и т.д.).

Двигатель и трансмиссия, как правило, монтируются на общей раме.

Новые редукторы имеют гладкие основания корпусов с утопленными лапами, а крышки имеют горизонтальные поверхности верхних частей, служащие технологическими базами (рис.1.3).

Корпуса редукторов новой конструкции имеют следующие преимущества:

1. Увеличен объем масла, что увеличивает срок его годности.

2. Возможность исключения фланцев, как основного источника неплоскостности .

3. Большая жесткость основания и податливая крышка корпуса, что улучшает виброакустические свойства.

4. Меньшее коробление при старении, что исключает течь масла;

5. Уменьшение отказов примерно на 30% из-за повышенной прочности утопленных лап.

6. Упрощение дренажирования накопленного масла от разбрызгивания из подшипниковых узлов.

7. Возможность повышения точности расположения осей валов .

8. Простота наружной обработки.

9. Отсутствие цековки под головки стяжных винтов корпуса с основанием.

10. Обеспечение требования технической эстетики.


Рис.1.3. Корпус редуктора типа КЦ1 новой конструкции

Основные детали и показатели качества редукторов, мотор – редукторов и вариаторов

Для удобства сборки корпус редуктора выполняется составным – основание и крышка. Основание с помощью лап или пояса крепится к фундаменту или раме. Для точной установки крышки на основание корпуса пользуются коническими штифтами.

Корпус редуктора должен быть прочным и жестким, т.к. его деформации могут вызвать перекос валов и неравномерное распределение нагрузки по длине зубьев. Для повышения жесткости корпуса его усиливают наружными или внутренними ребрами.

Корпусы редукторов обычно выполняют литыми из серого чугуна (СЧ 15-32/ СЧ 18-36) средней прочности. Для передачи больших мощностей или ударных нагрузок корпусы отливают из высокопрочного чугуна или стали. В индивидуальном и мелкосерийном производствах корпусы редукторов изготавливают сварными из листовой стали.

Основные размеры корпуса – длина, ширина и высота – применяются в зависимости от размеров зубчатых колес. Другие размеры находятся по эмпирическим формулам.

Валы , как правило, подвергают улучшению до твердости НВ 270 – 300. Валы d 80 мм допускается изготавливать из стали 45; диаметром d = 80-125 – из стали 40 X ; а валы d = 125 – 200 мм – из стали 40ХН; 35ХМ. Тихоходные валы имеют выходной конец, в котором напряжения кручения составляют около 28 МПа концы валов целесообразно выполнять коническими.

Опоры валов редукторов выполняютсяв виде подшипников качения. Обычно в опорах устанавливается по одному подшипнику качения. При малых и средних нагрузках применяют шарикоподшипники, при средних и больших – роликоподшипники. В редукторах с шевронной передачей быстроходный вал передачи устанавливают на плавающих, обычно, цилиндрических роликоподшипниках. Это обеспечивает самоустановку вала по оси и одинаковую нагрузку полушевронов.

В редукторах с конической передачей для лучшей фиксации зубчатых колес в осевом направлении валы передачи рекомендуется устанавливать на радиально-упорных, чаще конических роликоподшипниках.

Смазка зацепления при V ≤ 12,5 м/ c рекомендуется картерная (окунанием). Емкость масляной ванны назначают из расчета 0,35 – 0,7 литра на I кВт передаваемой мощности (большие значения – при большей вязкости масла и наоборот). Зубчатые колеса следует погружать в масло на глубину 3-4 модуля. Тихоходные колеса (2-й и 3-й ступени) при необходимости допустимо погружать на величину до 1/3 диаметра колеса. В редукторах с быстроходными передачами применяют струйную или циркуляционную смазку, осуществляемую под давлением. Масло, прокачиваемое насосом, проходит через фильтр и при необходимости через охладитель, а затем поступает к зубьям через трубопровод и сопла. При окружной скорости V ≤ 20 м/c для прямозубых передач и при V ≤ 50 м/с для косозубых масло подается непосредственно в зону зацепления. При V > 50 м/ c (V > 20 м/ c ) , во избежание гидравлического удара, масло подается раздельно на шестерню и колесо и на некотором расстоянии от зоны зацепления.

Смазка подшипников редуктора при V > 4 м/ c может осуществляться тем же маслом, что и зубчатых колес, путем разбрызгивания масла. При V < 4 м/с предусматривается самостоятельная (консистентная) смазка. При больших скоростях и нагрузках на подшипники предусматривается смазка под давлением, осуществляемая от общей системы.

Расчет зубчатого редуктора состоит из расчета его элементов – передач, валов, шпонок, подшипников. Для редукторов большой мощности производится тепловой расчет. При расчете зубчатых передач редукторов, выполненных в виде самостоятельных агрегатов, основные параметры этих передач должны быть согласованы с соответствующими ГОСТ.

Червячные колеса с целью экономии цветных металлов выполняются с венцом из антифрикционных материалов и стальным или чугунным центром.

- бандажированная конструкция, в которой бронзовый обод (венец) посажен на стальной центр с натягом. Рекомендуется легкопрессовая реже прессовая посадки. Чтобы исключить возможность сдвига венца, ввертывают в стыкуемые поверхности винты. Конструкция применяется для колес относительно небольших размеров и ненапряженных в тепловом отношении (рис. 1.4).

Болтовая конструкция, в которой бронзовый венец, выполненный с фланцем, прикрепляется болтами к ступице колеса. Применяется для колес больших и средних диаметров.

Б иметаллическая конструкция, бронзовый венец, который отлит в форму с предварительно вставленным в нее центром. Конструкция наиболее рациональна и применяется в редукторах серийного производства.

Рис.1.4.Типовые конструкции зубчатых венцов червячных колес

В червячных передачах, как правило, применяются подшипники качения.

Смазка червячных передач с нижним расположением червяка (рис. 1.2) осуществляется окунанием. Уровень масла таков, чтобы погружался в масло на глубину, близкую к высоте витка. Если червяк расположен сверху, то уровень масла роли не играет (при средних и небольших скоростях). В быстроходных передачах этого типа применяют циркуляционную – принудительную смазку.

Важнейший характеристический размер, в основном определяющий нагрузочную способность, габариты и массу редуктора называют главным параметром редуктора. Главный параметр цилиндрических, червячных и глобоидных редукторов - межосевое расстояние a w тихоходной ступени, планетарных - радиус r водила , конических - номинальный внешний делительный диаметр d e 2 колеса , волновых - внутренний диаметр d 2 гибкого колеса.

Для многоступенчатых редукторов и мотор-редукторов показателями назначения являются межосевое расстояние и радиус расположения осей сателлитов и задают их по величине выходной ступени с обозначением a ω T и R т.

Основная энергетическая характеристика редуктора – номинальный момент Т ном , представляющий собой допустимый крутящий момент на его тихоходном (ведомом) валу при постоянной нагрузке.

Рекомендуемый ряд крутящих моментов на тихоходных валах редукторов в соответствии с проектом международного стандарта составляет по нормальному ряду чисел со знаменателем 2 в диапазоне 1-125 Н∙ м и со знаменателем 1,41 в диапазоне 125–1000000 Н∙ м .

Передаточные числа редукторов выбирают по нормальному ряду чисел со знаменателем 1,25 (1-й предпочтительный ряд) или со знаменателем 1,12 (2-й ряд).

Межосевые расстояния быстроходной (α w Б ) и тихоходной (α wT ) ступеней двух и трехступенчатых редукторов зубчатых цилиндрических должны соответствовать ГОСТ

Одноступенчатыередукторыимеют наибольшие передаточные числа u :

Для цилиндрических передач до 8;

Для конических до 6,3;

Для червячных до 80.

Выпускаются редукторы и мотор-редукторы в широком диапазоне передаточных чисел: от u min =1 (для одноступенчатых конических и цилиндрических редукторов) до u max =3150 (для мотор-редукторов, планетарных и некоторых других типов редукторов). Большинство отечественных и зарубежных редукторов имеют u ≤ 160. Около 75 % редукторов выполняют в двухступенчатом исполнении (u =8-40).

Номинальные значения передаточных чисел редукторов установлены двумя рядами (1; 1,25; 1,6; 2; 2,5; 3,15; 4; 5; 6,3; 8; 10; 12,5; 16; 20 и т.д.).

Редукторы общемашиностроительного применения допускают вращающие моменты на выходном валу Т т =(31,5-125000) Нм .

Для обеспечения взаимозаменяемости редукторов составлены три ряда номинальных значений моментов Т т (Нм ).

Так, ряд 1 включает значения Т т =31,5; 45; 63; 90; 125; 180; 250; 355; 500; 710; 1000 и др.

Реальный диапазон передаточных отношений (чисел) редукторов - от 1 до 1000. Значения передаточных отношений должны соответствовать ряду R 20 предпочтительных чисел (ГОСТ 8032–84).

Критерием технического уровня редуктора служит относительная масса Y = т/Т , где т - масса редуктора, кг; Т - вращающий момент, Нм .

Тип редуктора, параметры и конструкцию определяют в зависимости от его места в силовой цепи машины, передаваемой мощности, частоты вращения, назначения машины и условий ее эксплуатации.

При проектировании назначенного типа редуктора за исходные принимают следующие данные: передаточное отношение, вращающий момент на тихоходном валу, частоту вращения быстроходного вала, режим нагружения , необходимую долговечность, технологические возможности завода-изготовителя (имеющиеся материалы, типы загото­ вок, виды проводимых термической и термохимической обработок).

К определяющим параметрам относят межосевые расстояния, внеш­ние делительные диаметры конических колес, радиусы водил или дели­тельные диаметры центральных колес с внутренними зубьями в плане­ тарных передачах, ширину колес, модули и передаточные отношения, коэффициенты, диаметры червяка и число винтов червяка (для червячных передач).

Классификационные группировки редукторов, мотор-редукторов и вариаторов приведены в таблице 1.

Таблица 1

Старшая классификационная группировка

Младшая классификационная группировка

Редукторы нормализованные

Цилиндрические

Планетарные

Конические

Коническо -цилиндрические

Червячные

Волновые

Мотор-редукторы цилиндрические

Мотор-редукторы планетарные

Мотор-редукторы с зацеплением Новикова

Мотор-редукторы червячные

Мотор-редукторы волновые

Вариаторы

Ременные

Многодисковые

Конусные

Торовые

Номенклатура показателей качества редукторов, мотор-редукторов и вариаторов общемашиностроительного применения, используемых при оценке уровня качества продукции, установленная по ГОСТу 4. 128-84 приведена в таблице 2.

Таблица 2

Наименование показателя качества

Обозначение

показателя

Наименование характеризуемого свойства

1.1. Классификационные показатели

1.1.1. Номинальная мощность на входном валу, кВт

1.1.2. Номинальная мощность на выходном валу, кВт

1.1.3. Номинальная частота вращения входного вала, с -1 (мин –1)

1.1.4. Номинальная частота вращения выходного вала, с -1 (мин –1)

1.1.5. Передаточное число

1.1.6. Передаточное отношение

1.1.7. Диапазон регулирования

Р вх.н ом

Р вых.н ом

n вх.ном

n вых . ном

u

i

1.2. Показатели функциональной и технической эффективности

1.2.1. Номинальный вращающий момент на выходном валу, Нм

1.2.2. Допускаемая радиальная консольная нагрузка на входной вал, Н

1.2.3. Допускаемая радиальная консольная нагрузка на выходной вал, Н

Т вых.н ом

F вх

F вых

Нагрузочная способность

Нагрузочная способность

Нагрузочная способность

1.3. Конструктивные показатели

1.3.1. Удельная масса, кг /Нм

1.3.2. Габаритные размеры (длина, ширина, высота), мм

1.3.3. Межосевое расстояние, мм

1.3.4. Внутренний диаметр гибкого колеса, мм

1.3.5. Радиус расположения осей сателлитов, мм

1.3.6. Внешний диаметр делительный конического колеса

𝛾

L × B × H

a 𝜔 T

d

R

d e2

Эффективность исполь­зо­вания материала

Определяющие размеры

Определяющие размеры

Определяющие размеры

Определяющие размеры

Определяющие размеры

Стойкость к воздействию климатического фактора

2. Показатели надежности

2.1. Установленная безотказная наработка, ч (ГОСТ 27.002-89)

2.2. Полный средний срок службы, год (ГОСТ 27.002-89)

2.3. Полный установленный срок службы, год (ГОСТ 27.002-89)

2.4. Полный девяносто процентный ресурс передач, ч (ГОСТ 27.002-89)

Т сл

Т сл

Безотказность

Долговечность

Долговечность

Долговечность

2.5. Полный девяносто процентный ресурс гибкой передачи,(ремня, цепи)

2.6. Полный девяносто процентный ресурс подшипников, ч (ГОСТ 27.002-89)

2.7. Удельная суммарная трудоемкость технических обслуживаний,

чел-час /час (ГОСТ 27.002-89)

S т.о .

Долговечность

Долговечность

Ремонтопригодность

3. Показатели унификации

3.1. Коэффициент применяемости,%

3.2. Коэффициент повторяемости,%

К пр

К п

Степень заимствования

Степень применяемости

4. Эргономический показатель

4.1.Корректированный уровень звуковой мощности, дБА

L ра

Звуковое давление

5. Патентно-правовые показатели

5.1. Показатель патентной защиты

5.2. Показатель патентной чистоты

Р п.з .

Р п.ч .

Патентная защита

Патентная чистота

6. Показатель экономного использования энергии

6.1. Коэффициент полезного действия, %

𝜂

Эффективность использования энергии

Требования к системе качества установлены в ГОСТ Р ИСО 9001 – ГОСТ Р ИСО 9003. Эти стандарты отражают три разные модели системы качества с точки зрения жизненного цикла продукции, например, на стадии промышленного производства, при модернизации и аттестации продукции.

Разработкой методов количественной оценки качества занимается наука – квалиметрия. При этом производится многоуровневая оценка качества с позиции системного подхода.

Одноступенчатые цилиндрические редукторы

Данный тип редукторов отличаются числом ступеней и положением валов.

Из редукторов рассматриваемого типа наиболее распростра­нены горизонтальные (рис. 2). Вертикальный одноступенча­тый редуктор показан на рис. 3. Как горизонтальные, так и вертикальные редукторы могут иметь колеса с прямыми, ко­сыми или шевронными зубьями. Корпуса чаще выполняют литыми чугунными, реже - сварными стальными. При серий­ном производстве целесообразно применять литые корпуса. Валы монтируют на подшипниках качения или скольжения. Последние обычно применяют в тяжелых редукторах.

Компоновочные возможности одноступенчатых редукторов ограничены и отличаются расположением осей валов в пространстве. Диапазон передаточных чисел u =1,6…6,3. Угол наклона косозубых передач β =8 0 …22 0 .

Максимальное передаточное число одноступенчатого цилиндрического редуктора по ГОСТ 2185-66 u m ах = 12,5. Высо­та одноступенчатого редуктора с таким или близким к нему пере­даточным числом больше, чем двухступенчатогостемжезна­чением и (рис. 1.5). Поэтому практически редукторы с передаточными числами, близкими к максимальным, применяют редко, ограничиваясь и 6. Ново-Краматорский машиностроитель­ный завод (НКМЗ) выпускает крупные (межосевые расстояния а w = 300 ÷ 1000 мм) одноступенчатые горизонтальные редук­торы с и = 2,53 ÷ 8,0.

Выбор горизонтальной или вертикальной схемы для редукто­ров всех типов обусловлен удобством общей компоновки при­вода (относительным расположением двигателя и рабочего вала приводимой в движение машины и т. д.).

Рис.1.5. Сопоставление габаритов одноступенчатого и двухступенчатого редукторов

с цилиндрическми колесами при одинаковом передаточном числе u = 8,5

Краткая техническая характеристика редуктора типа Ц1У общего назначения приведена в таблице 3. Кинематическая схема, чертеж общего вида без третьей проекции и общий вид в аксонометрии показаны на рис.2.

Вариант одноступенчатого узкого цилиндрического редуктора с расположением горизонтальных осей валов в вертикальной плоскости типа Ц1УВ показан на рис.3. В данной конструкции для смазки подшипников быстроходного вала предусмотрено дополнительное устройство в виде желоба и каналов с заглушками.

Рис.2. Редуктор типа Ц1У - a 𝛚 - U p -12К


Рис.3. Редуктор типа Ц1УВ – a 𝛚 - U p -15К

Таблица 3

Типоразмер редуктора

Передаточное

число - u Р

Номинальный крутящий момент

на вых . валу, Нм

Масса редуктора

в кг

(2; 3,15; 4;5; 6,3)

Двухступенчатые цилиндрические редукторы

Среди двухступенчатых цилиндрических редукторов общего назначения имеют широкое применение горизонтальные редукторы типа 1Ц2У (рис.4). Основные параметры приведены в таблице 4.

В двухступенчатых редукторах расположены три вала. Первый из них, расположенный ближе к двигателю, называется ведущим и имеет индекс 1 (например, d 1); второй вал является промежуточными имеет индекс 2 (например, d 2); третий вал называется ведомым и имеет индекс 3 (например, d 3). Ведущий и промежуточный валы образуют быстроходную ступень, имеющую индекс 1 или б (а 1 , U 1 или а б , U б ), промежуточный и ведомый валы образуют тихоходную ступень, имеющую индекс 2 или т (а 2 , U 2 или а т , U т ). Шестерни и червяки имеют нечетные индексы, колеса - четные индексы. Например, шестерня, расположенная на ведущем валу, имеет индекс 1 (d 1 , z 1 , HB 1), а шестерня, расположенная на промежуточном валу, имеет индекс 3 (d 3 , z 3 , HB 3). Колесо, расположенное на ведомом валу имеет индекс 4 (d 4 , z 4 , HB 4).


Рис.4. Горизонтальные редукторы типа 1Ц2У


Рис. 4.1. Двухступенчатый горизонтальный редуктор с цилиндрическими колесами:

а - кинематическаясхема;б - редукторсоснятойкрышкой(колесакосозубые);

в - общий вид редуктора, у которого подшипниковые узлызакрыты врезнымикрышками;

г - общийвид редуктора, у которого подшипниковые крышки привернуты винтами

Цилиндрические пары цилиндрических редукторов выполняют по развернутой узкой (рис.5,а), развернутой (рис.5,б) или соосной (рис.5,в) схеме с одним или двумя потоками мощности.

В отношении типа зубьев и подшипников в двухступенча­тых редукторах справедливо сказанное относительно одно­ступенчатых цилиндрических редукторов; часто быстроходную ступень выполняют косозубой , а тихоходную - прямозубой (это относится как к соосным, так и к несоосным редукторам).


Рис. 5. Кинематические схемы цилиндрических редукторов

Наибольшее распространение имеет развернутая схема за счет рациональной унификации деталей редуктора. Так, например, шестерни, колеса и валы можно использовать для изготовления редукторов нескольких типоразмеров. Эти редукторы отличаются простотой, но из-за несимметричного расположения колес на валах повышается концентрация нагруз­ки по длине зуба. Поэтому в этих редукторах следует приме­нять жесткие валы.

При использовании косозубых передач рекомендуетсяс целью унификации выбирать направление зуба шестерни - левое, для колеса - правое во всех ступенях редуктора. Эти рекомендации оправданы для крупносерийного и массового производства, так как унификация деталей приводит к снижению себестоимости. Однако, в единичном и мелкосерийном производстве целесообразно на первой ступени брать направление зубьев шестерни - левое, а шестерни второй ступени - правое. Это вызвано тем, что осевые силы на промежуточном валу частично уравновешиваются, тем самым снижается осевая нагрузка на опоры.

Развернутую схему целесообразно использовать до a ω T = 630...800 мм. Редуктор, спроектированный по развернутой схеме, получается удлиненной формы. Масса такого редуктора примерно на 20% больше, чем у редуктора, спроектированного по раздвоенной схеме.

В раздвоенной схеме быстроходная или тихоходная ступень раздваивается на две косозубые передачи с встречным направлением зуба, образуя фактически шевронную передачу с разнесенными полушевронами. Более рациональной считается схема с раздвоенной быстроходной ступенью, так как в ней удваивается номенклатура менее нагруженных деталей, упрощается промежуточный вал, его можно выполнить как вал-шестерню, появляется возможность сделать быстроходный вал “плавающим”, это предпочтительнее, чем делать “плавающим” промежуточный или тихоходный вал при раздвоенной тихоходной ступени.

Редуктор с раздвоенной быстроходной ступенью, имею­щий косозубые колеса, показан на рис. 5.1. Тихоходная ступень при этом может иметь либо шевронные колеса, либо прямозубые (рис. 5.1, б). Кинематическая схема и общий вид редуктора с раздвоенной тихоходной ступенью показаны на рис. 5.2.

При раздвоенной быстроходной (или тихоходной) ступени колеса расположены симметрично относительно опор, что приводит к меньшей концентрации нагрузки по длине зубьев, чем при применении обычной развернутой или соосной схемы. Это позволяет иметь в рассматриваемом случае менее жест­кие валы. Быстроходный вал редуктора, показанного на рис. 5.1,б, должен иметь свободу осевого перемещения («плавающий» вал), что обеспечивается соответствующей кон­струкцией подшипниковых узлов; в редукторе с шевронными тихоходными колесами свободу осевого перемещения должен иметь и тихоходный вал. При соблюденииуказанногоусловия нагрузка распределяется поровну между параллельно работаю­щими парами зубчатых колес.

Рис. 5.1. Двухступенчатыйгоризонтальныйредуктор с раздвоенной первой (быстроходной) ступенью:

а - кинематическая схема; б -о бщий вид (без крышки)

Рис. 5.2. Двухступенчатый горизонтальный редуктор с раздвоенной второй (тихоходной) ступенью:

а - кинематическая схема; б - общий вид (6eз крышки)

В соосной схеме (рис.6) ось быстроходного вала совпадает с осью тихоходного вала, это дает возможность компоновать технические устройства в осевом направлении. Редуктор, выполненный по соосной схеме, имеет массу, габариты и стоимость такие же как и редуктор, выполненный по развернутой схеме. В соосном редукторе быстроходная ступень редуктора является недогруженной, так как силы, возникающие в зацеплении колес тихоходной ступени, значительно больше, чем в быстроходной, а межосевые расстояния ступеней одинаковы (а ω Б = а ω T ). Указан­ное обстоятельство является одним из основных недостатков соосных редукторов.

Хотя при сравнительно небольшом общем передаточном числе 8 ÷ 16) можно (при обеспечении удовлетворительной компоновки редуктора) так произвести разбивку общего передаточного числа по ступеням, что нагрузочная способность быстроходной ступени будет использована полностью.

Кроме того, к их недостаткам относят также:

а) большие габариты в направлении геометрических осей валов, по сравнению с редукторами, выполненными по развер­нутой схеме;

б) затруднительность смазывания подшипников, располо­женных в c редней части корпуса;

в) большоерасстояниемеждуопорамипромежуточного вала, поэтому требуется увеличить его диаметр для обеспече­ния достаточной прочности и жесткости;

г) некоторое усложнение конструкции опоры быстроходного и тихоходного вала, расположенной внутри редуктора.

Очевидно, применение соосных редукторов ограничивается случаями, когда нет необходимости иметь два выходных конца быстроходного или тихоходного вала, а совпадение геометри­ческих осей входного и выходного валов удобно при намеченной общей компоновке привода. Соосные редукторы очень удобны для использования в машинах с повторно-кратковременным режимом работы.

, б показана кин ематическая схема соосного редуктора с уменьшенными размерами в осевом направлении за счет отсутствия внутренней стенки. Оба п одшипника быстроходного вала размещены в стакане, который одновр еменно предназначен и для установки одной из опор тихоходного вала. Для увеличения жесткости стакан выполнен с толстыми оребренными ст енками; колесо тихоходной ступени, в отверстии которого размещен подшипник, изготовлено как одно целое с валом.


Рис.6. Соосный редуктор: а - конструкция, б - кинематическая схема.

Рис. 6.1. Двухступенчатый горизонтальный соосный редуктор:

а - кинематическая схема; б - общий вид

Схемы вертикальных цилиндрических двухступенчатых редукторов приведены на рис. 6.2.

Рис. 6.2. Кинематические схемы двухступенчатых цилиндрических вертикальных редукторов:

а – выполненного по развернутой схеме (трехосного); б -с оосного

Наиболее компактными среди редукторов с неподвижными осями валов являются многопоточные редукторы, в которых поток мощности разветвляется от шестерни быстроходной ступени на ряд потоков и, пройдя через промежуточные валы, переходит на колесо тихоходной ступени, откуда снимается с учетом потерь мощности двигателя.

Многопоточные редукторы по сложности изготовления приближаются к планетарным , однако передаточные числа планетарных редукторов значительно выше, поэтому многопоточные редукторы имеют ограниченное применение. Их используют в случае необходимости симметричной компоновки привода относительно его продольной оси.

Двухступенчатые цилиндрические редукторы обычно приме­няют в широком диапазоне передаточных чисел: по ГОСТ 2185-66 u =6,3 ÷ 63. Крупные двухступенчатые цилиндрические редукторы, выпускаемые НКМЗ, имеют u = 7,33 ÷ 44,02.

От целесообразной разбивки общего передаточного числа двухступенчатого редукторапоего отдельным ступеням в значительной степени зависят габариты редуктора, удобство сма­зывания каждой ступени, рациональность конструкции корпуса и удобство компоновки всех элементов передач. Дать рекомен­дации разбивки передаточного числа, удовлетворяющие всем указанным требованиям, невозможно, и поэтому все рекомен­дации следует рассматривать как ориентировочные.

Ниже приведена разбивка передаточных чисел для некоторых двухступенчатых редукторов, выпускаемых НКМЗ:

Типоразмер

редуктора

u . . .

8,05

9,83

10,92

12,25

13,83

15,60

3,950

20,49

22,12

23,15

u Б . . .

2,30

2,808

3,125

Суммарное межосевое

расстояние а с, мм

Передаточное

число - u Р

Номинальный крутящий момент

на выходном валу, Нм

Масса редуктора

в кг .

20(А1 )

32(А1 )

57 (А1 ),95

Необходимо отметить, что, если в редукторах типа 1Ц2У старой конструкции угол наклона зубьев составлял 8 0 06 " 34 " (cos β =0,9900), суммарное число зубьев 99 и 198, степень точности по 8 классу и наружными ребрами жесткости корпуса, то в редукторах новой конструкции угол наклона зубьев увеличенных до11 0 31 " 42 " (cos β =0,9900) и суммарное число зубьев составляет 49; 98; 196, степень точности зубчатых колес по ГОСТ 1643-81 доведены до 7 класса, а также применены корпуса новых конструкций.

Такая существенная модернизация позволяет повысить надежность, долговечность и улучшить квалиметрические характеристики выпускаемых редукторов и привести в соответствие международному стандартуISO 6336.

Если у редукторов типа Ц2 (Ц2Ш) быстроходная ступень представляла раздвоенную косозубую передачу (разнесенного шеврона), а тихоходная ступень – косозубую передачу до a ω T =710 мм и шевронную свыше a ω T >800 мм, то современные редукторы Российской Федерации имеют другие решения. При этом профессором Г.А. Снесаревым утверждалось, что раздваивать тихоходную ступень нецелесообразно.

Редукторы Санкт-Петербургского ПО «Эскалатор» типа Ц2 допускают применение в кранах с реверсированием, зубчатой пары быстроходной ступени, шевронная, с углом наклона β =29 0 32 " 29 " , а тихоходная ступень – раздвоенная косозубая с углом наклона β =8 0 6 " 34 " .

Внешний вид цилиндрического трехступенчатого горизонтального узкого редуктора типа Ц3У мало отличается от Ц2У, поэтому приведена краткая техническая характеристика (табл. 5) Ц3У.

Таблица 5

Типоразмер

редуктора

Суммарное межосевое

расстояние а с, мм

Передаточное

число - u Р

Номинальный крутящий момент

на вых . валу, Нм

Масса редуктора

в кг .

Конические редукторы

Конические зубчатые редукторы применяются для передачи вращающего момента между валами, оси которых пересекаются под некоторым углом, как правило, равным 90° (рис.7).

Рис.7. Конструкции конических редукторов: а - обыкновенная, б - кинематическая схема, в - специальная: 1 - стакан ведущего зубчатого колеса,

2 - шлицевой фланец, 3 - ведущее зубчатое колесо, 4 - картер, 5 - суфлер, 6 - стакан ведомого зубчатого колеса, 7 - шлицевой фланец,

8 - ведомое зубчатое колесо, 9 - смотровой люк, 10 - магнитная пробка, 11 - заглушка (место установки термодатчика температуры масла)

В современных конических редукторах колеса выполняют с круговыми зубьями. Во избежание появления на шестерне отрицательной осевой силы, затягивающей шестерню в зацепление, целесообразно, чтобы направление вращения зубчатого колеса и направление наклона линии зуба колеса совпадали.

Передаточное число и одноступенчатых конических редук­торов с прямозубыми колесами,какправило,не выше трех; в редких случаях u = 4. При ко сых или криволинейныхзубьях u = 5 (в виде исключения и = 6,30).

У редукторов с коническими прямозубыми колесами до­пускаемая окружная скорость (по делительной окружности среднего диаметра) v ≤ 5 м/с . При более высоких скоростях рекомендуют применять конические колеса с круговыми зубьями, обеспечивающими более плавное зацепление и большую несу­щую способность.

Если в редукторе требуется осуществить весь набор передаточных чисел, то рекомендуется предусмотреть два типа корпуса: широкий при u = 1…2,8 (К1Ш) и узкий при u = 3,15…5. Распространенное значение угла наклона β П =35 0 .

Колесо располагают между опорами, а шестерню – консольно (рис.8). Установка между опорами значительно сложнее, для чего делают стакан с окном, что позволяет уменьшить длину редуктора.

Общего и специального назначения.
Редукторы общего назначения могут применяться во многих случаях и отвечают общим требованиям. Специальные же редукторы имеют нестандартные характеристики подходящие под определенные требования.

Классификация, основные параметры редукторов

В зависимости от типа зубчатой передачи редукторы бывают цилиндрические, конические, волновые, планетарные, глобоидные и червячные . Широко применяются комбинированные редукторы, состоящие из нескольких совмещенных в одном корпусе типов передач (цилиндро-конические, цилиндро-червячные и т.д.).

Конструктивно редукторы могут передавать вращение между перекрещивающимися, пересекающимися и параллельными валами.
Так, например цилиндрические редукторы позволяют передать вращение между параллельными валами, конические - между пересекающимися, а червячные - между пересекающимися валами.

Общее передаточное число может достигать до нескольких десятков тысяч, и зависит от количества ступеней в редукторе. Широкое применение нашли редукторы, состоящие из одной, двух или трех ступеней, при чем они могут, как описывалось выше, совмещать разные типы зубчатых передач.

Ниже представлены наиболее популярные виды редукторов , серийно выпускаемые промышленностью.

Цилиндрические редукторы

Конические и цилиндро-конические редукторы

Конические и цилиндро-конические редукторы передают момент между пересекающимися или скрещивающимися валами. В редукторах применяются шестерни в виде конуса с прямыми или косыми зубами. Конические редукторы имеют большую плавность зацепления, что позволяет им выдерживать большие нагрузки. Редукторы могут быть одно-, двух- и трехступенчатыми. Большое распространение получили цилиндро-конические редукторы , где общее передаточное отношение может достигать 315. Быстроходный и тихоходный валы редуктора могут располагаться горизонтально и вертикально. По типу кинематической схемы конические и цилиндро-конические редукторы могут быть развернутые или соосные.

На рисунке ниже представлены кинематические схемы конических редукторов:

А) Реверсивный конический редуктор. Смена направления вращения достигается установкой зубчатого колеса с противоположенной стороны конической шестерни.

Б) Реверсивный конический редуктор. Конические шестерни вращаются в разных направлениях. Подключение тихоходного вала к одной из конических шестеренок происходит за счет кулачковой муфты.

В) Двухступенчатый коническо-цилиндрический редуктор. Быстроходный и тихоходный валы находятся под прямым углом в одной плоскости.

Г) Двухступенчатый коническо-цилиндрический редуктор. Входной и выходные валы перекрещиваются и лежат в разных плоскостях.

Д) Трехступенчатый коническо-цилиндрический редуктор. Быстроходный и тихоходный валы находятся под прямым углом в одной плоскости.

Е) Трехступенчатый коническо-цилиндрический редуктор. Промежуточная и тихоходная цилиндрическая передача собраны по соосной схеме.

Конические редукторы широко используются в изделиях, где требуются передать высокий момент под прямым углом. В отличие от червячных редукторов, конические редукторы не имеют быстро изнашиваемого бронзового колеса, что позволяет работать им в тяжелых условиях длительное время. Также важным отличием является обратимость, возможность передавать вращение от тихоходного вала к быстроходному валу. Обратимость позволяет разгрузить редукторный механизм в отличие от червячного редуктора, что позволяет использовать конический редуктор в установках с высокой инерцией.

Классификация редукторов в зависимости от вида передач и числа ступеней:

Тип редуктора

Количество ступеней

Тип механической передачи

Расположение тихоходного и быстроходного валов

Цилиндрический

Одна ступень

Одна или несколько цилиндрических передач

Параллельное

Две ступени; три ступени

Параллельное или соосное

Четыре ступени

Параллельное

Конический

Одна ступень

Одна коническая передача

Пересекающееся

Коническо-цилиндрический

Одна коническая передача и одна или несколько цилиндрических передач

Пересекающееся или скрещивающееся

Червячный

Одна ступень; две ступени

Одна или две червячные передачи

Скрещивающееся

Параллельное

Цилиндрическо-червячный или червячно-цилиндрический

Две ступени; три ступени

Одна или две цилиндрические передачи и одна червячная передача

Скрещивающееся

Планетарный

Одна ступень; две ступени; три ступени

Каждая ступень состоит из двух центральных зубчатых колес и сателлитов

Цилиндрическо-планетарный

Две ступени; три ступени; четыре ступени

Сборка из одной или нескольких цилиндрических и планетарных передач

Параллельное или соосное

Коническо-планетарный

Две ступени; три ступени; четыре ступени

Пересекающееся

Червячно-планетарный

Две ступени; три ступени; четыре ступени

Сборка из одной конической и планетарных передач

Скрещивающееся

Волновой

Одна ступень

Одна волновая передача

Конструкция и назначение редуктора

Механизм, служащий для понижения угловой скорости и одновременно повышающий крутящий момент, принято называть редуктором. Энергия вращения подводится на входной вал редуктора, далее в зависимости от передаточного отношения на выходном валу получаем пониженную частоту и увеличенный момент.

В состав редуктора в зависимости от типа механической передачи обычно входят зубчатые или червячные пары, центрирующие подшипники, валы, различные уплотнения, сальники и т.д. Элементы редуктора помещаются в корпус, состоящий из двух частей – основания и крышки. Рабочие механизмы редуктора при работе непрерывно смазываются маслом путем разбрызгивания, а в отдельных случаях применяется принудительный насос, помещенный внутрь редуктора.

Существует огромное количество различных типов редукторов, но наибольшую популярность получили цилиндрические, планетарные, конические и червячные редукторы. Каждый тип редуктора имеет свои определенные преимущества и недостатки, которые следует учитывать при конструировании оборудования. Основными же критериями для подбора редуктора являются определение необходимой мощности или момента нагрузки, коэффициента редукции (передаточного отношения), а также монтажного расположения источника вращения и рабочего механизма.

Особенности редукторов по виду механических передач

Мировой промышленностью выпускается огромное количество редукторов и редукторных механизмов различающихся по типу передачи, вариантам сборки и т.д. Рассмотрим основные типы механических передач, их особенности и преимущества.

– является самой надежной и долговечной из всех видов зубчатых передач. Данная передача применяется в редукторах, где требуется высокая надежность и высокий КПД. Цилиндрические передачи обычно состоят из прямозубых, косозубых или шевронных зубчатых колёс.

а) Прямозубая цилиндрическая передача

б) Косозубая цилиндрическая передача

в) Шевронная цилиндрическая передача

г) Цилиндрическая передача с внутренним зацеплением

Конические передачи – обладают всеми преимуществами цилиндрических зубчатых передач и применяются в случае перекрещивания входного и выходного валов.

а) Коническая зубчатая передача с прямым зубом

б) Коническая зубчатая передача с косым зубом

в) Коническая зубчатая передача с криволинейным зубом

г) Коническая гипоидная передача

– позволяет передавать кинетическую энергию между пересекающимися в одной плоскости валами. Основными преимуществами данной передачи является высокий показатель передаточного отношения, самоторможение, компактные размеры. Недостатками являются низкий КПД, быстрый износ бронзового колеса, а также ограниченная способность передавать большие мощности.

Гипоидная передача – она же спироидная состоит из конического червяка и диска со спиральными зубьями. Ось червяка значительно смещена от оси конического колеса, благодаря чему число зубьев одновременно входящих в зацепление в несколько раз больше чем у червячных передач. В отличие от червячной пары в гипоидной передаче линия контакта перпендикулярна к направлению скорости скольжения, что обеспечивает масленый клин и уменьшает трение. Благодаря этому КПД гипоидной передачи выше, чем у червячной передачи на 25%.

а) Червячная передача с цилиндрическим червяком

б) Червячная передача с глобоидным червяком

в) Спироидная передача

г) Тороидно-дисковая передача

д) Тороидная передача внутреннего зацепления

– прототипом является планетарная передача с небольшой разницей количества зубов сателлита и неподвижного колеса. Волновая передача характеризуется высоким показателем передаточного отношения (до 350). Основными элементами волновой передачи являются гибкое колесо, жесткое колесо и волновой генератор. Под действием генератора гибкое колесо деформируется и происходит зацепление зубьев с жестким колесом. Волновые передачи широко применяются в точном машиностроении благодаря высокой плавности и отсутствия вибраций во время работы.

1) Зубчатое колесо с внутренними зубьями

2) Гибкое колесо с наружными зубьями соединенное с выходным валом редуктора

3) Генератор волн

Количество ступеней редуктора

Число ступеней редуктора напрямую влияет на передаточное отношение. В червячных редукторах наиболее распространены одноступенчатые пары. Цилиндрические же редукторы, состоящие из одной ступени, применяются реже, чем двух- или трехступенчатые редукторы. В производстве редукторов все чаще применяются комбинированные передачи, состоящие из разных типов передач, например коническо-цилиндрические редукторы.

Входные и выходные валы редукторов

В редукторах обычно применяются обычные прямые валы, имеющие форму тел вращения. На валы редукторов действуют внешние нагрузки, консольные нагрузки и усилия преодоления зацеплений. Крутящий момент на валу определяется рабочим крутящим моментом редуктора или реактивным крутящим моментом привода. Консольная нагрузка определяется способом соединения редуктора с двигателем, зависит от радиального или осевого усилия на вал. В ряде машин, к которым предъявляются особые требования в отношении габаритов или веса используются редукторы с полым валом. Полый вал редуктора позволяет располагать вал исполнительного механизма внутри редуктора, тем самым отпадает необходимость использовать переходные полумуфты и т.п.

Срок службы редуктора

Срок службы редуктора зависит от правильных расчетов параметров действующей нагрузки. Также на длительность работы влияет своевременное профилактическое обслуживание редуктора, замена масла и сальников. Регулярный профилактический осмотр позволит избежать незапланированного ремонта или замену редуктора. Уровень масла контролируется через смотровое окно в редукторе и при необходимости доливается до нужного уровня.

Ниже приведена таблица зависимости срока службы редуктора от типа передачи:

Устройство редуктора

Основными элементами редуктора являются:

1. Прошедшие обработку зубчатые колеса с зубьями высокой твердости . Материалом обычно служит сталь марки (40Х, 40ХН ГОСТ 4543-71). В планетарных редукторах шестерни и сателлиты изготовлены из стали марки 25ХГМ ГОСТ 4543-71. Зубчатые венцы из стали 40Х. Червячные валы изготавливаются из стали марки ГОСТ 4543-71 – 18ХГТ, 20Х с последующей цементацией рабочих поверхностей. Венцы червячных редукторов изготавливают из бронзы Бр010Ф1 ГОСТ 613-79. Гибкое колесо волнового редуктора изготовлено из кованой стали 30ХГСА ГОСТ 4543-71.
2. Валы (оси) быстроходные, промежуточные и тихоходные . Материалом является - сталь марки (40Х, 40ХН ГОСТ 4543-71). В зависимости от варианта сборки выходные валы могут быть одно- и двухконцевыми, а также полыми со шпоночным пазом. Выходные валы планетарных редукторов изготовлены заодно с водилом последней ступени. Материалом служит чугун или сталь.
3. Подшипниковые узлы . Используются подшипники качения воспринимающие большие осевые и консольные нагрузки. Применяются обычно конические роликоподшипники.
4. Шлицевые, шпоночные соединения . Шлицевые соединения чаще применяются в червячных редукторах (выходной полый вал). Шпонки применяются для соединения валов с зубчатыми колесами, муфтами и другими деталями.
5. Корпуса редукторов . Корпуса и крышки редукторов выполняются методом литья. В качестве материалов используется чугун марки СЧ 15 ГОСТ 1412-79 или сплав алюминия АЛ11. Для улучшения отвода тепла корпуса редукторов снабжаются ребрами.

Методика выбора редуктора в зависимости от нагрузки

Методика выбора редуктора заключается в грамотном расчете основных параметров нагрузки и условий эксплуатации.

Технические характеристики описаны в каталогах, а выбор редуктора делается в несколько этапов:

  • выбор редуктора по типу механической передачи
  • определение габарита (типоразмера) редуктора
  • определение консольных и осевых нагрузок на входной и выходной валы
  • определение температурного режима редуктора

На первом этапе конструктор определяет тип редуктора исходя из заданных задач и конструктивных особенностей будущего изделия. На этом же этапе закладываются такие параметры как: передаточное отношение, количество ступеней, расположение входного и выходного валов в пространстве.

На втором этапе следует определить межосевое расстояние. Исходные данные на каждый тип редуктора можно найти в каталоге. Следует помнить, что межосевое расстояние влияет на способность передать момент от двигателя к нагрузке.

Консольные и осевые нагрузки определяются уравнениями, а потом сравниваются со значениями в каталоге. В случае превышения расчетных нагрузок, на какой либо вал, редуктор выбирается на типоразмер выше.

Температурный режим определяется во время работы редуктора. Температура не должна превышать + 80° гр. при длительной работе редуктора с действующей нагрузкой.

Как выбрать редуктор?

Выбор редуктора должен производить квалифицированный сотрудник т.к. неправильные расчеты могут привести к поломке редуктора или сопутствующего оборудования. Грамотный выбор редуктора поможет избежать дальнейшие затраты на ремонт и покупку нового привода. Основными параметрами для выбора редуктора как было сказано выше, являются: тип редуктора, габарит или типоразмер, передаточное отношение, а также кинематическая схема.

Определить габарит редуктора можно с помощью каталога, где указаны максимальные значения крутящего момента для каждого типоразмера. Момент действующей нагрузки на редуктор определяется следующим выражением:

где:
M2 - выходной момент на валу редуктора (Н/М)
P1 - подводимая мощность на быстроходном валу редуктора (кВт)
Rd - динамический КПД редуктора (%)
n2

Частоту вращения тихоходного вала n2 можно определить, зная значения передаточного отношения редуктора i , а также значения скорости быстроходного вала n1 .

где:
n1 - частота вращения быстроходного вала (об/мин)
n2 - частота вращения тихоходного вала (об/мин)
i - передаточное отношение редуктора

Еще одним важным фактором, который следует учитывать при подборе редуктора, является величина – сервис фактор (s/f). Сервис фактор sf – это отношение максимально допустимого момента M2 max указанного в каталоге к номинальному моменту M2 зависящего от мощности двигателя.

где:
M2 max - максимально допустимый момент (паспортное значение)
M2 - номинальный момент на валу редуктора (зависит от мощности двигателя)

Значение сервис фактора (s/f) напрямую связан с ресурсом редуктора и зависит от условий работы привода.

При работе редуктора с нормальной нагрузкой, где число стартов не превышает 60 пусков в час - сервис фактор может выбираться: sf = 1.

При средней нагрузке, где число стартов не превышает 150 пусков в час - сервис фактор выбирается: sf = 1,5.

При тяжелой ударной нагрузке с возможностью заклинивания вала редуктора сервис фактор выбирается: sf = 2 и более.

Передаточное отношение и как его определить?

Основное назначение любого редуктора понижение угловой скорости подводимой на его входной вал. Значения выходной скорости определятся передаточным отношением редуктора. Передаточное отношение редуктора - это отношение скорости входного вала к скорости выходного вала.

Редуктор заднего моста – один из важных узлов автомобиля, который участвует в его передвижении. Редуктор состоит из главной передачи и дифференциала.

Устройство и принцип работы

Главная передача

Главная передача может быть одинарной или двойной. Одинарная передает крутящий момент на колеса автомобиля с помощью одной зубчатой пары, а двойная – с помощью двух. Одинарная передача, в свою очередь, может быть:

  • цилиндрической;
  • конической;
  • гипоидной;
  • червячной.

У главной передачи цилиндрического типа шестерни располагаются в одной плоскости, у конической – перпендикулярно друг другу. Преимущества и недостатки основных модификаций одинарных главных передач перечислены в следующей таблице.

Модификации одинарных главных передач:

Двойная главная передача может быть центральной или разнесенной. Центральная имеет более простую конструкцию, большое передаточное число и большую нагрузку на все элементы системы. Разнесенная отличается более сложной конструкцией, она более эффективна в работе и компактна.

Дифференциал

Межколесный дифференциал распределяет крутящий момент между различными полуосями. Если машина скользит или пробуксовывает, дифференциал помогает ей справиться с данной проблемой, позволяя колесам вращаться с разной скоростью.

В чашке (3) расположены шестерни сателлитов (4) и полусоей (5). Чашка соединена с ведомой шестерней (2). Шестерня, в свою очередь, принимает крутящий момент от ведущей шестерни главной передачи (1). Чашка с помощью сателлитов передает вращение полуосям, приводящим в движение ведущие колеса автомобиля. Работа сателлитов обеспечивает разные угловые скорости. Величина крутящего момента неизменна.

Подобное устройство реализовано в большинстве заднеприводных машин, таких как «ВАЗ-2106», «ВАЗ-2107», «Газель». Оно доказало свою надежность во время работы в самых сложных условиях.

Неисправности

Причины появления неисправностей

Редуктор заднего моста – сложный механизм, состоящий из большого числа элементов. Неисправность любого из них может привести к выходу из строя всей системы.

  1. Перегруз системы. Одной из самых распространенных причин выхода из строя редуктора заднего моста является частое превышение положенной нагрузки на автомобиль. Например, при буксировке тяжелых транспортных средств или других грузов. Во время буксировки нагрузка на все элементы системы существенно увеличивается.
  2. Люфт в крестовинах. Многие автомобилисты отмечают, что через 5-6 лет эксплуатации авто в крестовинах появляется люфт. Это происходит из-за повышенной детонации двигателя, не отрегулированного зажигания и возникающих в связи с этим толчков и ударов. Поэтому в ходе ремонта проводят диагностику всех элементов ходовой части и не ограничиваются заменой передаточного механизма.
  3. Отсутствие смазки. Если в редукторе заднего моста нет масла, то его может заклинить, из-за перегрева. Могут лопнуть стальные части или сломаться зубья на шестеренках. Чтобы избежать подобных проблем, необходимо держать уровень смазки под контролем.
  4. Выработка подшипников , расположенных в «чулках». Эта неисправность появляется после долгих лет эксплуатации автомобиля. Она может спровоцировать искривление валов и разрушение зубчатых передач. В результате редуктор заднего моста будет не пригоден для ремонта.

Признаки неисправностей

О проблемах, связанных с работой редуктора заднего моста, вы узнаете по характерному шуму:

  1. Усиленный шум моста. Возможно, деформировалась балка, износились шестерни и полуоси, понижен уровень масла или наблюдается его утечка. Шум, появившийся сразу после ремонта, является следствием неправильной регулировки.
  2. Шум во время разгона. Если шум появляется во время разгона автомобиля, значит изношены или повреждены подшипники дифференциала, либо полуосей. Еще одна возможная причина – недостаток смазки в редукторе.
  3. Шум во время разгона и торможения. Если шум появился не только во время разгона, но и при торможении автомобиля, значит, износились или разрушены подшипники ведущей шестерни. Возможно, в шестернях главной передачи нарушены зазоры.
  4. Шум на поворотах. Если вы заметили появление шума на поворотах, значит, в автомобиле неисправны подшипники полуосей. Возможные причины – задиры на поверхности сателлитов или их слишком тугое вращение.
  5. Стуки в начале движения. Скорее всего, увеличен зазор шлицевого соединения вала ведущей шестерни с фланцем. Также вероятно, что в отверстие для оси сателлитов, расположенное в дифференциале, изношено.

Тестовые испытания автомобиля

Тест 1. Начните движение по шоссе со скоростью 20 км/ч, затем плавно увеличивайте скорость до 90 км/ч. Одновременно прислушивайтесь к звукам, которые издает автомобиль на разной скорости. Отпустите педаль управления дроссельной заслонкой и, не притормаживания, погасите скорость двигателем. Следите за изменением шума.

Тест 2. Во время движения со скоростью 100 км/ч переключите рычаг в нейтральное положение, выключите зажигание и свободно катитесь до полной остановки. Следите за изменением шума на разных скоростях замедления.

Тест 3. Автомобиль в неподвижном положении, на ручном тормозе. Запустите двигатель машины и, постепенно увеличивая обороты, прислушайтесь к возникшим шумам. Если вы слышите такой же шум, как при испытании №1, значит их источником является не редуктор, а другие узлы автомобиля.

Тест 4. Если шум, выявленный на испытании №1, не повторился на испытаниях №2 и №3, значит, он исходит от редуктора. Чтобы окончательно в этом убедиться, поднимите задние колеса машины, запустите двигатель и переключитесь на четвертую передачу. Это позволит вам убедиться, что источником шума является именно редуктор, а не подвеска или кузов.

Как избежать преждевременного выхода редуктора моста из строя? Нужно следить за уровнем масла, прислушиваться к шумам и стукам в автомобиле, визуально осматривать мост на предмет течи и внешних повреждений балки.

Снятие и установка редуктора

Снятие редуктора

Чтобы снять редуктор, выполните следующие действия:

  • слейте из балки моста масло;
  • приподнимите заднюю часть автомобиля, установите ее на подставки;
  • демонтируйте колеса;
  • отверните гайки, прикрепляющие щит тормоза к балке;
  • выдвиньте полуоси из коробки дифференциала;
  • отсоедините от редуктора карданный вал;
  • подставьте под картер редуктора подставку;
  • выверните болты крепления редуктора к балке заднего моста;
  • выньте редуктор из балки.

Редуктор закрепите на стенде. Снимите стопорные пластины, удалите болты и крышки подшипников коробки дифференциала, а также регулировочные гайки и наружные кольца роликовых подшипников. Прежде, чем снять крышки, пометьте их, чтобы позже установить на прежние места. Извлеките из картера редуктора коробку дифференциала с внутренними кольцами подшипников и ведомой шестерней.

Чтобы демонтировать ведущую шестерню и ее детали, необходимо выполнить следующие действия:

  • перевернуть картер редуктора вверх горловиной;
  • отвернуть ключом (2) гайку крепления фланца, придерживая при этом фланец (3) ведущей шестерни стопором (1);
  • снимите фланец;
  • извлеките ведущую шестерню;
  • из картера выньте сальник, маслоотражатель, внутреннее кольцо переднего подшипника;
  • выпрессуйте с помощью оправки наружные кольца заднего и переднего подшипника;
  • снимите распорную втулку с ведущей шестерни;
  • с помощью съемника (1) и оправки (4) снимите внутреннее кольцо заднего роликового подшипника;
  • извлеките регулировочное кольцо внутренней шестерни.

Разбираем дифференциал:

  • снимаем внутренние кольца (2) коробки (3) с помощью универсального съемника (1) и упора (4);
  • отвертываем гайки крепления шестерни ведомой и выбиваем из коробки ось сателлитов;
  • проворачиваем шестерни полуосей и сателлиты, при этом последние должны выкатиться в окна дифференциала, чтобы их можно было вынуть;
  • снимаем с шестерни полуосей с опорными шайбами.

Установка редуктора

Чтобы разобрать редуктор, необходимо очистить от масла балку моста. Затем нужно положить уплотнительную прокладку на привалочную поверхность, вставить в балку редуктор и закрепить его болтами. Предварительно отверстия в балке и болты обезжирьте и нанесите на болты герметик. Присоедините к редуктору карданный вал и установите полуоси и тормозные барабаны. Установите колесо, наверните (не затягивая) болты их крепления. Кода будут установлены оба колеса, уберите подставки и опустите машину на землю. Далее затяните болты крепления колес с помощью динамического ключа. Очистите магнитную пробку и вверните ее в балку. Заправьте балку моста маслом через маслоналивное отверстие.