Как рассчитать тепловую. Как выполняется расчет тепловой нагрузки на отопление

В холодное время года у нас в стране отопление зданий и сооружений составляют одну из основных статей расходов любого предприятия. И тут не важно жилое это помещение, производственное или складское. Везде нужно поддерживать постоянную плюсовую температуру, чтобы не замерзли люди, не вышло из строя оборудование или не испортилась продукция или материалы. В ряде случаев требуется провести расчет тепловой нагрузки на отопление того или иного зданий или всего предприятия в целом.

В каких случаях производят расчет тепловой нагрузки

  • для оптимизации расходов на отопление;
  • для сокращения расчетной тепловой нагрузки;
  • в том случае если изменился состав теплопотребляющего оборудования (отопительные приборы, системы вентиляции и т.п.);
  • для подтверждения расчетного лимита по потребляемой теплоэнергии;
  • в случае проектирования собственной системы отопления или пункта теплоснабжения;
  • если есть субабоненты, потребляющие тепловую энергию, для правильного ее распределения;
  • В случае подключения к отопительной системе новых зданий, сооружений, производственных комплексов;
  • для пересмотра или заключения нового договора с организацией, поставляющей тепловую энергию;
  • если организация получила уведомление, в котором требуется уточнить тепловые нагрузки в нежилых помещениях;
  • если организация нее имеет возможности установить приборы учета теплоэнергии;
  • в случае увеличения потребления теплоэнергии по непонятным причинам.

На каком основании может производиться перерасчет тепловой нагрузки на отопление здания

Приказ Министерства Регионального Развития № 610 от 28.12.2009 "Об утверждении правил установления и изменения (пересмотра) тепловых нагрузок" () закрепляет право потребителей теплоэнергии производить расчет и перерасчет тепловых нагрузок. Так же такой пункт обычно присутствует в каждом договоре с теплоснабжающей организацией. Если такого пункта нет, обсудите с вашими юристами вопрос его внесения в договор.

Но для пересмотра договорных величин потребляемой тепловой энергии должен быть предоставлен технический отчет с расчетом новых тепловых нагрузок на отопление здания, в котором должны быть приведены обоснования снижения потребления тепла. Кроме того, перерасчет тепловых нагрузок производиться после таких мероприятий как:

  • капитальный ремонт здания;
  • реконструкция внутренних инженерных сетей;
  • повышение тепловой защиты объекта;
  • другие энергосберегающие мероприятия.

Методика расчета

Для проведения расчета или перерасчета тепловой нагрузки на отопление зданий, уже эксплуатируемых или вновь подключаемых к системе отопления проводят следующие работы:

  1. Сбор исходных данные об объекте.
  2. Проведение энергетического обследования здания.
  3. На основании полученной после обследования информации производится расчет тепловой нагрузки на отопление, ГВС и вентиляцию.
  4. Составление технического отчета.
  5. Согласование отчета в организации, предоставляющей теплоэнергию.
  6. Заключение нового договора или изменение условий старого.

Сбор исходный данных об объекте тепловой нагрузки

Какие данные необходимо собрать или получить:

  1. Договор (его копия) на теплоснабжение со всеми приложениями.
  2. Справка оформленная на фирменном бланке о фактической численности сотрудников (в случае производственного зданий) или жителей (в случае жилого дома).
  3. План БТИ (копия).
  4. Данные по системе отопления: однотрубная или двухтрубная.
  5. Верхний или нижний розлив теплоносителя.

Все эти данные обязательны, т.к. на их основе будет производиться расчет тепловой нагрузки, так же вся информация попадет в итоговый отчет. Исходные данные, кроме того, помогут определиться со сроками и объемами работа. Стоимость же расчета всегда индивидуальна и может зависеть от таких факторов как:

  • площадь отапливаемых помещений;
  • тип системы отопления;
  • наличия горячего водоснабжения и вентиляции.

Энергетическое обследование здания

Энергоаудит подразумевает выезд специалистов непосредственно на объект. Это необходимо для того, чтобы провести полный осмотр системы отопления, проверить качество ее изоляции. Так же во время выезда собираются недостающие данные об объекте, которые невозможно получить кроме как по средствам визуального осмотра. Определяются типы используемых радиаторов отопления, их месторасположение и количество. Рисуется схема и прикладываются фотографии. Обязательно осматриваются подводящие трубы, измеряется их диаметр, определяется материал, из которого они изготовлены, как эти трубы подведены, где расположены стояки и т.п.

В результат такого энергетического обследования (энергоаудита) заказчик получит на руки подробный технический отчет и на основании этого отчета уже и будет проихводиться расчет тепловых нагрузок на отопление здания.

Технический отчет

Технический отчет по расчету тепловой нагрузки должен состоять из следующих разделов:

  1. Исходные данные об объекте.
  2. Схема расположения радиаторов отопления.
  3. Точки вывода ГВС.
  4. Сам расчет.
  5. Заключение по результатам энергоаудита, которое должно включать сравнительную таблицу максимальных текущих тепловых нагрузок и договорных.
  6. Приложения.
    1. Свидетельство членства в СРО энергоаудитора.
    2. Поэтажный план здания.
    3. Экспликация.
    4. Все приложения к договору по энергоснабжению.

После составления, технический отчет обязательно должен быть согласован с теплоснабжающей организацией, после чего вносятся изменения в текущий договор или заключается новый.

Пример расчета тепловых нагрузок объекта коммерческого назначения

Это помещение на первом этаже 4-х этажного здания. Месторасположение - г. Москва.

Исходные данные по объекту

Адрес объекта г. Москва
Этажность здания 4 этажа
Этаж на котором расположены обследуемые помещения первый
Площадь обследуемых помещений 112,9 кв.м.
Высота этажа 3,0 м
Система отопления Однотрубная
Температурный график 95-70 град. С
Расчетный температурный график для этажа на котором находится помещение 75-70 град. С
Тип розлива Верхний
Расчетная температура внутреннего воздуха + 20 град С
Отопительные радиаторы, тип, количество Радиаторы чугунные М-140-АО – 6 шт.
Радиатор биметаллический Global (Глобал) – 1 шт.
Диаметр труб системы отопления Ду-25 мм
Длина подающего трубопровода системы отопления L = 28,0 м.
ГВС отсутствует
Вентиляция отсутствует
0,02/47,67 Гкал

Расчетная теплопередача установленных радиаторов отопления, с учетом всех потерь, составила 0,007457 Гкал/час.

Максимальный расход теплоэнергии на отопление помещения составил 0,001501 Гкал/час.

Итоговый максимальный расход - 0,008958 Гкал/час или 23 Гкал/год.

В итоге рассчитываем годовую экономию на отопление данного помещения: 47,67-23=24,67 Гкал/год. Таким образом можно сократить расходы на теплоэнергию почти вдвое. А если учесть, что текущая средняя стоимость Гкал в Москве составляет 1,7 тыс. рублей, то годовая экономию в денежном эквиваленте составит 42 тыс. рублей.

Формула расчета в Гкал

Расчет тепловой нагрузки на отопление здания в случае отсутствия счетчиков учета тепловой энергии производится по формуле Q = V * (Т1 - Т2) / 1000 , где:

  • V – объем волы, которую потребляет система отопления, измеряется тоннами или куб.м.,
  • Т1 – температура горячей воды. Измеряется в С (градусы по Цельсию) и для вычислений берется температура, соответствующая определенному давлению в системе. Показатель этот имеет свое название – энтальпия. Если точно определить температуру нельзя то используют усредненные показатели 60-65 С.
  • Т2 – температура холодной воды. Зачастую ее измерить практически невозможно и в таком случае используют постоянные показатели, которые зависят от региона. К примеру, в одном из регионов, в холодное время года показатель будет равен 5, в теплое – 15.
  • 1 000 – коэффициент для получения результата расчета в Гкал.

Для системы отопления с закрытым контуром тепловая нагрузка (Гкал/час) рассчитывается другим способом: Qот = α * qо * V * (tв - tн.р) * (1 + Kн.р) * 0,000001 , где:

  • α – коэффициент, призванный корректировать климатические условия. Берется в расчет, если уличная температура отличается от -30 С;
  • V – объем строения по наружным замерам;
  • – удельный отопительный показатель строения при заданной tн.р = -30 С, измеряется в Ккал/куб.м.*С;
  • – расчетная внутренняя температура в здании;
  • tн.р – расчетная уличная температура для составления проекта системы отопления;
  • Kн.р – коэффициент инфильтрации. Обусловлен соотношением тепловых потерь расчетного здания с инфильтрацией и теплопередачей через внешние конструктивные элементы при уличной температуре, которая задана в рамках составляемого проекта.

Расчет по радиаторам отопления на площадь

Укрупненный расчет

Если на 1 кв.м. площади требуется 100 Вт тепловой энергии, то помещение в 20 кв.м. должно получать 2 000 Вт. Типичный радиатор из восьми секций выделяет около 150 Вт тепла. Делим 2 000 на 150, получаем 13 секций. Но это довольно укрупненный расчет тепловой нагрузки.

Точный расчет

Точный расчет выполняется по следующей формуле: Qт = 100 Вт/кв.м. × S(помещения)кв.м. × q1 × q2 × q3 × q4 × q5 × q6× q7 , где:

  • q1 – тип остекления: обычное =1,27; двойное = 1,0; тройное = 0,85;
  • q2 – стеновая изоляция: слабая, или отсутствующая = 1,27; стена выложенная в 2 кирпича = 1.0, современна, высокая = 0,85;
  • q3 – соотношение суммарной площади оконных проемов к площади пола: 40% = 1,2; 30% = 1,1; 20% - 0,9; 10% = 0,8;
  • q4 – минимальная уличная температура: -35 С = 1,5; -25 С = 1,3; -20 С = 1,1; -15 С = 0,9; -10 С = 0,7;
  • q5 – число наружных стен в помещении: все четыре = 1.4, три = 1.3, угловая комната = 1.2, одна = 1.2;
  • q6 – тип расчетного помещения над расчетной комнатой: холодное чердачное = 1.0, теплое чердачное = 0.9, жилое отапливаемое помещение = 0.8;
  • q7 – высота потолков: 4,5 м = 1,2; 4,0 м = 1,15; 3,5 м = 1,1; 3,0 м = 1,05; 2,5 м = 1,3.

Тема этой статьи — тепловая нагрузка. Мы выясним, что представляет собой этот параметр, от чего он зависит и как может рассчитываться. Кроме того, в статье будет приведен ряд справочных значений теплового сопротивления разных материалов, которые могут понадобиться для расчета.

Что это такое

Термин, в сущности, интуитивно-понятный. Под тепловой нагрузкой подразумевается то количество тепловой энергии, которое необходимо для поддержания в здании, квартире или отдельном помещении комфортной температуры.

Максимальная часовая нагрузка на отопление, таким образом – это, то количество тепла, которое может потребоваться для поддержания нормированных параметров в течение часа в наиболее неблагоприятных условиях.

Факторы

Итак, что влияет на потребность здания в тепле?

  • Материал и толщина стен. Понятно, что стена в 1 кирпич (25 сантиметров) и стена из газобетона под 15-сантиметровой пенопластовой шубой пропустят ОЧЕНЬ разное количество тепловой энергии.
  • Материал и структура кровли. Плоская крыша из железобетонных плит и утепленный чердак тоже будут весьма заметно различаться по теплопотерям.
  • Вентиляция — еще один важный фактор. Ее производительность, наличие или отсутствие системы рекуперации тепла влияют на то, сколько тепла теряется с отработанным воздухом.
  • Площадь остекления. Через окна и стеклянные фасады теряется заметно больше тепла, чем через сплошные стены.

Однако: тройные стеклопакеты и стекла с энергосберегающим напылением уменьшают разницу в несколько раз.

  • Уровень инсоляции в вашем регионе, степень поглощения солнечного тепла внешним покрытием и ориентация плоскостей здания относительно сторон света. Крайние случаи — дом, находящийся в течение всего дня в тени других строений и дом, ориентированный черной стеной и наклонной кровлей черного цвета с максимальной площадью на юг.

  • Дельта температур между помещением и улицей определяет тепловой поток через ограждающие конструкции при постоянном сопротивлении теплопередаче. При +5 и -30 на улице дом будет терять разное количество тепла. Уменьшит, разумеется, потребность в тепловой энергии и снижение температуры внутри здания.
  • Наконец, в проект часто приходится закладывать перспективы дальнейшего строительства . Скажем, если текущая тепловая нагрузка равна 15 киловаттам, но в ближайшем будущем планируется пристроить к дому утепленную веранду — логично приобрести с запасом по тепловой мощности.

Распределение

В случае водяного отопления пиковая тепловая мощность источника тепла должна быть равна сумме тепловой мощности всех отопительных приборов в доме. Разумеется, разводка тоже не должна становиться узким местом.

Распределение отопительных приборов по помещениям определяется несколькими факторами:

  1. Площадью комнаты и высотой ее потолка;
  2. Расположением внутри здания. Угловые и торцевые помещения теряют больше тепла, чем те, которые расположены в середине дома.
  3. Удаленностью от источника тепла. В индивидуальном строительстве этот параметр означает удаленность от котла, в системе центрального отопления многоквартирного дома — тем, подключена батарея к стояку подачи или обратки и тем, на каком этаже вы живете.

Уточнение: в домах с нижним розливом стояки соединяются попарно. На подающем — температура убывает при подъеме с первого этажа к последнему, на обратном, соответственно, наоборот.

Как распределятся температуры в случае верхнего розлива — догадаться тоже нетрудно.

  1. Желаемой температурой в помещении. Помимо фильтрации тепла через внешние стены, внутри здания при неравномерном распределении температур тоже будет заметна миграция тепловой энергии через перегородки.
  1. Для жилых комнат в середине здания — 20 градусов;
  2. Для жилых комнат в углу или торце дома — 22 градуса. Более высокая температура, среди прочего, препятствует промерзанию стен.
  3. Для кухни — 18 градусов. В ней, как правило, есть большое количество собственных источников тепла — от холодильника до электроплиты.
  4. Для ванной комнаты и совмещенного санузла нормой являются 25С.

В случае воздушного отопления тепловой поток, поступающий в отдельную комнату, определяется пропускной способностью воздушного рукава. Как правило, простейший метод регулировки — ручная подстройка положений регулируемых вентиляционных решеток с контролем температур по термометру.

Наконец, в случае, если речь идет о системе обогрева с распределенными источниками тепла (электрические или газовые конвектора, электрические теплые полы, инфракрасные обогреватели и кондиционеры) необходимый температурный режим просто задается на термостате. Все, что требуется от вас — обеспечить пиковую тепловую мощность приборов на уровне пика теплопотерь помещения.

Методики расчета

Уважаемый читатель, у вас хорошее воображение? Давайте представим себе дом. Пусть это будет сруб из 20-сантиметрового бруса с чердаком и деревянным полом.

Мысленно дорисуем и конкретизируем возникшую в голове картинку: размеры жилой части здания будут равны 10*10*3 метра; в стенах мы прорубим 8 окон и 2 двери — на передний и внутренний дворы. А теперь поместим наш дом… скажем, в город Кондопога в Карелии, где температура в пик морозов может опуститься до -30 градусов.

Определение тепловой нагрузки на отопление может быть выполнено несколькими способами с разной сложностью и достоверностью результатов. Давайте воспользуемся тремя наиболее простыми.

Способ 1

Действующие СНиП предлагают нам простейший способ расчета. На 10 м2 берется один киловатт тепловой мощности. Полученное значение умножается на региональный коэффициент:

Инструкция по расчету с использованием этого метода неимоверно проста:

  1. Площадь дома равна 10*10=100 м2.
  2. Базовое значение тепловой нагрузки равно 100/10=10 КВт.
  3. Умножаем на региональный коэффициент 1,3 и получаем 13 киловатт тепловой мощности, необходимых для поддержания комфорта в доме.

Однако: если уж пользоваться столь простой методикой, лучше сделать запас как минимум в 20% для компенсации погрешностей и экстремальных холодов. Собственно, будет показательным сравнить 13 КВт со значениями, полученными другими способами.

Способ 2

Понятно, что при первом методе расчета погрешности будут огромными:

  • Высота потолков в разных строениях сильно различается. С учетом того, что греть нам приходится не площадь, а некий объем, причем при конвекционном отоплении теплый воздух собирается под потолком — фактор важный.
  • Окна и двери пропускают больше тепла, чем стены.
  • Наконец, будет явной ошибкой стричь под одну гребенку городскую квартиру (причем независимо от ее расположения внутри здания) и частный дом, у которого внизу, вверху и за стенами не теплые квартиры соседей, а улица.

Что же, скорректируем метод.

  • За базовое значение возьмем 40 ватт на кубометр объема помещения.
  • На каждую дверь, ведущую на улицу, добавим к базовому значению 200 ватт. На каждое окно — 100.
  • Для угловых и торцевых квартир в многоквартирном доме введем коэффициент 1,2 — 1,3 в зависимости от толщины и материала стен. Его же используем для крайних этажей в случае, если подвал и чердак плохо утеплены. Для частного дома значение умножим и вовсе на 1,5.
  • Наконец, применим те же региональные коэффициенты, что и в предыдущем случае.

Как там поживает наш домик в Карелии?

  1. Объем равен 10*10*3=300 м2.
  2. Базовое значение тепловой мощности равно 300*40=12000 ватт.
  3. Восемь окон и две двери. 12000+(8*100)+(2*200)=13200 ватт.
  4. Частный дом. 13200*1,5=19800. Мы начинаем смутно подозревать, что при подборе мощности котла по первой методике пришлось бы померзнуть.
  5. А ведь еще остался региональный коэффициент! 19800*1,3=25740. Итого — нам нужен 28-киловаттный котел. Разница с первым значением, полученным простым способом — двукратная.

Однако: на практике такая мощность потребуется лишь в несколько дней пика морозов. Зачастую разумным решением будет ограничить мощность основного источника тепла меньшим значением и купить резервный нагреватель (к примеру, электрокотел или несколько газовых конвекторов).

Способ 3

Не обольщайтесь: описанный способ тоже весьма несовершенен. Мы весьма условно учли тепловое сопротивление стен и потолка; дельта температур между внутренним и внешним воздухом тоже учтена лишь в региональном коэффициенте, то есть весьма приблизительно. Цена упрощения расчетов — большая погрешность.

Вспомним: для поддержания внутри здания постоянной температуры нам нужно обеспечить количество тепловой энергии, равное всем потерям через ограждающие конструкции и вентиляцию. Увы, и здесь нам придется несколько упростить себе расчеты, пожертвовав достоверностью данных. Иначе полученные формулы должны будут учитывать слишком много факторов, которые трудно измерить и систематизировать.

Упрощенная формула выглядит так: Q=DT/R, где Q — количество тепла, которое теряет 1 м2 ограждающей конструкции; DT — дельта температур между внутренней и внешней температурами, а R — сопротивление теплопередаче.

Заметьте: мы говорим о потерях тепла через стены, пол и потолок. В среднем еще около 40% тепла теряется через вентиляцию. Ради упрощения расчетов мы подсчитаем теплопотери через ограждающие конструкции, а потом просто умножим их на 1,4.

Дельту температур измерить легко, но где брать данные о термическом сопротивлении?

Увы — только из справочников. Приведем таблицу для некоторых популярных решений.

  • Стена в три кирпича (79 сантиметров) обладает сопротивлением теплопередаче в 0,592 м2*С/Вт.
  • Стена в 2,5 кирпича — 0,502.
  • Стена в два кирпича — 0,405.
  • Стена в кирпич (25 сантиметров) — 0,187.
  • Бревенчатый сруб с диаметром бревна 25 сантиметров — 0,550.
  • То же, но из бревен диаметром 20 см — 0,440.
  • Сруб из 20-сантиметрового бруса — 0,806.
  • Сруб из брус толщиной 10 см — 0,353.
  • Каркасная стена толщиной 20 сантиметров с утеплением минеральной ватой — 0,703.
  • Стена из пено- или газобетона при толщине 20 сантиметров — 0,476.
  • То же, но с толщиной, увеличенной до 30 см — 0,709.
  • Штукатурка толщиной 3 сантиметра — 0,035.
  • Потолочное или чердачное перекрытие — 1,43.
  • Деревянный пол — 1,85.
  • Двойная дверь из дерева — 0,21.

А теперь вернемся к нашему дому. Какими параметрами мы располагаем?

  • Дельта температур в пик морозов будет равной 50 градусам (+20 внутри и -30 снаружи).
  • Теплопотери через квадратный метр пола составят 50/1,85 (сопротивление теплопередачи деревянного пола) =27,03 ватта. Через весь пол — 27,03*100=2703 ватта.
  • Посчитаем потери тепла через потолок: (50/1,43)*100=3497 ватт.
  • Площадь стен равна (10*3)*4=120 м2. Поскольку у нас стены выполнены из 20-санттиметрового бруса, параметр R равен 0,806. Потери тепла через стены равны (50/0,806)*120=7444 ватта.
  • Теперь сложим полученные значения: 2703+3497+7444=13644. Именно столько наш дом будет терять через потолок, пол и стены.

Заметьте: чтобы не высчитывать доли квадратных метров, мы пренебрегли разницей в теплопроводности стен и окон с дверьми.

  • Затем добавим 40% потерь на вентиляцию. 13644*1,4=19101. Согласно этому расчету нам должно хватить 20-киловаттного котла.

Выводы и решение проблем

Как видите, имеющиеся способы расчета тепловой нагрузки своими руками дают весьма существенные погрешности. К счастью, избыточная мощность котла не повредит:

  • Газовые котлы на уменьшенной мощности работают практически без падения КПД, а конденсационные так и вовсе выходят на наиболее экономичный режим при неполной нагрузке.
  • То же самое касается соляровых котлов.
  • Электрическое нагревательное оборудование любого типа всегда имеет КПД, равный 100 процентам (разумеется, это не относится к тепловым насосам). Вспомните физику: вся мощность, не потраченная на совершения механической работы (то есть перемещения массы против вектора гравитации) в конечном счете, расходуется на нагрев.

Единственный тип котлов, для которых работа на мощности меньше номинальной противопоказана — твердотопливные. Регулировка мощности в них осуществляется довольно примитивным способом — ограничением притока воздуха в топку.

Что в результате?

  1. При недостатке кислорода топливо сгорает не полностью. Образуется больше золы и сажи, которые загрязняют котел, дымоход и атмосферу.
  2. Следствие неполного сгорания — падение КПД котла. Логично: ведь часто топлива покидает котел до того, как сгорела.

Однако и здесь есть простой и изящный выход — включение в схему отопления теплоаккумулятора. Теплоизолированный бак емкостью до 3000 литров подключается между подающим и обратным трубопроводом, размыкая их; при этом формируется малый контур (между котлом и буферной емкостью) и большой (между емкостью и отопительными приборами).

Как работает такая схема?

  • После растопки котел работает на номинальной мощности. При этом за счет естественной или принудительной циркуляции его теплообменник отдает тепло буферной емкости. После того, как топливо прогорело, циркуляция в малом контуре останавливается.
  • Следующие несколько часов теплоноситель движется по большому контуру. Буферная емкость постепенно отдает накопленное тепло радиаторам или водяным теплым полам.

Заключение

Как обычно, некоторое количество дополнительной информации о том, как еще может быть рассчитана тепловая нагрузка, вы найдете в видео в конце статьи. Теплых зим!

При проектировании систем обогрева всех типов строений нужно провести правильные вычисления, а затем разработать грамотную схему отопительного контура. На этом этапе особое внимание следует уделить расчету тепловой нагрузки на отопление. Для решения поставленной задачи важно использовать комплексный подход и учесть все факторы, влияющие на работу системы.

    Показать всё

    Важность параметра

    С помощью показателя тепловой нагрузки можно узнать количество теплоэнергии, необходимой для обогрева конкретного помещения, а также здания в целом. Основной переменной здесь является мощность всего отопительного оборудования, которое планируется использовать в системе. Кроме этого, требуется учитывать потери тепла домом.

    Идеальной представляется ситуация, в которой мощность отопительного контура позволяет не только устранить все потери теплоэнергии здания, но и обеспечить комфортные условия проживания. Чтобы правильно рассчитать удельную тепловую нагрузку, требуется учесть все факторы, оказывающие влияние на этот параметр:

    Оптимальный режим работы системы обогрева может быть составлен только с учетом этих факторов. Единицей измерения показателя может быть Гкал/час или кВт/час.

    расчет нагрузки на отопление

    Выбор метода

    Перед началом проведения расчета нагрузки на отопление по укрупненным показателям нужно определиться с рекомендуемыми температурными режимами для жилого строения. Для этого придется обратиться к нормам СанПиН 2.1.2.2645−10. Исходя из данных, указанных в этом нормативном документе, необходимо обеспечить режимы работы системы обогрева для каждого помещения.

    Используемые сегодня способы выполнения расчетов часовой нагрузки на отопительную систему позволяют получать результаты различной степени точности. В некоторых ситуациях требуется провести сложные вычисления, чтобы минимизировать погрешность.

    Если же при проектировании системы отопления оптимизация расходов на энергоноситель не является приоритетной задачей, допускается использование менее точных методик.

    Расчет тепловой нагрузки и проектирование систем отопления Audytor OZC + Audytor C.O.

    Простые способы

    Любая методика расчета тепловой нагрузки позволяет подобрать оптимальные параметры системы обогрева. Также этот показатель помогает определиться с необходимостью проведения работ по улучшению теплоизоляции строения. Сегодня применяются две довольно простые методики расчета тепловой нагрузки.

    В зависимости от площади

    Если в строении все помещения имеют стандартные размеры и обладают хорошей теплоизоляцией, можно воспользоваться методом расчета необходимой мощности отопительного оборудования в зависимости от площади. В этом случае на каждые 10 м 2 помещения должен производиться 1 кВт тепловой энергии. Затем полученный результат необходимо умножить на поправочный коэффициент климатической зоны.

    Это самый простой способ расчета, но он имеет один серьезный недостаток - погрешность очень высока. Во время проведения вычислений учитывается лишь климатический регион. Однако на эффективность работы системы обогрева влияет много факторов. Таким образом, использовать эту методику на практике не рекомендуется.

    Укрупненные вычисления

    Применяя методику расчета тепла по укрупненным показателям, погрешность вычислений окажется меньшей. Этот способ сначала часто применялся для определения теплонагрузки в ситуации, когда точные параметры строения были неизвестны. Для определения параметра применяется расчетная формула:

    Qот = q0*a*Vн*(tвн - tнро),

    где q0 - удельная тепловая характеристика строения;

    a - поправочный коэффициент;

    Vн - наружный объем строения;

    tвн, tнро - значения температуры внутри дома и на улице.


    В качестве примера расчета тепловых нагрузок по укрупненным показателям можно выполнить вычисления максимального показателя для отопительной системы здания по наружным стенам 490 м 2 . Строение двухэтажное с общей площадью в 170 м 2 расположено в Санкт-Петербурге.

    Сначала необходимо с помощью нормативного документа установить все нужные для расчета вводные данные:

    • Тепловая характеристика здания - 0,49 Вт/м³*С.
    • Уточняющий коэффициент - 1.
    • Оптимальный температурный показатель внутри здания - 22 градуса.


    Предположив, что минимальная температура в зимний период составит -15 градусов, можно все известные величины подставить в формулу - Q =0.49*1*490 (22+15)= 8,883 кВт. Используя самую простую методику расчета базового показателя тепловой нагрузки, результат оказался бы более высоким - Q =17*1=17 кВт/час. При этом укрупненный метод расчета показателя нагрузки учитывает значительно больше факторов:

    • Оптимальные температурные параметры в помещениях.
    • Общую площадь строения.
    • Температуру воздуха на улице.

    Также эта методика позволяет с минимальной погрешностью рассчитать мощность каждого радиатора, установленного в отдельно взятом помещении. Единственным ее недостатком является отсутствие возможности рассчитать теплопотери здания.

    Расчет тепловых нагрузок, г. Барнаул

    Сложная методика

    Так как даже при укрупненном расчете погрешность оказывается довольно высокой, приходится использовать более сложный метод определения параметра нагрузки на отопительную систему. Чтобы результаты оказались максимально точными, необходимо учитывать характеристики дома. Среди них важнейшей является сопротивление теплопередачи ® материалов, использовавшихся для изготовления каждого элемента здания - пол, стены, а также потолок.

    Эта величина находится в обратной зависимости с теплопроводностью (λ), показывающей способность материалов переносить теплоэнергию. Вполне очевидно, что чем выше теплопроводность, тем активнее дом будет терять теплоэнергию. Так как эта толщина материалов (d) в теплопроводности не учитывается, то предварительно нужно вычислить сопротивление теплопередачи, воспользовавшись простой формулой - R=d/λ.

    Рассматриваемая методика состоит из двух этапов. Сначала рассчитываются теплопотери по оконным проемам и наружным стенам, а затем - по вентиляции. В качестве примера можно взять следующие характеристики строения:

    • Площадь и толщина стен - 290 м² и 0,4 м.
    • В строении находятся окна (двойной стеклопакет с аргоном) - 45 м² (R =0,76 м²*С/Вт).
    • Стены изготовлены из полнотелого кирпича - λ=0,56.
    • Здание было утеплено пенополистиролом - d =110 мм, λ=0,036.


    Исходя из вводных данных, можно определить показатель сопротивления телепередачи стен - R=0.4/0.56= 0,71 м²*С/Вт. Затем определяется аналогичный показатель утеплителя - R=0,11/0,036= 3,05 м²*С/Вт. Эти данные позволяют определить следующий показатель - R общ =0,71+3,05= 3,76 м²*С/Вт.

    Фактические теплопотери стен составят - (1/3,76)*245+(1/0.76)*45= 125,15 Вт. Параметры температур остались без изменений в сравнении с укрупненным расчетом. Очередные вычисления проводятся в соответствии с формулой - 125,15*(22+15)= 4,63 кВт/час.

    Расчет тепловой мощности систем отопления

    На втором этапе рассчитываются теплопотери вентиляционной системы. Известно, что объем дома равен 490 м³, а плотность воздуха составляет 1,24 кг/м³. Это позволяет узнать его массу - 608 кг. На протяжении суток в помещении воздух обновляется в среднем 5 раз. После этого можно выполнить расчет теплопотерь вентиляционной системы - (490*45*5)/24= 4593 кДж, что соответствует 1,27 кВт/час. Остается определить общие тепловые потери строения, сложив имеющиеся результаты, - 4,63+1,27=5,9 кВт/час.

Прежде чем приступать к закупке материалов и монтажу систем теплоснабжения дома или квартиры, необходимо провести расчет отопления, исходя из площади каждого помещения. Базовые параметры для проектирования обогрева и расчета тепловой нагрузки:

  • Площадь;
  • Количество оконных блоков;
  • Высота потолков;
  • Расположение комнаты;
  • Теплопотери;
  • Теплоотдача радиаторов;
  • Климатический пояс (температура наружного воздуха).

Методика, описанная ниже, применяется для расчета количества батарей для площади помещения без дополнительных источников отопления (теплые полы, кондиционеры и т.д.). Рассчитать отопление можно двумя способами: по простой и усложненной формуле.

До начала проектирования теплоснабжения стоит решить, какие именно радиаторы будут устанавливаться. Материал, из которого изготавливаются батареи обогрева:

  • Чугун;
  • Сталь;
  • Алюминий;
  • Биметалл.

Оптимальным вариантом считаются алюминиевые и биметаллические радиаторы. Самая высокая тепловая отдача у биметаллических устройств. Чугунные батареи долго нагреваются, но после отключения отопления температура в помещении держится довольно долго.

Простая формула для проектирования количества секции в радиаторе обогрева:

K = Sх(100/R), где:

S – площадь помещения;

R – мощность секции.

Если рассматривать на примере с данными: комната 4 х 5 м, биметаллический радиатор, мощность 180 Вт. Расчет будет выглядеть так:

K = 20*(100/180) = 11,11. Итак, для комнаты площадью 20 м 2 необходимой для установки является батарея с минимум 11-ю секциями. Или, например, 2 радиатора по 5 и 6 ребер. Формула используется для помещений с высотой потолка до 2,5 м в стандартном здании советской постройки.

Однако такой расчет системы отопления не учитывает теплопотери здания, также не берется в расчет температура наружного воздуха дома и количество оконных блоков. Поэтому следует также брать во внимание эти коэффициенты, для окончательного уточнения количества ребер.

Вычисления для панельных радиаторов

В случае когда предполагается установка батареи с панелью вместо ребер, используется следующая формула по объему:

W = 41хV, где W – мощность батареи, V – объем комнаты. Число 41 – норма средней годовой мощности обогрева 1 м 2 жилого помещения.

В качестве примера можно взять помещение площадью 20 м 2 и высотой 2,5 м. Значение мощности радиатора по объему помещения в 50 м 3 будет равно 2050 Вт, или 2 кВт.

Расчет теплопотерь

H2_2

Основные потери тепла происходят через стены помещения. Для расчета нужно знать коэффициент теплопроводности наружного и внутреннего материала, из которого построен дом, толщину стены здания, также важна средняя температура наружного воздуха. Основная формула:

Q = S х ΔT /R, где

ΔT – разница температуры снаружи и внутреннего оптимального значения;

S – площадь стен;

R – тепловое сопротивление стен, которое, в свою очередь, рассчитывается по формуле:

R = B/K, где B – толщина кирпича, K – коэффициент теплопроводности.

Пример расчета: дом построен из ракушняка, в камень, находится в Самарской области. Теплопроводность ракушняка в среднем составляет 0,5 Вт/м*К, толщина стены – 0,4 м. Учитывая средний диапазон, минимальная температура зимой -30 °C. В доме, согласно СНИП, нормальная температура составляет +25 °C, разница 55°C.

Если комната угловая, то обе ее стены непосредственно контактируют с окружающей средой. Площадь наружных двух стен комнаты 4х5 м и высотой 2,5 м: 4х2,5 + 5х2,5 = 22,5 м 2 .

R = 0,4/0,5 = 0,8

Q = 22,5*55/0,8 = 1546 Вт.

Кроме того, необходимо учитывать утепление стен помещения. При отделке пенопластом наружной площади теплопотери уменьшаются примерно на 30%. Итак, окончательная цифра составит около 1000 Вт.

Расчет тепловой нагрузки (усложненная формула)

Схема теплопотерь помещений

Чтобы вычислить окончательный расход тепла на отопление, необходимо учесть все коэффициенты по следующей формуле:

КТ = 100хSхК1хК2хК3хК4хК5хК6хК7, где:

S – площадь комнаты;

К – различные коэффициенты:

K1 – нагрузки для окон (в зависимости от количества стеклопакетов);

K2 – тепловой изоляции наружных стен здания;

K3 –нагрузки для соотношения площади окон к площади пола;

K4 – температурного режима наружного воздуха;

K5 – учитывающий количество наружных стен комнаты;

K6 – нагрузки, исходя из верхнего помещения над рассчитываемой комнатой;

K7 – учитывающий высоту помещения.

Как пример, можно рассмотреть ту же комнату здания в Самарской области, утепленную снаружи пенопластом, имеющую 1 окно с двойным стеклопакетом, над которой расположено отапливаемое помещение. Формула тепловой нагрузки будет выглядеть следующим образом:

KT = 100*20*1,27*1*0,8*1,5*1,2*0,8*1= 2926 Вт.

Расчет отопления ориентирован именно на эту цифру.

Расход тепла на отопление: формула и корректировки

Исходя из выше сделанных расчетов, для отопления комнаты необходимо 2926 Вт. Учитывая тепловые потери, потребности составляют: 2926 + 1000 = 3926 Вт (KT2). Для расчета количества секций используют следующую формулу:

K = KT2/R, где KT2 – окончательное значение тепловой нагрузки, R – теплоотдача (мощность) одной секции. Итоговая цифра:

K = 3926/180 = 21,8 (округленная 22)

Итак, чтобы обеспечить оптимальный расход тепла на отопление, необходимо поставить радиаторы, имеющие в сумме 22 секции. Нужно учитывать, что самая низкая температура – 30 градусов мороза по времени составляет максимум 2-3 недели, поэтому можно смело уменьшить число до 17 секций (- 25%).

Если хозяев жилья не устраивает такой показатель количества радиаторов, то следует изначально брать во внимание батареи, имеющие большую мощность теплоснабжения. Либо утеплять стены здания и внутри, и снаружи современными материалами. Кроме того, нужно правильно оценить потребности жилья в тепле, исходя из второстепенных параметров.

Существует еще несколько параметров, влияющих на дополнительный расход энергии впустую, что влечет за собой увеличение тепловой потери:

  1. Особенности наружных стен. Энергии обогрева должно хватить не только для отопления помещения, но и для компенсации потерь тепла. Стена, контактирующая с окружающей средой, со временем от перепадов температуры наружного воздуха начинает пропускать внутрь влагу. Особенно следует хорошо утеплить и провести качественную гидроизоляцию для северных направлений. Также рекомендуется изолировать поверхность домов, находящихся во влажных регионах. Высокий годовой уровень осадков неизбежно приведет к повышению теплопотерь.
  2. Место установки радиаторов. Если батарея монтирована под окном, то происходит утечка энергии обогрева через его конструкцию. Уменьшить потери тепла поможет установка качественных блоков. Также нужно рассчитывать мощность прибора, установленного в подоконной нише – она должна быть выше.
  3. Условность годовой потребности тепла для зданий в разных часовых поясах. Как правило, по СНИПам рассчитывается усредненная температура (усредненный годовой показатель) для зданий. Однако потребности в тепле бывают существенно ниже, если, например, на холодную погоду и низким показателям наружного воздуха приходится в общей сложности 1 месяц в году.

Совет! Чтобы максимально снизить потребности в тепле зимой, рекомендуется установить дополнительные источники обогрева воздуха внутри помещения: кондиционеры, передвижные обогреватели и пр.

Как оптимизировать затраты на отопление? Эта задача решается только комплексным подходом, учитывающим все параметры системы, здания и климатические особенности региона. При этом важнейшей составляющей является тепловая нагрузка на отопление: расчет часовых и годовых показателей входят в систему вычислений КПД системы.

Зачем нужно знать этот параметр

Что же представляет собой расчет тепловой нагрузки на отопление? Он определяет оптимальное количество тепловой энергии для каждого помещения и здания в целом. Переменными величинами являются мощность отопительного оборудования – котла, радиаторов и трубопроводов. Также учитываются тепловые потери дома.

В идеале тепловая мощность отопительной системы должна компенсировать все тепловые потери и при этом поддерживать комфортный уровень температуры. Поэтому прежде чем выполнить расчет годовой нагрузки на отопление, нужно определиться с основными факторами, влияющими на нее:

  • Характеристика конструктивных элементов дома. Наружные стены, окна, двери, вентиляционная система сказываются на уровне тепловых потерь;
  • Размеры дома. Логично предположить, что чем больше помещение – тем интенсивнее должна работать система отопления. Немаловажным фактором при этом является не только общий объем каждой комнаты, но и площадь наружных стен и оконных конструкций;
  • Климат в регионе. При относительно небольших снижениях температуры на улице нужно малое количество энергии для компенсации тепловых потерь. Т.е. максимальная часовая нагрузка на отопление напрямую зависит от степени снижения температуры в определенный период времени и среднегодовое значение для отопительного сезона.

Учитывая эти факторы составляется оптимальный тепловой режим работы системы отопления. Резюмируя все вышесказанное можно сказать, что определение тепловой нагрузки на отопление необходимо для уменьшения расхода энергоносителя и соблюдения оптимального уровня нагрева в помещениях дома.

Для расчета оптимальной нагрузки на отопление по укрупненным показателям нужно знать точный объем здания. Важно помнить, что эта методика разрабатывалась для больших сооружений, поэтому погрешность вычислений будет велика.

Выбор методики расчета

Перед тем, как выполнить расчет нагрузки на отопление по укрупненным показателям или с более высокой точностью необходимо узнать рекомендуемые температурные режимы для жилого здания.

Во время расчета характеристик отопления нужно руководствоваться нормами СанПиН 2.1.2.2645-10. Исходя из данных таблицы, в каждой комнате дома необходимо обеспечить оптимальный температурный режим работы отопления.

Методики, по которым осуществляется расчет часовой нагрузки на отопление, могут иметь различную степень точности. В некоторых случаях рекомендуется использовать достаточно сложные вычисления, в результате чего погрешность будет минимальна. Если же оптимизация затрат на энергоносители не является приоритетной задачей при проектировании отопления – можно применять менее точные схемы.

Во время расчета почасовой нагрузки на отопление нужно учитывать суточную смену уличной температуры. Для улучшения точности вычисления нужно знать технические характеристики здания.

Простые способы вычисления тепловой нагрузки

Любой расчет тепловой нагрузки нужен для оптимизации параметров системы отопления или улучшения теплоизоляционных характеристик дома. После его выполнения выбираются определенные способы регулирования тепловой нагрузки отопления. Рассмотрим нетрудоемкие методики вычисления этого параметра системы отопления.

Зависимость мощности отопления от площади

Для дома со стандартными размерами комнат, высотой потолков и хорошей теплоизоляцией можно применить известное соотношение площади помещения к требуемой тепловой мощности. В таком случае на 10 м² потребуется генерировать 1 кВт тепла. К полученному результату нужно применить поправочный коэффициент, зависящий от климатической зоны.

Предположим, что дом находится в Московской области. Его общая площадь составлять 150 м². В таком случае часовая тепловая нагрузка на отопление будет равна:

15*1=15 кВт/час

Главным недостатком этого метода является большая погрешность. Расчет не учитывает изменение погодных факторов, а также особенности здания – сопротивление теплопередачи стен, окон. Поэтому на практике его использовать не рекомендуется.

Укрупненный расчет тепловой нагрузки здания

Укрупненный расчет нагрузки на отопление характеризуется более точными результатами. Изначально он применялся для предварительного расчета этого параметра при невозможности определить точные характеристики здания. Общая формула для определения тепловой нагрузки на отопление представлена ниже:

Где – удельная тепловая характеристика строения. Значения нужно брать из соответствующей таблицы, а – поправочный коэффициент, о котором говорилось выше, – наружный объем строения, м³, Tвн и Tнро – значения температуры внутри дома и на улице.

Предположим, что необходимо рассчитать максимальную часовую нагрузку на отопление в доме с объемом по наружным стенам 480 м³ (площадь 160 м², двухэтажный дом). В этом случае тепловая характеристика будет равна 0,49 Вт/м³*С. Поправочный коэффициент а = 1 (для Московской области). Оптимальная температура внутри жилого помещения (Твн) должна составлять +22°С. Температура на улице при этом будет равна -15°С. Воспользуемся формулой для расчета часовой нагрузки на отопление:

Q=0.49*1*480(22+15)= 9,408 кВт

По сравнению с предыдущим расчетом полученная величина меньше. Однако она учитывает важные факторы – температуру внутри помещения, на улице, общий объем здания. Подобные вычисления можно сделать для каждой комнаты. Методика расчета нагрузки на отопление по укрупненным показателям дает возможность определить оптимальную мощность для каждого радиатора в отдельно взятом помещении. Для более точного вычисления нужно знать среднетемпературные значения для конкретного региона.

Такой метод расчета можно применять для вычисления часовой тепловой нагрузки на отопление. Но полученные результаты не дадут оптимально точную величину тепловых потерь здания.

Точные расчеты тепловой нагрузки

Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.

Что же такое сопротивление теплопередачи (R )? Это величина, обратная теплопроводности (λ ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d ). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:

Расчет по стенам и окнам

Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.

В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:

  • Площадь стен – 280 м² . В нее включены окна – 40 м² ;
  • Материал изготовления стен – полнотелый кирпич (λ=0.56 ). Толщина наружных стен – 0,36 м . Исходя из этого рассчитываем сопротивление телепередачи – R=0.36/0.56= 0,64 м²*С/Вт ;
  • Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм . Для него λ=0,036 . Соответственно R=0,1/0,036= 2,72 м²*С/Вт ;
  • Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
  • Сопротивление теплопередачи окон – 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).

Фактически тепловые потери через стены составят:

(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С

Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:

124*(22+15)= 4,96 кВт/час

Расчет по вентиляции

Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:

(480*40*5)/24= 4000 кДж или 1,11 кВт/час

Суммируя все полученные показатели можно найти общие тепловые потери дом:

4,96+1,11=6,07 кВт/час

Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:

(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт

Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.

К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.

Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.

Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.