Выбираем качественную запорную арматуру. Какая запорная арматура для трубопроводов есть на рынке и какую лучше использовать

Изделия запорной арматуры относятся к специальному типу изделий для трубопроводных магистралей, назначение которых заключается в оперативном регулировании скорости потока рабочего носителя для обеспечения заданных параметров технологического процесса. Действие запорной арматуры направлено на закрытие, открытие, смену направления и скорости движения рабочего газа/жидкости. Кроме того, к запорной арматуре следует отнести спускные и контрольные изделия, служащие для сброса носителя из трубопроводных систем, технологических аппаратов, и подачи носителя в контрольно-измерительные приборы.

Арматура данного типа присутствует во всех трубопроводных магистралях промышленных производств, технических объектах бытового назначения (отопление, газо-, водоснабжение, канализация и т.д.), и составляет не менее 80% от общего количества используемых изделий в магистрали. Наибольшее распространение в качестве запорных элементов получили задвижки, вентили, краны, клапаны и затворы.

Выбор материалов, из которых изготавливаются данные детали, в настоящее время достаточно широк:

  • металлы (титан, алюминий);
  • сплавы (чугун, сталь, бронза);
  • полимерные и синтетические материалы, например, поливинилиденфторид (ПВДФ), хлорированный поливинилхлорид (ХПВХ), полиэтилен (ПЭ), полипропилен (ПП).

При выборе запорного изделия руководствуются следующими техническими характеристиками: присоединительный диаметр, назначение и материал, из которого изготавливается корпус и рабочая часть трубопровода, скорость закрытия. Специальные требования: продолжительные сроки службы, высокая прочность, надёжность, безопасность, коррозионная устойчивость материала к рабочей среде, герметичность, простота монтажа и удобство эксплуатации.

Следует отметить, что рабочая среда трубопровода достаточно быстро повреждает изделия запорной арматуры, происходит истирание уплотнительных элементов, износ, коррозионные процессы, поэтому необходимо своевременно проводить технический контроль оборудования, промывку систем магистралей, ремонт или замену изделия.

В зависимости от назначения в составе технического объекта запорная арматура делится на категории:

  • промышленная (общепромышленная, специальная) – используется в производствах различного рода деятельности, в том числе народного хозяйства;
  • судовая – эксплуатируется в заданных специфических условиях морского и речного транспорта;
  • сантехническая – трубопроводная арматура бытового назначения, применяется в газовых плитах, колонках, ванных, котлах и т.д.;
  • изготовленная по спецзаказу – разрабатывается, изготавливается и эксплуатируется в соответствии с особыми заданными техническими требованиями, например, в уникальных, экспериментальных промышленных объектах.

Функции, выполняемые данным типом арматуры обширны: регулирующая, распределительно-смесительная, предохранительная, защитная, запорная, фазоразделительная.

В данной статье рассмотрим виды запорной арматуры, действие которой направлено на изменение площади поперечного сечения трубопровода для регулирования скорости потока носителя или полной его остановки.

Виды запорной арматуры

Задвижка

Основное отличие данной детали состоит в том, что запорный (регулирующий) элемент представляет собой лист, диск или клин, который может возвратно-поступательно перемещаться в направлении, перпендикулярном направлению движения рабочего носителя. Этот вид арматуры относится к промышленной категории и используется, в основном, в трубопроводных коммуникациях жилищно-коммунального хозяйства и промышленных производств. Задвижки делятся на полнопроходные и усеченные, их устройство позволяет плавно регулировать скорость потока и предотвращать гидравлические перегрузки.

Рассматриваемый вид изделий обладает рядом преимуществ: простота конструкции, широкий диапазон условий эксплуатации, небольшая строительная длина, малое гидравлическое сопротивление, что особенно важно при их применении в трубопроводных магистралях с высокой скоростью рабочего носителя. Недостатки задвижек определяются их конструкцией: достаточно большое время, затрачиваемое на закрытие или открытие затворного элемента, износ уплотнительных деталей, сложность в техническом обслуживании.

Отечественная промышленность выпускает задвижки с не выдвижным штоком и с выдвижным шпинделем. Устанавливаются задвижки независимо от направления движения потока в трубопроводе, так как их конструкция симметрична. Выдерживают рабочие давления от 2 до 200 атмосфер, присоединительный диаметр варьируется от 8 мм до 2 м.

Вентиль

Вентиль, как вид запорной арматуры, выполняет регулирующую функцию и позволяет изменять расход носителя в трубопроводе вплоть до прекращения его подачи. С их помощью поддерживается заданный уровень давления в магистрали и осуществляется смешение потоков в необходимой пропорции.

В вентиле рабочий элемент расположен на шпинделе, который совершает возвратно-поступательные движения от вращательных движений маховика. Движение шпинделя может осуществляться автоматически при помощи сервоприводов и вручную.

Данные изделия относятся к промышленной категории и наиболее часто встречаются в бытовых объектах жилищно-коммунального хозяйства. Самый распространенный тип вентиля – проходной, размещаемый на прямых участках магистралей. Одним из недостатков данного вида арматуры, кроме прямоточных вентилей, является большое гидравлического сопротивление, что ограничивает их применение в специальных технических объектах. Преимущества вентилей заключается в небольшой стоимости, доступности, надежности, легкости ремонта и технического обслуживания при эксплуатации.

Кран шаровой запорный

Отличие конструкции запорного крана заключается в простоте исполнения: запорный элемент выполнен в виде шара, цилиндра и, что достаточно редко, может быть конической формы. Краны бывают полнопроходными и не полнопроходные. В полнопроходных кранах диаметр проходного отверстия всегда соответствует диаметру присоединительного отверстия к трубопроводу, в не полнопроходном, соответственно, проходной диаметр меньше.

Работа осуществляется в крайних режимах «закрытие» и «открытие». Его основная функция направлена на перекрытие движения рабочего потока. Достоинства, недостатки и условия эксплуатации определяются материалом, из которого изготовлен кран. Например, пластиковые краны ПП, ПЭ устойчивы к воздействию агрессивных сред, но подвергаются разрушительному действию механических примесей рабочей среды. Краны из нержавеющей стали выдерживают высокие рабочие давления и температуры, но с точки зрения бытового использования имеют значительную стоимость.

Клапан

Клапаны (обратные) относятся к защитной трубопроводной арматуре, функционально предназначены для предотвращения обратного хода потока рабочего носителя в технологической схеме. Пропуская рабочую среду в одном направлении, клапаны не дают возвратного хода жидкости или газа.

С их помощью осуществляется защита различного производственного оборудования (насосы, резервуары, аппараты и др.), а также исключается поврежденный участок трубопровода при течах рабочего носителя из общего технологического процесса, что крайне важно при возникновении аварийной ситуации.

Существуют клапаны с конструкцией запорного элемента шарообразной формы или в виде конуса, перемещение которого происходит в направлении, параллельном движению носителя. Поток, проходящий через рабочее окно клапана, прижимает запорный элемент к основанию устройства, что прекращает его движение в обратном направлении. Клапаны обратного типа изготавливают как встроенные в состав узлов и агрегатов, так и в самостоятельном виде. Как правило, обратные клапаны монтируются на горизонтальных прямых участках магистралей по направлению рабочего потока.

Клапаны, имея сравнительно простую конструкцию, тем не менее, обеспечивают надежность и герметичность перекрытия рабочего потока, благодаря чему широко используются для газообразных и жидких рабочих сред. Применяются в широком диапазоне давлений (от 5·10 -6 до 2000 атм.) и рабочих температур (от минус 200 до плюс 600°С). Подходят для трубопроводных конструкций относительно небольших диаметров.

Затворы

Затвор – это устройство запорной арматуры, используемое для обеспечения герметичности при перекрытии рабочего потока. Может работать в режимах «регулирование» и «перекрытие». Представляет собой наиболее удобный и простой вид запорной арматуры при техническом обслуживании и эксплуатации, имеет невысокую стоимость и рыночную доступность.

Устройство затвора разработано таким образом, что запирающий элемент проворачивается вокруг оси, на которой он расположен. Наиболее распространенная разновидность данного устройства с дисковым затвором – «Баттерфляй».

Управление положением затвора возможно вручную при помощи ручки и механически с помощью редуктора или электрического привода. Такие достоинства поворотных затворов “Баттерфляй”, как простота технического обслуживания, монтажа и замены уплотняющих деталей, небольшая строительная высота и масса, а также продолжительные сроки эксплуатации и доступная стоимость широко используются в трубопроводных магистралях бытового назначения.

Отечественная промышленность выпускает широкую линейку изделий запорной трубопроводной арматуры, отвечающих общим и специальным требованиям, высокому качеству и современным технологиям. Стоимость таких изделий может широко варьироваться от 100 руб. до нескольких десятков тысяч рублей, что определяется материалом, назначением, размерами, производителем.

→ Типы и виды трубопроводной арматуры

  • Краны шаровые, вентили, клапаны запорные, задвижки, дисковые затворы, регуляторы давления, регуляторы температуры, элеваторы, гидроэлеваторы, фильтры, виброкомпенсаторы, грязевики абонентские, запорные устройства и рамки указателей уровня.
  • Клапаны смесительные и регулирующие, краны и клапаны распределительные.
  • Клапаны предохранительные и обратные, устройства импульсно-предохранительные и мембранно-разрывные.
  • Обратные клапаны и затворы трехэксцентриковые, клапаны невозвратно-запорные и невозвратно-управляемые, шиберные задвижки (гильотинного типа).
  • Конденсатоотводчики.

1.Запорнаяарматура

Основное назначение запорной арматуры - перекрывать поток рабочей среды в трубопроводе. Для этого применяются четыре основных типа трубопроводной арматуры: краны, клапаны, задвижки и затворы дисковые (стоит не забывать о различии между затворами, как одним из элементов запорного органа, и затвором - типом трубопроводной арматуры). Они отличаются способом перекрытия потока, т.е. формой основ-ной детали (или деталей) затвора, характером перемещения затвора относительно седла (или седел) корпуса, а также направ-лением перемещения затвора по отношению к направлению по-тока среды.

В шаровом кране затвор имеет форму тела вращения (т.е. конус, шар или цилиндр) с отверстием для пропуска среды. При перекрытии потока затвор поворачивается вокруг своей оси за один оборот.

В зависимости от формы затвора, который в шаровых кранах называют пробкой, краны делятся на конусные, шаровые и цилиндрические.

В конусных шаровых кранах нужно создавать необходимое усилие прижатия конусных поверхностей пробки и корпуса. Это возможно сделать двумя путями. Один из них - с использованием резьбовой пары (гайка навернута на резьбовой хвостовик пробки) или пружины. Такие краны называют натяжными. Второй способ - при помощи затяжки сальника, создающей прижатие пробки к конусной поверхности корпуса и одновременно перекрывающей выход рабочей среды в атмосферу. Такой кран называют сальниковым или пробко-сальниковым.

По форме проточной части можно выделить краны проходные и трехходовые.

В клапане затвор (его обычно называют золотник) перемещается возвратно-поступательно в направлении, которое совпадает с направлением потока рабочей среды через седло.

При всем разнообразии конструкций запорных клапанов отметим только их отличия по форме проточной части для прохождения рабочей среды - проходные и угловые. Среди проходных выделяются клапаны прямоточные, внешним признаком которых служит расположение шпинделя не перпендикулярно, а наклонно к оси прохода корпуса.

В задвижках запорный орган, имеет форму клина или диска (дисков), перемещается как и в клапанах возвратно-поступательно, но перпендикулярно оси потока. При этом закрывается или открывается проход рабочей среды через кольцевые седла корпуса.

В зависимости от конструкции запорного органа задвижки подразделяются на параллельные, клиновые, шланговые и шиберные.

В параллельных задвижках (30ч6бр - самый яркий представитель этого вида) седла корпуса и соответственно два диска затвора располагаются параллельно друг другу. Прижатие затвора к корпусу в положении “Закрыто” происходит, как правило, за счет клинового устройства, помещенного между дисками затвора. В клиновых задвижках (30ч39р тип МЗВ) седла корпуса расположены под углом друг к другу. Затвор выполнен в виде клина или двух дисков, расположенных под углом. Имеются также задвижки только с одним плоским запирающим элементом, работающим с использованием самоуплотнения. Такие задвижки называют шиберными (гильотинного типа) .

Клиновые и параллельные задвижки изготавливаются с невыдвижным или выдвижным шпинделем. Отличаются они расположением резьбы шпинделя - внутри задвижки или вне зоны рабочей среды. Первые - меньше по габариту, но у них менее благоприятные условия для работы резьбовой пары шпиндель - ходовая гайка.

Также существует запорная арматура, в которой перекрытие потока среды осуществляется пережатием эластичного (как правило, резинового) шланга, внутри которого проходит среда. Шланг - специальный патрубок - помещен внутри корпуса. Движение деталей, пережимающих шланг - возвратно-поступательное перпендикулярно направлению потока среды - как в задвижках. Такие изделия называются -ШЛАНГОВЫЕ ЗАДВИЖКИ.

В дисковых затворах запирающий элемент (затвор) имеет форму диска. Открывание и закрывание прохода среды через кольцевое седло в корпусе происходит путем поворота (как правило, на 90 градусов) затвора вокруг ocи перпендикулярной направлению потока среды. При этом ось вращения диска не является его собственной осью. Следует заметить, что форма диска, в середине которого проходит его ось вращения, несколько напоминает бабочку, из-за этого иногда дисковые затворы называют - “затвор типа Баттерфляй”.

Очень часто необходимо контролировать уровень жидкости в сосудах, емкостях, котлах. Для этого используются системы указания уровня, состоящие из водомерных стекол (стекла Клингера) и запорных устройств (12б1бк, 12б2бк, 12б3бк, 12с13бк, 12нж13бк, 12кч11бк). Запорные устройства указателей уровня примыкают к запорной арматуре (по назначению) и используются для выпуска воздуха при заполнении системы, а также при замене водомерного стекла.

Полный комплект запорных устройств, включает в себя верхнее и нижнее устройства (соответственно устанавливаются над и под стеклом) и спускного крана для продувки. Запорные устройства бывают кранового или вентильного типа. Вторые, как правило, имеют специальные клапаны, автоматически перекрывающие проход среды при поломке стекла. Управляются запорные устройства вручную.

2. Регулирующая арматура

Регулировка параметров рабочей среды включает в себя немало функций. Это и регулировка расхода среды, поддержание давления среды в заданных пределах, и смешивание различных сред в необходимых пропорциях, и поддержание заданного уровня жидкости в сосудах, и другие. При этом в зависимости от различных условий эксплуатации применяются разные виды управления регулирующей арматурой. Обычно, это управление с использованием внешних источников энергии по команде от датчиков, фиксирующих параметры среды в трубопроводе. Применяется также управление автоматическое непосредственно от рабочей среды.

В то же время, хотя и встречается не так часто, используется ручное управление - затвор устанавливается вручную в определенное постоянное положение относительно седла в корпусе. Этим обеспечивается заданный максимальный расход рабочей среды через проходное сечение регулирующего органа.

Требования, предъявляемые к каждому виду регулирования с учетом параметров рабочих сред (давление, температура, химический состав и др.), определяют многообразие конструктивных типов регулирующей арматуры. Наиболее часто встречаются регулирующие клапаны, регуляторы давлния прямого действия, регуляторы уровня и смесительные клапаны.

3. Распределительная арматура

Из числа наиболее часто применяемых следует назвать два типа: трехходовые краны и клапаны электромагнитные распределительные (или распределители электромагнитные).

Кран распределительный трехходовой аналогичен по основным конструктивным характеристикам крану проходному. Но если последний имеет два патрубка для присоединения к трубопроводу, то кран распределительный является трехходовым, т.е. имеет три присоединительных патрубка; один входной и два выходных. Соответственно конструкция затвора крана позволяет при его повороте направить поток рабочей среды в необходимом направлении. Управление такими кранами - как правило, ручное.

Распределительный клапан (распределитель) с электромагнитным приводом предназначается для дистанционного управления гидравлическими или пневматическими приводами арматуры, путем отбора проб воздуха из нескольких объектов и для некоторых других функций.

Серийно выпускаются четырехходовые распределители, которые имеют присоединительные патрубки для приема рабочей среды, подачи ее в нужном направлении и для выпуска отработанной среды. Применяются они для управления приводами двустороннего действия. Управление осуществляется электромагнитным приводом. Выпускаются также различные конструкции трехходовых, четырехходовых и многоходовых распределителей с различными видами электромагнитных приводов.

4. Предохранительная арматура

Для обеспечения защиты трубопровода и оборудования в системе от повышения давления сверх допустимого, применяются в основном три типа арматуры: предохранительные клапаны, импульсно-предохранительные устройства и мембранные разрывные устройства. Общий принцип их действия заключается в следующем: при нарушении режима технологического процесса в системе давление рабочей среды повышается до той величины, которая может привести к повреждению трубопровода и оборудования. В этих условиях защитные устройства автоматически срабатывают, сбрасывая избыток рабочей среды до восстановления нормального рабочего давления в трубопроводе.

Различия в способах срабатывания и соответственно конструктивных исполнениях защитных устройств определяются конкретными условиями их эксплуатации.

К предохранительной арматуре относятся также дыхательные клапаны, которые предохраняют нефтяные резервуары от недопустимого повышения или понижения давления, возникающих под действием температурных режимов окружающей среды.

Предохранительный клапан, предотвращая аварийное повышение давления, открывается и выпускает часть pабочей среды из трубопровода, после чего закрывается, восстанавливая рабочее давление. Затвор клапана в закрытом положении прижимается к седлу усилием, которое противодействует давлению на него со стороны рабочей среды. По способу создания этого усилия клапаны делятся на рыжачно-грузовые и пружины. В рычажно-грузовых клапанах давлению среды на золотник противодействует усилие, передаваемое от груза, закрепленного на рычаге. В пружинном клапане - сила пружины.

В выпускаемых клапанах предусмотрена возможность использования их в различных диапазонах давлений рабочей среды, при которых клапан должен срабатывать.

В рычажно-грузовых это осуществляется установкой груза определенной массы на соответствующем плече рычага, в пружинных - большим или меньшим поджатием (настройкой) пружины.

В рычажно-грузовых клапанах для этого используется рычаг, на котором укреплен груз. В пружинных - рычаг, специально предназначенный для этой цели.

Важной характеристикой является высота подъема золотника при срабатывании, так как этим определяется пропускная способность клапана. По этой характеристике предохранительные клапаны делятся на полноподъемные, у которых высота подъема составляет 1/4 или более диаметра седла, и малоподъемные, где этот показатель составляет не более 1/20.

Рычажно-грузовые клапаны - малоподъемные, пружинные - как мало, так и полноподъемные.

Импульсно-предохранительное устройство (ИПУ) выполняет ту же функцию, что и предохранительный клапан, но применяется для защиты систем с высокими рабочими параметрами при необходимости сброса больших количеств рабочей среды. ИПУ состоит из главного предохранительного клапана с большой пропускной способностью и импульсного клапана, управляющего приводом главного клапана.

Импульсный клапан открывается по команде от датчика при соответствующем давлении рабочей среды и направляет ее в поршневой привод главного клапана, который при этом открывается и сбрасывает избыточное количество среды. Применяются ИПУ на тепловых электростанциях для пара высоких давлений и температур, а также в системах атомных электростанций.

Мембранное разрывное устройство применяется на трубопроводах с высокой токсичностью или агрессивностью рабочей среды, когда протечка через запорный орган предохранительного клапана абсолютно недопустима. Назначение такого устройства состоит в том, чтобы при нормальных условиях работы установки надежно отделять технологическую линию от выпускной, а при возникновении аварийного давления путем разрушения мембраны открыть выход для избыточной среды. Разумеется, после срабатывания разрушенную мембрану следует заменить.

Дыхательные клапаны предназначены для предохранения резервуаров нефти и светлых нефтепродуктов от разрушений и деформаций вследствие чрезмерного повышения давления или образования вакуума.

В этих случаях клапаны автоматически обеспечивают сообщение газового пространства резервуара с атмосферой. В корпусе клапана - два седла (одно для давления, другое для вакуума). На каждом седле установлен затвор, прижатый грузами. При изменении давления в резервуаре сверх допустимых пределов, открывается проход для поступления в резервуар атмосферного воздуха при вакууме, либо для выпуска из резервуара паровоздушной смеси при избыточном давлении.

5. Защитная арматура

При работе трубопроводной системы могут возникнуть ситуации, когда на отдельных участках трубопровода происходит технологическое или аварийное падение давления, а на соседних участках рабочее давление сохраняется. В таких случаях возникает так называемый обратный поток рабочей cpeды недопустимый по отношению к оборудованию и трубопроводу (гидроудар, поломка насоса и т.п.). Для предотвращения возможности образования обратного потока среды применяются такие типы автоматически срабатывающей арматуры, как обратные клапаны и обратные затворы.

Такая арматура устанавливается, например, за насосной установкой для ее защиты от обратного потока среды.

Клапаны обратные имеют затвор в виде золотника и в редких случаях - шара, совершающего возвратно-поступательное движение вдоль направления потока среды через седло корпуса. В основном они предназначены для установки только на горизонтальных участках трубопровода. Исключение составляют клапаны с пружиной, обеспечивающей посадку золотника на седло, клапаны специально предназначенные для вертикально расположения, а также клапаны с сеткой (приемные) для установки на вертикальной всасывающей линии перед насосом.

В затворах обратных затворный элемент (затвор) поворачивается вокруг горизонтальной оси, расположенной выше оси седла клапана, как правило, за пределами проходного отверстия седла. Затвор выполнен в форме диска, часто называемого захлопкой.

Затворы обратные могут устанавливаться как на горизонтальных, так и на вертикальных трубопроводах. Имеется несколько затворов, которые устанавливаются только на горизонтальных трубопроводах больших диаметров.

Кроме срабатывающей только автоматически, имеется защитная арматура, в конструкции которой предусмотрено принудительное управление. Обратный клапан или затвор, имеющий принудительное закрытие называется невозвратно запорный клапан, а имеющий принудительно закрытие и открытие - невозвратно-управляемый клапан.

6. Фазоразделительная арматура

При работе энергетических и обогревательных установок часть пара, конденсируясь, превращается в воду. Для автоматического вывода из системы конденсата, который не участвует в рабочем или технологическом процессе, используются конденсатоотводчики.

Конденсатоотводчики бывают - термодинамические, поплавковые и термостатные.

В термодинамическом конденсатоотводчике затвором является тарелка, свободно лежащая на седле корпуса. Тарелка поднимается над седлом, открывая выход конденсата, и прижимается к седлу после его выхода. Этот процесс происходит автоматически при изменениях давлений под тарелкой и над ней, что вызывается различиями плотностей и температур пара и конденсата.

Некоторые термодинамические конденсатоотводчики снабжены устройством (обводом) для принудительного открывания и продувки.

В поплавковом конденсатоотводчике (иногда его называют “Конденсационный горшок”) по мере накопления конденсата поплавок всплывает, управляя выпуском конденсата.

В термостатном конденсатоотводчике затвор открывает отверстие для выпуска конденсата под воздействием сильфонного термостата или биметаллического элемента, paбота которых основана на использовании расширения тел при нагревании и разности температур между паром и конденсатом. Применение тех или иных типов конденсатоотводчиков определяется конкретными условиями установок и их эксплуатации.

Отправить заявку на данное оборудование можно на электронный адрес:

К задвижкам относят запорные устройства, в которых проход перекрывается поступательным перемещением затвора в направлении, перпенди­кулярном движению потока транспортируемой среды. Задвижки широко применяют для перекрытия потоков газообразных или жидких сред в трубопроводах с диаметрами условных проходов от 50 до 2000 мм при рабочих давлениях 4-200 кгс/см 2 и температурах среды до 450 °С. Иногда задвижки изготовляют и на более высокие давления.

В газовой промышленности задвижки применяют при оборудовании устья скважин, на промысловых сборных пунктах, магистральных и распределительных газопроводах, трубопроводах компрессорных и газораспределительных станций.

В сравнении с другими видами запорной арматуры задвижки имеют следующие преимущества: незначительное гидравлическое сопротивление при полностью открытом проходе; отсутствие поворотов потока рабочей среды; возможность применения для перекрытия потоков среды большой вязкости; простота обслуживания; относительно небольшая строительная длина; возможность подачи среды в любом направлении.

К недостаткам задвижек следует отнести: невозможность применения для сред с кристаллизующимися включениями, небольшой допускаемый перепад давлений на затворе (по сравнению с венти­лями), невысокая скорость срабатывания затвора, возможность получения гидравлического удара в конце хода, большая высота, трудности ремонта изношенных уплотнительных поверхностей затвора при эксплуатации.

Рабочая полость задвижки (рис. 13.3.), в которую подается транспорти­руемая под давлением среда, образуется корпусом 3 и верхней крышкой 7. Герметизируется эта полость при помощи прокладки 5, которая прижимается крышкой к корпусу. Корпус задвижки представляет собой цельную, литую или сварную конструкцию. Как правило, он имеет высоту, равную двум диаметрам перекрываемого прохода. На корпусе, симметрично оси шпинделя, располагаются два патрубка, которыми задвижка присоединяется к трубо­проводу. Присоединение может быть либо сварным, либо фланцевым.

Внутри корпуса имеются два кольцевых седла 1 и затвор 2, который в данном случае представляет собой клин с наплавленными уплотнительными кольцевыми поверхностями. В закрытом положении уплотнительные поверхности затвора прижимаются к рабочим поверхностям колец корпуса от привода.

Рис.13.3. Задвижка:

1-седло; 2-затвор; 3-корпус; 4-ходовая гайка; 5-уплотнительная прокладка; 6-шпиндель; 7-верхняя крышка; 8-кольцевая прокладка; 9-сальник; 10-нажимная втулка; 11-маховик.

Иногда уплотнительные поверхности получают непосредственно при обра­ботке корпуса. Однако такое конструктивное решение вряд ли может быть приемлемым для всех задвижек, так как при износе этих поверхностей проще и дешевле заменить сменные седла, чем заново обработать корпус при эксплуатации. Уплотнительные поверхности седел и затвора с целью уменьшения износа и усилий трения, возникающих при перемещении затвора, обычно изготавливают из материалов, отличающихся от ма­териала корпуса, путем запрессовки, что позволяет их менять в процессе эксплуатации.

В верхней части затвора 2 закреп­лена ходовая гайка, в которую ввинчен шпиндель 6, жестко соединенный с маховиком. Система винт-гайка служит для преобразования вращательного движения маховика (при открывании или закрывании задвижки) в поступательное перемещение затвора.

При перекрытии прохода от одностороннего давления среды возникают довольно значительные усилия, действующие на затвор, которые передаются на уплотнительные поверхности седла. Величина этих усилий зависит от перепада давлений рабочей среды в трубопроводе до и после задвижки и от величины удельных давлений на уплотнительных поверхностях затвора и седел, которую надо обеспечить для герметичного перекрытия потока рабочей среды при задан­ном рабочем давлении в трубопроводе. Система винт-гайка - наиболее рациональная, так как она позволяет получить компактный и простой по конструкции привод с поступательным движением выходного элемента. Она также позволяет получить поступательное движение привода с большим усилием в направлении хода. Кроме того, поскольку такая конструкция является самотормозящей, она практически исключает возможность самопроизвольного перемещения затвора при отключении привода, что весьма важно для запорной арматуры при эксплуатации.

Недостатком этой системы в данном конкретном случае следует считать то, что пара винт-гайка находится в среде, протекающей через рабочую полость задвижки.

Среда смывает смазку, отсюда повышенный износ пары. Кроме того, та­кую конструкцию можно применять не на всех средах.

Обычно затвор помещают целиком в рабочей среде, даже тогда, когда проход полностью открыт. Уплотнение в месте выхода шпинделя из рабочей полости задвижки обеспечивается по диаметру шпинделя сальниковым устрой­ством 9, препятствующим утечке рабочей среды в атмосферу.

Конструкция сальникового устройства аналогична конструкциям в вентилях" и регулирующих клапанах. Набивка сальника, как правило, изготовленная из пропитанного в целях снижения коэффициента трения графитом асбестового шнура, поджимается при помощи нажимной втулки 10. Корпус сальника крепится к верхней крышке 7. Место разъема уплотняется кольцевой прокладкой 8.

Существуют самые разнообразные конструкции задвижек. Их пытаются классифицировать по различным признакам, связанным с конкретными усло­виями эксплуатации, по химическому составу рабочей среды и ее параметрам . Классифицируют задвижки по величине рабочих давлений, темпе­ратурам рабочих сред, типу привода и т. д.

Классификации такого рода являются неполными, так как они не учитывают особенностей конструкций, позволяющих, помимо работы в определенных средах, отвечать ряду требований, предъявляемых к задвижкам в эксплуатации, и помещают в один класс множество совершенно непохожих по своим данным типов задвижек.

Наиболее целесообразной является классификация задвижек по конструк­ции затвора . По этому признаку многочисленные конструкции задвижек могут быть объединены по основным типам: клиновые и параллельные задвижки.

По этому же признаку клиновые задвижки могут быть с цельным, упругим или составным клином.

Параллельные задвижки также можно подразделить на однодисковые и двухдисковые.

В ряде (конструкций задвижек, предназначенных для работы при высоких перепадах давления на затворе, для уменьшения усилий, необходимых для открывания и закрывания прохода, площадь прохода выполняют несколько меньшей площади сечения входных патрубков. По этому признаку задвижки могут быть классифицированы на полнопроходные (диаметр прохода задвижки равен диаметру трубопровода) и с суженным проходом. В зависимости от конструкции системы винт-гайка и ее расположения (в среде или вне сре­ды) задвижки могут быть с выдвижным и с невыдвижным шпинделем.

Клиновые задвижки

К клиновым относятся задвижки, затвор которых имеет вид плоского клина (рис. 13.4.-13.5.).

В клиновых задвижках седла и их уплотнительные поверхности параллель­ны уплотнительным поверхностям затвора и расположены под некоторым углом к направлению перемещения затвора. Затвор в задвижках этого типа обычно называют «клином». Преимущества таких задвижек - повышенная герметичность прохода в закрытом положении, а также относительно небольшая величина усилия, необходимого для обеспечения уплотнения.

Так как угол между направлением усилия привода и усилиями, дейст­вующими на уплотнительные поверхности затвора, близок к 90°, то даже небольшая сила, передаваемая шпинделем, может вызвать значительные усилия в уплотнении.

К недостаткам задвижек этого типа можно отнести необходимость применения направляющих для перемещения затвора, повышенный износ уплотнительных поверхностей затвора, а также технологические трудности получения герметичности в затворе.

Рис.3.14. Клиновая задвижка:

1- шпиндель с длинной резьбой; 2- промежуточное кольцо и графитовое уплотнение для PN 2,5 МПа и выше; для PN 1,6 МПа только графитовое уплотнение. Двойное графитовое уплотнение - под заказ; 3- уплотнение из гофрированной стали для задвижек класса 1,6 МПа, спиральный уплотнитель для класса 2,5 - 4,0 МПа и 8,0 - 10,0 МПа и соединительное кольцо для 12,5 МПа и выше; 4- направляющие в корпусе задвижки обеспечивают центрирование клина при открытии и закрытии; 5- гибкий клин позволяет компенсировать искажение поверхности седла и деформацию корпуса, вызванные гидроударом в трубопроводе; 6-конструкция шпинделя предотвращает выталкивание; 7-ходовая гайка из мягких сплавов, позволяет в случае аварийной ситуации предотвратить излом штока в месте соединения с клином за счет срыва резьбы гайки;8-заменяемый приварной уплотнитель включен в стандартную конструкцию, прикручивающийся уплотнитель - под заказ.

Рис.13.5. Задвижка клиновая с преднапряженным уплотнением:

1-многочастевое упорное кольцо надежно удерживает внутреннее давление;2-упорное кольцо предотвращает деформацию уплотнителя; 3-вставка из нержавеющей стали обеспечивает бесшумность и коррозионную сопротивляемость; 4-уплотнение из ковкой стали обеспечивает большую площадь контакта, повышая надежность уплотнения; 5-герметичный шток; 6-гибкий клин позволяет компенсировать искажение поверхности седа и деформацию корпуса, вызванные гидроударом в трубопроводе; 7-уплотнительное кольцо седла с напылением из стеллита №6 является стандартной конструкцией.

Задвижки с цельным клином

Примером конструкции задвижки этого типа может служить задвижка с выдвижным шпинделем (рис. 13.6). Она состоит из литого корпуса 1, в который ввинчены уплотнительные седла 2. Как правило, их изготавливают из легированных, износостойких сортов стали. Вместе с корпусом отлиты, а затем механически обработаны направляющие 3 для фиксации направления перемещения затвора (клина).

Рис. 13.6.Полнопроходная задвижка с цельным клином:

1 – корпус; 2 – седло; 3 – направляющая движения клина; 4 – клин; 5 – шпиндель; 6 – верхняя крышка; 7 – шпилька; 8 – уплотнительная прокладка; 9 – направляющая втулка; 10 – сальник; 11 – нажимной фланец; 12 – бугель; 13 – гайка; 14- маховик.

Клин 4 имеет две кольцевые уплотнительные поверхности и шарнирно через сферическую опору подвешен к шпинделю 5. Верхняя крышка 6 со­единяется с корпусом посредством болтов или шпилек 7. Для центровки крышки по отношению к корпусу в последней имеется кольцевой выступ, который входит в проточку корпуса. Уплотнение между крышкой и корпусом обеспечивается прокладкой 8, которая закладывается в проточку корпуса. Для предотвращения перекосов шпинделя в верхнюю часть крышки запрессовы­вается направляющая втулка 9.

Сальниковое устройство состоит из проточки в корпусе, куда помещается набивка, кольцевой нажимной втулки и фланца 11. Сальниковое устрой­ство уплотняется нажимным фланцем 11.

На крышке укреплен бугель 12, на котором расположена ходовая гайка 13, обычно изготавливаемая из антифрикционных сплавов. Маховик жестко соединен с ходовой гайкой.

При вращении маховика гайка заставляет шпиндель и связанный с ним клин подниматься или опускаться. В конструкции соединения затвора (клина) со шпинделем (см. рис. 13.6.) клин может перемещаться в направлении, перпендикулярном оси шпинделя. При этом в конечном положении клин свободно входит в пространство между седлами даже при несовпадении оси шпинделя с осью симметрии затвора. Применение подобного соединения несколько удешевляет изготовление задвижек и облегчает их монтаж после ремонта в условиях эксплуатации.

Задвижку с цельным клином широко применяют, так как ее конструкция проста и, следовательно, имеет небольшую стоимость в изготовлении. Цельный клин, представляющий собой весьма жесткую конструкцию, достаточно надежен в рабочих условиях и может быть применен для перекрытия пото­ков при довольно больших перепадах давления на затворе.

Однако нельзя не отметить ряд существенных недостатков этой конструкции, к которым относятся: повышенный износ уплотнительных поверхностей, потребность в индивидуальной пригонке седел и клина при сборке для обеспечения герметичности (это полностью исключает взаимозаменяемость клина и седел и усложняет ремонт), возможность заедания клина в закрытом положении в результате износа, коррозии или под действием температуры (при этом открыть задвижку иногда бывает невозможно); потребность в приводах с большим пусковым моментом.

Чтобы избежать заедания, уплотнительные поверхности клина и седел изготавливают из разнородных материалов.

Задвижки с цельным клином выпускают как с выдвижным, так и с невыдвижным шпинделем.

Задвижки с упругим клином

Конструкция затвора задвижек этого типа обеспечивает лучшее уплотнение прохода в закрытом положении без индивидуальной технологической подгонки, так как затвор выполнен в виде разрезанного (или полуразрезанного) клина, обе части которого связаны между собой упругим (пружинящим) элементом. Под действием усилия прижатия, которое передается через шпиндель, в закрытом положении последний может изгибаться в пределах упругих дефор­маций, обеспечивая плотное прилегание обоих уплотнительных поверхностей клина к седлам.

Такая конструкция затвора весьма перспективна, так как, имея преимущества затвора с цельным клином, задвижка с упругим клином исключает ряд ее недостатков. В задвижке с упругим клином взаимозаменяемы затворы и повышена надежность при высоких температурах (вследствие уменьшения опасности неравномерного теплового расширения, приводящего к заклиниванию затвора). Однако опасность заклинивания в закрытом положении все-таки полностью не устранена.

Рис. 13.7. Задвижка с суженным проходом и упругим клином:

1- корпус; 2-седло; 3-затвор; 4-стой­ка; 5-шпиндель; 6-верхняя крышка; 7-ходовая гайка; 8-ребро.

Рис 13.8. Задвижка с упругим клином и выдвижным

шпинделем:

1-корпус; 2-седло; 3-затвор; 4-шпиндель; 5-ходовая гайка; 6-ма­ховик; 7-лин; 8-стойка

В задвижке с упругим клином (рис. 13.7) затвор 3 представляет собой разрезанный клин с упругим ребром 8, которое позволяет уплотнительным поверхностям клина поворачиваться относительно друг друга на некоторый угол, что обеспечивает лучшее прилегание к уплотнительным поверхностям седел. Эта особенность упругого клина исключает необходимость индивидуальной технологической подгонки уплотне­ния и уменьшает опасность заклинива­ния. Задвижки этого типа изготовляют как с невыдвижным шпинделем (рис. 3.7.), так и с выдвижным (рис. 13.8).

Усилие приводов при открывании таких задвижек несколько больше, чем у задвижек с цельным клином, зато герметичность затвора намного выше.


Похожая информация.


Под понятием «запорная арматура» подразумеваются устройства, управляющие силой потока некоторой среды. Чаще всего элементы запорной арматуры присутствуют на трубопроводах. Далее мы разберемся в том, на какие виды делится запорная арматура, что это такое и где применяется.

Запорная арматура на трубопроводах служит для управления потоками жидкостей или газов. Она способна регулировать поток в трубопроводных системах от минимального уменьшения подачи до полной ее остановки.

Некоторые виды этого оборудования:

  • регулирующие клапаны;
  • краны;
  • дисковые затворы.

Область применения

Все эти изделия широко используются в инженерных системах и могут изготавливаться как для общетехнического применения, так и для работы в особых условиях. Если задвижка используется только для полного перекрытия потока, то запорно-регулируемая и краны) способна не только перекрывать поток, но и регулировать его интенсивность.

Устройство

Все запорные устройства имеют похожую конструкцию. Это закрытый герметичный корпус, в котором размещен узел запорной арматуры. В корпусе чаще всего имеется два (в ряде случаев больше) конца, посредством которых он плотно прикрепляется к трубопроводу. Назначение запорного узла - герметичное разделение трубопроводной системы на части. В его составе имеются седло и запорный орган, постоянно соприкасающиеся по уплотнительным поверхностям.

Краны

Краны служат для установки на трубопроводах с водяными, паровыми и газовыми носителями. Они характеризуются компактными размерами (1-9 кг) и небольшим сопротивлением. Диаметр крана может быть от 1 до 3 дюймов. Наиболее распространены такие виды кранов, как шаровой и пробковый. В соответствии с методом герметизации они бывают сальниковыми и натяжными.

Соединение крана с трубопроводом происходит при помощи фланца, муфты или путем приваривания к нему. На газовых трубопроводах используются газовые муфтовые краны. Материалом для них служит чугун. Чтобы обеспечить соединение трубопровода с краном, требуется резьбовая муфта. Газовые краны предназначены для работы в условиях давления 0.1 Мпа и температуры до 50 °С.

Более высокие нагрузки выдерживают сальниковые муфтовые краны. Они обслуживают нефтепроводы и водопроводы, основные их детали изготавливаются из чугуна. При этом чугунный сальник набивают резиной или пенькой. Такие краны способны работать при давлениях до 1 Мпа и выдерживают температуры до 100 °С.

Самые малые размеры имеют Это оборудование славится высоким качеством работы, что предопределило его использование в трубопроводах большого диаметра. Изготавливают их из чугуна, а уплотнительные кольца состоят из фторопласта-4. Рабочие параметры шаровых кранов соответствуют характеристикам сальниковых муфтовых кранов.

С помощью фланцев присоединяются к трубопроводам фланцевые стальные краны. Если кран имеет большие размеры, он снабжается червячным редуктором. Для регулировки потока в таком кране служит маховик. Это оборудование применяется на газопроводах, работающих в диапазоне температур от -40 °C до +70 °С. Подобные краны монтируют только вертикально. Управление может быть как дистанционное, так и посредством маховика.

Запорные клапаны

Клапаны играют важнейшую роль в большом количестве регуляторов трубопроводных сетей. Это самая распространенная запорная арматура. Что это такое, можно увидеть на картинке.

Это детали, у которых есть затвор, имеющий вид тарелки конусной или плоской формы, который двигается параллельно оси уплотнительной поверхности седла корпуса возвратно-поступательно или по дуге.

Вентиль — разновидность клапана, перемещение затвора которого осуществляется посредством резьбовой пары.

Наиболее распространены запорные вентили, устанавливаемые на трубопроводы. Регулировка в них происходит в ручном режиме с использованием маховика или дистанционно с помощью электропривода.

Прочность уплотнения обеспечивается кольцами, изготовленными из кожи, резины или фторопласта-4. Запорные вентили используются в трубопроводах, рабочей средой которых являются воздух, пар или вода. Для соединения с трубой применяется резьбовая муфта. Для заполнения сальника используется асбестовая набивка АП-31 - шнур из сплетенных асбестовых нитей с антифрикционной пропиткой.

В водопроводах с температурой воды менее 50 °С устанавливают запорные вентили муфтовые. Это оборудование способно работать в любом положении. При этом вода поступает под золотник. Корпус устройства чугунный, прокладки - паронитовые, уплотнительное кольцо сделано из кожи, а набивка сальников - асбестовая.

В трубопроводах для транспортировки воздуха или воды среда прогревается до температуры +45 °С. В таких инженерных сетях допустимо применение в запорной арматуре электромагнитного привода. Он рассчитан на работу при температурах до +50 °С. Направлен он должен быть вверх. Корпус устройства - чугунный. При этом золотник и крышка изготавливаются из стали. Такой вентиль управляется как вручную, так и дистанционно.

Заслонки

Заслонки предназначены для применения на трубопроводах большого диаметра. Их устанавливают в системах кондиционирования и вентиляции при небольших давлениях и невысоких требованиях к герметичности.

В зависимости от количества применяемых пластин заслонки бывают одинарными и многостворчатыми. Для жидкостных сред заслонки практически не применяются, поскольку не могут в достаточной мере обеспечить герметичность перекрытия прохода. Для газов дроссельные заслонки применяют довольно часто. Этому способствует простота и надежность конструкции. Назначение дроссельных заслонок - регулирование и отключение расхода.

Кроме простого устройства и управления, они имеют сравнительно невысокую цену и небольшой вес. Возможно оборудование заслонок гидроприводом, пневмоприводом или электроприводом.

На трубах, транспортирующих воду, ставятся бесфланцевые заслонки давлением 1,0 МПа. Уплотнение происходит посредством резинового кольца, устанавливаемого в канавке диска. Корпус изделия состоит из чугуна, а поворотный вал сделан из стали.

Заслонки, управляемые посредством электропривода, монтируют электроприводом вверх. При этом приводной вал располагается вертикально. Заслонки, которые управляются вручную, можно устанавливать в любом положении.

Соединение заслонок с трубопроводом происходит посредством фланцев. Другим способом соединения является сварка. Рабочее давление заслонок - 1 Мпа. Управлять ими можно с помощью электропривода.

Диаметр арматуры, использующей такой электропривод, составляет от 200-1200 мм. Их мощность достигает 5 кВт. Время, которое затрачивается заслонкой на открытие или закрытие, составляет примерно полторы минуты.

Затворы

Затвор поворотный дисковый необходим для того, чтобы регулировать давление и расход среды. Рабочей средой для затвора являются вода и газ. Они работают при давлении 1.6 Мпа и температуре от -15 °C до 200 °C.

Затвор поворотный дисковый принадлежит к запорно-регулирующей арматуре. Находясь в закрытом положении, он дает возможность добиться герметичности. Достоинством затвора является его малая строительная длина и высота. Изделие применяется в системах отопления, водоснабжения и пищевой промышленности.

Задвижки

В инженерных сетях ставится и другая запорная арматура. Что это такое "задвижки" - один из видов трубопроводной арматуры?

Задвижка — представитель запорной арматуры, имеющий затвор в форме клина, диска или листа, который движется вдоль уплотняющих колец седла корпуса. Поток среды при этом перпендикулярен ходу затвора. Диаметр уплотнительных колец может быть меньше диаметра трубы, а может быть равен ему. В первом случае задвижки называются суженными, во втором - проходными.

В соответствии с формой затвора задвижки делят на параллельные и клиновые.

Эти изделия используются на технологических линиях и магистральных трубопроводах. Шпиндель в задвижках может быть невыдвижным или выдвижным. Чтобы закрыть или открыть проход, шпинделю приходится делать достаточно много оборотов. Поэтому подобные задвижки снабжают электроприводом для дистанционного управления. Клиновые задвижки имеют невыдвижной шпиндель из чугуна. Их давление составляет 0,25 МПа. Диаметр арматуры - от 800 до 2000 мм, масса достигает 14 тн.

Преимущества задвижек:

  • не требуется преодолевать давление рабочей среды при движении рабочего органа;
  • прямой поток среды, позволяющий минимизировать сопротивление в открытом состоянии;
  • симметричность конструкции.

Недостатки задвижек:

  • сильное трение при движении рабочего органа задвижки;
  • большая строительная высота из-за того, что шток должен выдвигаться минимум на два диаметра трубы;
  • высокий износ затвора в промежуточном положении.

К трубе задвижки присоединяются при помощи фланцев. Большая часть деталей - чугунная. Материал прокладки - паронит, набивка сальника - асбест.

Трубопроводы, транспортирующие топливный газ с температурным режимом до 100 °С, используют двухдисковые клиновые задвижки чугунные. Они имеют невыдвижной шпиндель и рабочее давление 0,6 МПа. Предусматривают только ручное управление.

Аналогичные двухдисковые задвижки, но с выдвижным шпинделем ставятся на трубопроводы с Они рассчитаны на работу при давлении 1,8 МПа и температуре 200 °С.

На нефтепроводы и маслопроводы устанавливаются сварные клиновые задвижки из стали. В их конструкции используется выдвижной шпиндель и патрубки. Максимальная температура среды для этих задвижек составляет 250 °С. Материалом всех деталей задвижки служит углеродистая сталь.

Агрессивные среды

Запорные приспособления, которые работают в условиях воздействия агрессивных сред, выбираются в зависимости от характеристик среды. В расчет принимается срок эксплуатации, герметичность, надежность и другие параметры, которыми обладает запорная арматура. Что это такое - запорное оборудование для агрессивных сред?

Вентили используются в агрессивных средах чаще всего. У таких изделий седло и золотник надежно сопрягаются, что позволяет избежать трения. На смену узлам сальников пришли сильфонные узлы. Недостатком такого вентиля является увеличенное гидравлическое трение.

В жидких средах используются из латуни, рассчитанные на рабочее давление 1,6 МПа. Такой вентиль присоединяется к трубопроводу посредством резьбовой муфты.

В паропроводах при давлении 1 МПа и температурах меньше 50 °С в вентилях используется латунное уплотнительное кольцо. Подобное кольцо на золотнике сделано резиновым или кожаным.

Сильфонные вентили, выполненные из стали, стойкой к коррозии, используются при температуре среды до 350 °С. Фланцевые фарфоровые вентили имеют корпус, изготовленный из фарфора.

Ремонт

Неисправности трубопроводной арматуры чреваты многими проблемами для эксплуатирующих предприятий. Нередко они не в состоянии перекрыть участок сети, который подвергся аварии. Неслучайно ремонт запорной арматуры, сделанный вовремя, помогает предприятию избежать больших расходов в дальнейшем.

Причины поломок

Ознакомимся с наиболее частыми причинами поломок запорной арматуры. В число причин, вызывающих поломки задвижек, входит мусор, попадающий внутрь трубопровода при монтаже. Он оседает на уплотнительных кольцах, прорезает там канавки, нарушающие герметичность. Предотвратить это можно тщательно промыв магистральные сети до начала их эксплуатации. Вышедшие из строя задвижки ремонтируются в особых мастерских, которые оснащены притирочными станками. Они снимают поврежденный слой с уплотнительных колец, возвратив им прежние свойства.

После произведенного ремонта и затяжки болтов, до того как будет произведена установка запорной арматуры, задвижка проходит гидравлические стендовые испытания под давлением. Если испытания заканчиваются успешно, происходит оформление акта приемки.

Изготовители

В России запорная и запорно-регулируемая арматура изготавливаются многими предприятиями. Отрасль постоянно растет. Одним из лидеров отрасли является завод запорной арматуры Also из Челябинска. Популярностью пользуется также продукция завода Ленпромарматура из Санкт-Петербурга, ЗАО Гидрогаз из Воронежа, ООО Муромского завода трубопроводной арматуры.

Цены

Запорная арматура, цена которой может составлять от 20 до нескольких десятков тысяч рублей в зависимости от диаметра, назначения и материала изделий, широко предлагается на рынке России и Европы.

Под запорной арматурой понимают разнообразные устройства, предназначенные для управления потоками жидкости транспортируемой по трубопроводу.

В зависимости от назначения она подразделяется на:

1. Запорную – которая предназначена для полного перекрытия потока жидкости от трубопроводов (задвижки, вентиля, краны, клапаны).

2. Запорную – невозвратную арматуру – которая служит для пропуска жидкости в одном направлении и запирания в обратном (обратные клапана).

3. Предохранительную – которая обеспечивает частичный выпуск или перепуск рабочей жидкости при повышении давления до значения угрожающего прочности системы, а также предотвращает обратный переток жидкости (предохранительные клапана).

4. Регулирующую арматуру – для регулирования потоков и поддержания уровня (регулирование клапана и регуляторы уровня).

Задвижка – запорное устройство, в котором перекрытие прохода осуществляется поступательным перемещением затвора в направлении перпендикулярном движению потока транспортируемой среды.

В сравнении с другими видами запорной арматуры задвижки обладают преимуществами: незначительными гидравлическим сопротивлением при полностью открытом проходе; отсутствием поворотов потока рабочей среды; возможностью применения для перекрытия потоков среды большой вязкости; простотой обслуживания; относительно небольшой строительной длиной, возможности подачи среды в любом направлении.

К недостаткам, общим для всех конструкций задвижек, следует отнести: невозможность применения для сред с кристаллизирующимися включениями: небольшой допускаемый перепад давлений на затворе (по сравнению с вентилями) невысокую скорость срабатывания затвора; возможность получения гидравлического удара в конце хода; большую высоту трудности ремонта изношенных уплотнительных поверхностей затвора при эксплуатации.

Задвижки по прочности подразделяются на:

1. стальные – для высокого давления

2. чугунные – для давления до 16 кгс/см 2 .

Задвижки бывают с выдвижным шпинделем и с не выдвижным, когда при открытии поднимается сам маховик. Бывают с параллельными плашками, клёновыми, проходное сечение перекрывается в вертикальной плоскости.

При виде конструктивного типа задвижек следует исходить из следующего:

1. вида рабочей среды;

2. химического состава рабочей среды;

3. давления рабочей среды;

4. рабочей температуры;

5. наличие обоснованных требований к герметичности затвора;

6. диаметра трубопровода.

Клиновые задвижки с цельным клином предназначены в основном для герметичного перекрывания трубопроводов с большим рабочим давлением неагрессивной среды как жидкой, так и газообразной.

Клиновые задвижки с упругим клином применяют в основном для герметичного перекрывания трубопроводов с нефтяными и газовыми средами высокой температуры и большим рабочим давлением среды. Применять задвижки этого типа для работы в кристаллизующихся средах или в средах с механическими примесями не рекомендуется.

Задвижки с составным клином рекомендуют в основном для трубопроводов со средним рабочим давлением среды как жидкой, так и газообразной, без твердых и абразивных включений. Температура рабочей среды устанавливается в зависимости от материалов уплотнительных поверхностей затвора.

Параллельные задвижки предназначены для установки на трубопроводах в процессах, в которых не требуется достаточно герметичного перекрывания трубопровода при больших значениях рабочего давления. Среда может содержать небольшое количество механических примесей.

Однодисковые задвижки применяют, как правило, для трубопроводов с высокой t и средней величиной давления рабочей среды, в которых требуется обеспечить пропуск среды при неполном перекрывании трубопровода. При повышенных требованиях к герметичности перекрытия прохода наиболее приемлемая среда – некристаллизующиеся жидкости с достаточно большой вязкостью, например, нефть, мазуты и др.

Двухдисковые задвижки рекомендуют для герметичного перекрывания трубопроводов со средним давлением рабочей среды (как жидкой, так и газообразной), содержащей небольшое количество механических примесей. Температура среды зависит от материала уплотнительных поверхностей затвора.

Задвижки с эластичным уплотнением затвора предназначены для герметичного перекрывания трубопровода с низкой температурой и средним давлением рабочей среды, как жидкой, так и газообразной.

Задвижки с гуммированным покрытием внутренней полости применяют для герметичного перекрывания трубопроводов с рабочими средами, обладающими повышенной агрессивностью при невысоких рабочих температурах, а также содержащие абразивные включения.

Задвижки с обводом (байпасом) используют в основном для трубопроводов с высоким давлением рабочей среды.

Вентиль – запорное устройство насажано на шпиндель, проходное сечение перекрывается в горизонтальной плоскости.

По конструкции корпуса вентили разделяются на: проходные, угловые, прямоточные и смесительные.

Существенно важной является классификация вентилей по назначению: запорные, запорно-регулирующие и специальные. В свою очередь, регулирующие могут быть подразделены по конструкции дроссельных устройств на вентили с профилированными золотниками и игольчатые. Аналогично запорные вентили по конструкции затворов подразделяются на вентили тарельчатые и диафрагменные, а по способу уплотнения шпинделя на сальниковые и сильфонные.

Проходные вентили предназначены для установки в прямолинейных трубопроводах.

Недостатки: относительно высокое гидравлическое сопротивление; наличие зоны застоя; большие строительные размеры; сложность конструкции корпуса и относительно большой вес.

Угловые вентили предназначены для соединения двух частей трубопровода, расположенные перпендикулярно друг другу или для монтажа на повороте. Работают при давлениях рабочей среды, меньших 64кГ/см2 и при невысоких температурах.

Прямоточные вентили. Преимущества: относительно малое гидравлическое сопротивление; компактность конструкции; отсутствие зон застоя. Недостатки: большая длина и относительно большой вес.

Смесительные вентили служат для смешивания двух потоков жидкой среды с целью стабилизации её температуры, концентрации реагентов, разжижения основной среды, поддержания качества и т.д. Более простое решение схемы смешивания получается при использовании смесительных вентилей, в которых два потока смешиваются непосредственно в корпусе одного вентиля. Их применение дает высокий экономический эффект за счет того, что вместо 2-х вентилей и специального смесителя применяется только один вентиль.

Диафрагмовые вентили (мембранные) предназначены для перекрывания потоков сред при невысоких температурах (до 100-1500С) и отсутствие сальника; зон застоя и карманов; невысокое гидравлическое сопротивление; небольшие габаритные размеры и вес. Основной недостаток – относительно небольшой срок службы мембраны.

Сильфонные вентили предназначены для работы в средах, утечка которых в окружающую атмосферу недопустима из-за высокой стоимости, агрессивности, токсичности, взрыво- или пожароопасности, ядовитости и др. Преимущества – полное исключение утечки рабочей среды и надежность уплотнительного элемента.

Запорно-регулирующие вентили обеспечивают возможность ручного или дистанционного управления расходом среды путем изменения гидравлического сопротивления дроссельной пары с надёжным фиксированием промежуточных положений даже при авариях в линии питания привода или при затруднительном доступе к вентилю, а также достаточно надёжно перекрывала трубопровод.

Игольчатые вентили могут быть как заторными, так и регулирующими. Они нашли широкое применение в регулировании и дросселировании малых потоков газов, при больших величинах перепадов давлений на дроссельном устройстве.

Кран – проходное сечение открывается или закрывается пробкой, применяется для диаметров до 50мм, для давления до 40кГс/см 2

Конические краны можно подразделить на следующие типы: натяжные, сальниковые краны со смазкой и краны с прижимом (или с подъёмом) пробки.

Натяжные краны применяются для массового выпуска и обычных условий эксплуатации (например, кухонные газовые краны). Они применяются главным образом для сыпучих или вязких сред, где не требуется высокой герметичности по жидкости или газу. Главным образом натяжные краны применяют для низких рабочих давлений (до 10кГ/см 2) или для сред, пропуск которых в окружающую среду не опасен.

Сальниковые краны широко применяются на жидких и газообразных средах при давлениях 6-40кГ/см 2 .

Краны с подъемом пробки не рекомендуется применять для сред, содержащих твердые частицы и для суспензий, так как попадание твердых частиц между корпусом и пробкой может вызвать потерю герметичности с повреждением уплотнительных поверхностей, а также для полимерзующихся или очень вязких сред.

Цилиндрические краны можно разделить на 2 группы: краны с металлическим уплотнением и краны с эластичным уплотнением.

Краны с металлическим уплотнением применяют в основном для высоковязких сред (мазут, каменноугольный пек и др.)

Краны с эластичным уплотнением применяют большей частью с металлической пробкой и неметаллическим эластичным уплотнением в седле.

Шаровые краны применяются со смазкой и на высокие давления среды и большие проходы (главным образом для магистральных газопроводов и нефтепроводов). Они делятся на 2 типа: краны с плавающей пробкой и краны с плавающими кольцами.

Краны с плавающей пробкой бывают 2 основных типов: с металлическими кольцами со смазкой, с неметаллическими кольцами из чистых пластмасс, резин.

Сильфонные краны весьма дороги в производстве вследствие повышенных требований к точности изготовления. Наличие подъемной пробки – не позволяют применять его в вязких и полимеризующихся средах.