Как обозначается угловая скорость

Рассмотрим твердое тело, которое враща­ется вокруг неподвижной оси. Тогда от­дельные точки этого тела будут описывать окружности разных радиусов, центры ко­торых лежат на оси вращения. Пусть не­которая точка движется по окружности радиуса R (рис.6). Ее положение через промежуток времени t зададим углом . Элементарные (бесконечно малые) углы поворота рассматривают как векторы. Мо­дуль вектора d равен углу поворота, а его направление совпадает с направле­нием поступательного движения острия винта, головка которого вращается в на­правлении движения точки по окружности, т. е. подчиняется правилу правого, винта (рис.6). Векторы, направления которых связываются с направлением вращения, называются псевдовекторами или акси­альными векторами. Эти векторы не имеют определенных точек приложения: они мо­гут откладываться из любой точки оси вращения.

Вопрос исследования: Можно ли определить радиус вращения из данных измерения кругового движения? Угловая скорость ω не зависит от радиуса тела к его оси вращения. В качестве доказательства претензии два смартфона использовались для измерения угловой скорости в двух местах на перекладине передней двери. Значительно после того, как качание перекладины двери узнаваемо. Измерение вращения выполнялось с помощью бесплатного приложения и запускалось один за другим. На диаграмме показана угловая скорость, не зависящая от радиуса.

Интеграл от «кривой открытия» привел к тому, что свободная программа «Измерение Филе» - угол открытия двери φ = 91 °. Интеграл «кривой закрытия» дал угол φ = 92 °. Оба измеренных значения соответствуют действительности: Дверцу можно открыть с помощью φ = 90 °.

Угловой скоростью называется вектор­ная величина, равная первой производной угла поворота тела по времени:

Вектор «в направлен вдоль оси вращения по правилу правого винта, т. е. так же, как и вектор d (рис. 7). Размерность угловой скорости dim=T -1 , a . ее единица - радиан в секунду (рад/с).

В случае непрерывного кругового движения должно действовать действие ускорения а, которое указывает на центр круга как вектор. Эксперимент: радиус кольцевой развязки. Вопрос исследования: Можно ли определить радиус кольцевой развязки с помощью гирометра?

Как показано в предыдущем эксперименте двери, ширину двери можно определить с помощью датчика вращения и ускорения. Тот же самый эксперимент теперь повторяется в больших размерах: автомобиль проходил через кольцевую развязку возле школы несколько раз. Смартфон был прикреплен с двухсторонней лентой на приборной панели автомобиля. В начале трассы автомобиль уже был на перекрестке с круговым движением. Подходящие приложения для экспериментов с датчиком вращения.

Линейная скорость точки (см. рис. 6)

В векторном виде формулу для линейной скорости можно написать как вектор­ное произведение:

При этом модуль векторного произведе­ния, по определению, равен

А направление совпадает с направлением поступательного движения правого винта при его вращении от  к R.

Если =const, то вращение равномер­ное и его можно характеризовать перио­дом вращения Т - временем, за которое точка совершает один полный оборот, т. е. поворачивается на угол 2. Так как промежутку времени t=T соответствует =2, то = 2/Т, откуда

Число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени называет­ся частотой вращения:

Угловым ускорением называется век­торная величина, равная первой производ­ной угловой скорости по времени:

При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой ско­рости. При ускоренном движении вектор

 сонаправлен вектору  (рис.8), при замедленном.- противонаправлен ему (рис. 9).

Тангенциальная составляющая ускорения

Нормальная составляющая ускорения

Таким образом, связь между линейны­ми (длина пути s, пройденного точкой по дуге окружности радиуса R, линейная ско­рость v, тангенциальное ускорение а  , нор­мальное ускорение а n ) и угловыми величи­нами (угол поворота , угловая скорость (о, угловое ускорение ) выражается сле­дующими формулами:

В случае равнопеременного движения точки по окружности (=const)

где  0 - начальная угловая скорость.

Контрольные вопросы

Что называется материальной точкой? Почему в механике вводят такую модель?

Что такое система отсчета?

Что такое вектор перемещения? Всегда ли модуль вектора перемещения равен отрезку пути,

пройденному точкой?

Какое движение называется поступательным? вращательным?

Дать определения векторов средней скорости и среднего ускорения, мгновенной скорости

и мгновенного ускорения. Каковы их направления?

Что характеризует тангенциальная составляющая ускорения? нормальная составляющая

ускорения? Каковы их модули?

Возможны ли движения, при которых отсутствует нормальное ускорение? тангенциальное

ускорение? Приведите примеры.

Что называется угловой скоростью? угловым ускорением? Как определяются их направления?

Какова связь между линейными и угловыми величинами?

Задачи

1.1. Зависимость пройденного телом пути от времени задается уравнением s = A t t 2 + Dt 3 (С = 0,1 м/с 2 , D = 0,03 м/с 3). Определить: 1) через какое время после начала движения ускорение а тела будет равно 2 м/с 2 ; 2) среднее ускорение <а> тела за этот промежуток времени. [ 1) 10 с; 2) 1,1 м/с 2 ]

1.2. Пренебрегая сопротивлением воздуха, определить угол, под которым тело брошено к гори­зонту, если максимальная высота подъема тела равна 1/4 дальности его полета.

1.3. Колесо радиуса R = 0,1 м вращается так, что зависимость угловой скорости от времени задается уравнением  = 2At+5Вt 4 (A=2 рад/с 2 и B=1 рад/с 5). Определить полное ускорение точек обода колеса через t= 1 с после начала вращения и число оборотов, сделан­ных колесом за это время. [а = 8,5 м/с 2 ; N = 0,48]

1.4. Нормальное ускорение точки, движущейся по окружности радиуса r= 4 м, задается уравнением а n +-Bt+Ct 2 (A =1 м/с 2 , В =6 м/с 3 , С =3 м/с 4). Определить: 1) тангенциальное ускорение точки; 2) путь, пройденный точкой за время t 1 =5 с после начала движения; 3) полное ускорение для момента времени t 2 =1 с. [ 1) 6 м/с 2 ; 2) 85 м; 3) 6,32 м/с 2 ]

1.5. Частота вращения колеса при равнозамедленном движении за t =1 мин уменьшилась от 300 до 180 мин -1 . Определить: 1) угловое ускорение колеса; 2) число полных оборотов, сделанных колесом за это время.

1.6. Диск радиусом R=10 см вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением =A +Bt+Ct 2 +Dt 3 (B = l рад/с, С =1 рад/с 2 , D =l рад/с 3). Определить для точек на ободе колеса к концу второй секунды после начала движения: 1) тангенциальное ускорение а  ; 2) нормальное ускорение а n ; 3) полное ускорение а. [ 1) 0,14 м/с 2 ; 2) 28,9 м/с 2 ; 3) 28,9 м/с 2 ]

Рассмотрим твердое тело, которое враща­ется вокруг неподвижной оси. Тогда от­дельные точки этого тела будут описывать окружности разных радиусов, центры ко­торых лежат на оси вращения. Пусть не­которая точка движется по окружности радиуса R (рис.6). Ее положение через промежуток времени t зададим углом . Элементарные (бесконечно малые) углы поворота рассматривают как векторы. Мо­дуль вектора d равен углу поворота, а его направление совпадает с направле­нием поступательного движения острия винта, головка которого вращается в на­правлении движения точки по окружности, т. е. подчиняется правилу правого, винта (рис.6). Векторы, направления которых связываются с направлением вращения, называются псевдовекторами или акси­альными векторами. Эти векторы не имеют определенных точек приложения: они мо­гут откладываться из любой точки оси вращения.

Вопрос исследования: Можно ли определить радиус вращения из данных измерения кругового движения? Угловая скорость ω не зависит от радиуса тела к его оси вращения. В качестве доказательства претензии два смартфона использовались для измерения угловой скорости в двух местах на перекладине передней двери. Значительно после того, как качание перекладины двери узнаваемо. Измерение вращения выполнялось с помощью бесплатного приложения и запускалось один за другим. На диаграмме показана угловая скорость, не зависящая от радиуса.

Интеграл от «кривой открытия» привел к тому, что свободная программа «Измерение Филе» - угол открытия двери φ = 91 °. Интеграл «кривой закрытия» дал угол φ = 92 °. Оба измеренных значения соответствуют действительности: Дверцу можно открыть с помощью φ = 90 °.

Угловой скоростью называется вектор­ная величина, равная первой производной угла поворота тела по времени:

Вектор «в направлен вдоль оси вращения по правилу правого винта, т. е. так же, как и вектор d (рис. 7). Размерность угловой скорости dim=T -1 , a . ее единица - радиан в секунду (рад/с).

Линейная скорость точки (см. рис. 6)

В векторном виде формулу для линейной скорости можно написать как вектор­ное произведение:

При этом модуль векторного произведе­ния, по определению, равен

А направление совпадает с направлением поступательного движения правого винта при его вращении от  к R.

Если =const, то вращение равномер­ное и его можно характеризовать перио­дом вращения Т - временем, за которое точка совершает один полный оборот, т. е. поворачивается на угол 2. Так как промежутку времени t=T соответствует =2, то = 2/Т, откуда

Число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени называет­ся частотой вращения:

Угловым ускорением называется век­торная величина, равная первой производ­ной угловой скорости по времени:

При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой ско­рости. При ускоренном движении вектор

 сонаправлен вектору  (рис.8), при замедленном.- противонаправлен ему (рис. 9).

Тангенциальная составляющая ускорения

Нормальная составляющая ускорения

Таким образом, связь между линейны­ми (длина пути s, пройденного точкой по дуге окружности радиуса R, линейная ско­рость v, тангенциальное ускорение а  , нор­мальное ускорение а n ) и угловыми величи­нами (угол поворота , угловая скорость (о, угловое ускорение ) выражается сле­дующими формулами:

В случае равнопеременного движения точки по окружности (=const)

где  0 - начальная угловая скорость.

Контрольные вопросы

Что называется материальной точкой? Почему в механике вводят такую модель?

Что такое система отсчета?

Что такое вектор перемещения? Всегда ли модуль вектора перемещения равен отрезку пути,

пройденному точкой?

Какое движение называется поступательным? вращательным?

Дать определения векторов средней скорости и среднего ускорения, мгновенной скорости

и мгновенного ускорения. Каковы их направления?

Что характеризует тангенциальная составляющая ускорения? нормальная составляющая

ускорения? Каковы их модули?

Возможны ли движения, при которых отсутствует нормальное ускорение? тангенциальное

ускорение? Приведите примеры.

Что называется угловой скоростью? угловым ускорением? Как определяются их направления?

Какова связь между линейными и угловыми величинами?

Задачи

1.1. Зависимость пройденного телом пути от времени задается уравнением s = A t t 2 + Dt 3 (С = 0,1 м/с 2 , D = 0,03 м/с 3). Определить: 1) через какое время после начала движения ускорение а тела будет равно 2 м/с 2 ; 2) среднее ускорение <а> тела за этот промежуток времени. [ 1) 10 с; 2) 1,1 м/с 2 ]

1.2. Пренебрегая сопротивлением воздуха, определить угол, под которым тело брошено к гори­зонту, если максимальная высота подъема тела равна 1/4 дальности его полета.

1.3. Колесо радиуса R = 0,1 м вращается так, что зависимость угловой скорости от времени задается уравнением  = 2At+5Вt 4 (A=2 рад/с 2 и B=1 рад/с 5). Определить полное ускорение точек обода колеса через t= 1 с после начала вращения и число оборотов, сделан­ных колесом за это время. [а = 8,5 м/с 2 ; N = 0,48]

1.4. Нормальное ускорение точки, движущейся по окружности радиуса r= 4 м, задается уравнением а n +-Bt+Ct 2 (A =1 м/с 2 , В =6 м/с 3 , С =3 м/с 4). Определить: 1) тангенциальное ускорение точки; 2) путь, пройденный точкой за время t 1 =5 с после начала движения; 3) полное ускорение для момента времени t 2 =1 с. [ 1) 6 м/с 2 ; 2) 85 м; 3) 6,32 м/с 2 ]

1.5. Частота вращения колеса при равнозамедленном движении за t =1 мин уменьшилась от 300 до 180 мин -1 . Определить: 1) угловое ускорение колеса; 2) число полных оборотов, сделанных колесом за это время.

1.6. Диск радиусом R=10 см вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением =A +Bt+Ct 2 +Dt 3 (B = l рад/с, С =1 рад/с 2 , D =l рад/с 3). Определить для точек на ободе колеса к концу второй секунды после начала движения: 1) тангенциальное ускорение а  ; 2) нормальное ускорение а n ; 3) полное ускорение а. [ 1) 0,14 м/с 2 ; 2) 28,9 м/с 2 ; 3) 28,9 м/с 2 ]