Поршневой жидкостный насос: назначение и принцип действия. Как работают поршневые насосы

Описание насоса

Поршневые насосы являются разновидностью объемных насосных установок, где жидкость перемещают вытеснители, выталкивая ее из статичных рабочих камер. Рабочая камера поршневого насоса это замкнутое пространство, которое поочередно сообщается с входом/выходом насоса. Вытеснитель это рабочий орган насосной установки, осуществляющий вытеснение вещества.

Поршневые насосы сообщают перекачиваемой жидкости энергию, преобразовывая ее из механической энергии двигателя, т.е. данный тип насосов, придает перемещаемой жидкости энергию для того, чтобы она внутри трубопровода могла преодолевать такие явления как сопротивление, инерцию и статическую высоту.

Существуют различные классификации поршневых насосов, которые учитывают конструктивные особенности поршневых насосных установок, особенности функционирования агрегатов, вид жидкости с которой работает насос, показатель быстроходности рабочего органа и создаваемого рабочего давления.

Разновидности и типы поршневых насосов

Так, поршневые насосы могут иметь ручной и механический привод. Насосы, имеющие механический привод подразделяются, в свою очередь, на два вида:

  • Приводные насосы, где поршень активируется при помощи шатунно-кривошипного механизма от двигателя, который располагается отдельно и соединяется с насосом посредством передачи;
  • Насосы прямого действия, где поршень совершает возвратно-поступательные движения посредством штока напрямую от поршня бескривошипной паровой машины, являющейся единой системой с насосной установкой.

По виду рабочего органа, который обеспечивает вытеснение жидкости, поршневые насосы бывают:

  • Поршневыми (поршень имеет дискообразную форму);
  • Плунжерными (поршень имеет цилиндрообразную форму);
  • Диафрагмовые (рабочая жидкость отделяется от поршня специальной диафрагмой, а в цилиндре находится масло/эмульсия). Такие насосы используются для перекачки жидкостей, которые содержат различные примеси, химически агрессивных жидкостей, строительных растворов. Диафрагма может активироваться обычным рычагом. Рабочая камера оснащена двумя патрубками, один из которых всасывающий, другой – напорный. Шток двигается возвратно-поступательно и соединяется с диафрагмой. Насосы с диафрагмой используются в составе автомобильных двигателей в качестве бензонасосов.

В соответствии со способом действия поршневые насосы бывают следующих видов:

  • Поршневой насос одинарного действия;
  • Поршневой насос двойного действия. Такой насос более равномерно подает жидкость, если сравнивать его с насосами простого или дифференциального действия, т.к. он оснащен двумя рабочими камерами, располагающимися по обе стороны цилиндра, где находятся нагнетающие и всасывающие клапаны. Благодаря этому, поршень нагнетает жидкость два раза, пока коленчатый вал совершает один оборот. Существенно снижает пульсацию перекачиваемой жидкости воздушный колпак, который соединен с патрубком;
  • Дифференциальные поршневые насосы. Такие насосы являются насосам двустороннего действия и оснащены двумя рабочими камерами, одна из которых не имеет клапанов, а другая имеет всасывающий и рабочий клапан. В связи с тем, что насос нагнетает перекачиваемую жидкость два раза за один оборот вала, подача жидкости в значительной степени выравнивается.

Поршневые насосы классифицируются по расположению (горизонтальные и вертикальные) и количеству цилиндров (оснащенные одним, двумя, тремя и более цилиндрами).

По числу поршней выделяют насосы с одним, двумя и более поршнями. Кроме того, согласно показателю величины подачи различают насосы с большими поршнями (диаметром более 150 мм), средними (диаметром от 50 до 150 мм) и малыми поршнями (диаметр менее 50 мм). В соответствии с тем, насколько быстроходен рабочий орган, выделяют три типа насосов: тихоходные поршневые насосы (от 40 до 80 двойных ходов в минуту), поршневые насосы средней быстроходности (50-80) и быстроходные поршневые насосы (150-350).

Данный вид насосов используется для перекачивания холодной воды (обыкновенный насос), горячей воды (горячий насос), для работы с кислотными веществами (кислотный насос), глинистыми растворами (буровой насос) и т.п.

Принцип работы поршневого насоса двойного действия

Согласно уровню рабочего давления различают насосы, создающие высокое, среднее и малое давление.

Поршневые насосы могут быть прямодействующими или вальными по способу движения главного звена. В насосах прямого действия главное звено совершает возвратно-поступательные движения, при этом, в вальных агрегатах (например, кулачковые) ведущее звено вращается.

Широкое распространение получили кулачковые и погружные насосы.

Так, кулачковый насос имеет один цилиндр, в котором рабочий орган активируется посредством кулачка, а возвращается в первоначальную позицию посредством пружины. Данный тип насосов неравномерно подает жидкость, но компактен по своей конструкции. В кулачковых насосах цилиндры имеют радиальное расположение, а оси пересекаются в общем центре. Башмаки сокращают контактное давление между вытеснителем и кулачком. Кулачковые насосы способны нагнетать высокое давление и поэтому используется в гидропроводах, при нагнетании жидкости в гидропрессах и как топливные насосы в составе дизельных двигателей.

Погружные насосы являются очень компактными и используются для работы на скважинах.

Основные узлы/детали поршневых насосов

Поршневые насосы являются видом объемных агрегатов, где вытеснители выталкивают жидкость из статичных рабочих камер. Основными узлами поршневого насоса являются такие элементы как его рабочая камера и вытеснитель. Рабочая камера объемного насосного оборудования это замкнутое пространство, которое по очереди сообщается со входом/выходом насосной установки. Вытеснитель это рабочий орган совершающий вымещение вещества из рабочих камер агрегата.

Принцип действия поршневых насосов

В поршневом насосе простого действия вытеснитель соединяется посредством штока с кривошипно-шатунным механизмом и таким образом, двигается возвратно-поступательно внутри цилиндра. При движении поршня вправо, в рабочей камере создается пустота. Как результат, клапан всасывает рабочую жидкость в камеру через трубопровод. При совершении поршнем обратного хода (влево) нагнетательный клапан находится в открытом положении, всасывающий, соответственно, в закрытом положении. Так, жидкость нагнетается в напорный трубопровод. Чтобы повысить показатель производительности поршневых насосов, их зачастую изготавливают двойными, тройными и т.д. Поршни в таких насосах активируются посредством одного коленчатого вала.

Принцип работы трехпоршневого насоса

Преимущества поршневых насосов

Преимуществами поршневых насосов, перед другими видами насосных установок являются:

  • Независимость подачи жидкости от напора, что делает возможным их применение как насосов дозаторов;
  • Сравнительно высокий показатель КПД (выше, чем на пример у центробежных агрегатов);
  • Тихоходность

Поршневые насосы подают жидкость прерывисто и обладают значительными габаритами в сравнении, на пример, с центробежными насосами. Они сложны в конструкции, но при этом могут создавать большие напоры. Данный вид насосов используют для работы с чистыми жидкостями, т.к. они оснащены клапанами. Примеси в рабочей жидкости способны привести к поломке.

Применение в промышленности поршневых насосов

Поршневые насосы активно используются в системах водоснабжения, быту, в пищевой и химической промышленности, при производстве оборудования для напыления различных материалов. Разновидность поршневых насосов, такая как на пример диафрагменный агрегат применяется в составе двигателя внутреннего сгорания в качестве системы подачи топлива, а также для работы со строительными смесями и прочими веществами, которые содержат примеси. Погружной насос получил широкое распространение при работе на скважинах. Буровой насос применяется при перекачке глинистых растворов.

Центробежные насосы имеют значительные преимущества по сравнению с поршневыми: обеспечивают равномерность подачи, более быстроходны, компактны, проще по конструкции, могут быть использованы для перекачивания загрязненных жидкостей.

Недостатки центробежных насосов: невозможность создания больших давлений, уменьшение подачи с увеличением напора, низкий к. п. д. и необходимость заливки насоса перед его пуском.

Совместная работа центробежных насосов Работа центробежного насоса должна рассматриваться совместно с работой трубопровода, к которому он подключен, так как подача и напор устанавливаются в зависимости от сопротивления трубопровода.

При эксплуатации центробежные насосы могут быть соединены последовательно и параллельно.

Последовательное соединение центробежных насосов применяют с тем, чтобы увеличить давление на выходе из системы насосов . При этом через каждый насос проходит все количество перекачиваемой жидкости. При данной производительности будет получен тем больший напор, чем больше насосов включено последовательно. Особенно часто эту схему применяют на магистральных трубопроводах, что позволяет более эффективно использовать трубопровод при перекачке различных нефтепродуктов. В нефтепереработке и нефтехимии такая схема используется для перекачки продуктов на требуемую высоту, когда один насос не может дать необходимый при заданной производительности напор .

При параллельном соединении центробежные насосы работают на общий трубопровод. Такую схему используют для увеличения подачи в трубопровод.

Регулирование подачи центробежного насоса . При эксплуатации центробежных насосов приходится регулировать подачу в зависимости от изменения технологического режима. Регулирование подачи осуществляется при постоянных числах оборотов рабочего колеса, часто обусловлено особенностями конструкции электродвигателей переменного тока, используемых в основном для привода насосов.

Регулирование подачи дросселированием в напорном трубопроводе при помощи задвижки или регулирующего клапана широко применяют при эксплуатации, так как такое регулирование легко осуществить . Однако при этом снижается к.п.д. насосной установки вследствие потери части напора при дросселировании. Регулировать подачу дросселированием во всасывающем трубопроводе не рекомендуется, так как ухудшаются условия всасывания, что может привести к кавитации и срыву работы насоса.

Регулировать подачу можно также перепуском части жидкости по обводной линии (байпасу) из напорного патрубка во всасывающий. При этом общая подача увеличивается, а напор снижается , так как часть энергии тратится дополнительно на перекачивание байпасирующей жидкости.



Возможно также изменение подачи за счет уменьшения диаметра рабочих колес, что достигается их обтачиванием. Однако в процессе работы насоса такая замена рабочих колес невозможна.

Параллельное и последовательное соединение насосов позволяет изменять подачу в достаточно широких пределах .

Центробежные насосы для нефтегазопереработки. Конструкция корпуса центробежного насоса определяется в основном температурой, давлением и физико-химическими свойствами перекачиваемой жидкости.

Для перекачки холодных нефтепродуктов используют многоступенчатые насосы, корпус которых выполнен из чугуна . Всасывающий и нагнетательный патрубки размещены в нижней половине корпуса, что дает возможность разбирать насос, не отсоединяя трубопроводы. Корпус насоса состоит из двух половин – верхней и нижней, имеющих разъем в горизонтальной плоскости. Рабочие колеса насажены на вал, который вращается в двух подшипниках. Рабочие колеса уравновешены гидравлически. Осевое усилие воспринимается радиально-упругими подшипниками, установленными в корпусе.

Вал и корпус насоса уплотняются сальниками с эластичной набивкой из пропитанных асбестовых колец, которые по мере износа подтягиваются нажимной втулкой. Вал насоса в пределах сальников защищен сменной втулкой. Для соединения первой и второй ступеней насоса служит переводная труба.

Для уменьшения гидростатического давления на сальник, находящийся на стороне нагнетания, предусмотрено разгрузочное устройство в виде лабиринтного уплотнения и отводящей трубки.

При температуре выше 200 о С трудно обеспечить герметичность в плоскости горизонтального разъема корпуса. Поэтому горячие насосы имеют двойной корпус. Внешний корпус – кованный или литой, изготовлен из высоколегированной стали и имеющий фланцевый разъем в вертикальной плоскости. Внутренний литой корпус с проточной частью имеет горизонтальный разъем или собирается из секций . При изменении температуры оба корпуса могут удлиняться независимо.

Чтобы исключить возможность возникновения пожара и взрыва при перекачке нефтепродуктов при температурах до 400 о С , сальники и стыки корпуса горячего насоса должны бать герметичными.

В табл. 11-1 приведены характеристики горячих насосов для перекачки нефтепродуктов с температурой до 400 о С.

Таблица 11-1 Характеристики горячих насосов для перекачки нефтепродуктов с температурой до 400 о С

Сальники и подшипники горячих насосов дополнительно охлаждаются водой под давлением 0,15 МПа, а в корпус сальника подводится уплотнительная охлажденная жидкость (масло) под давлением р = р сальника + 0,15 МПа. Для перекачки сжиженных углеводородных газов применяют центробежные насосы, конструкция которых аналогична конструкции насосов для холодных нефтепродуктов. Сжиженные углеводородные газы поступают в насос под давлением около 3,5 МПа ; в насосе давление газов увеличивается в несколько раз . Поэтому особое внимание должно быть уделено конструкции сальниковых устройств. Сальники должны быть герметичными.

Сжиженные газы, просачивающиеся через сальники наружу, быстро испаряются, что приводит к значительному охлаждению и обмерзанию сальника, а также к загазованности насосного помещения. Жидкость, проникающая в сальник, отводят по линии, соединенной со всасывающей линией насоса, а в фонарь сальника подают уплотнительную жидкость . В рубашку сальника подают периодически горячую воду, чтобы предотвратить обмерзание сальника.

Для герметизации вала насоса используют одинарные или двойные торцовые уплотнения. Одинарные торцовые уплотнения применяются при работе под давлением до 2,5 МПа и под вакуумом. В табл.11-2 приведены основные характеристики насосов для перекачки сжиженных газов.

Таблица 11-2. Характеристика центробежных насосов для перекачки сжиженных газов

Сальники с мягкой набивкой. Для уплотнения валов центробежных нефтяных насосов применяют сальники с мягкой набивкой из различных материалов. На рис. 11-8 приведена конструкция сальника с мягкой набивкой и с рубашкой для охлаждения.

Рис. 11.8 Сальниковое уплотнение с мягкой набивкой центробежного нефтяного насоса:

а – тупиковая схема; б – циркуляционная схема; 1 11 – вывод уплотнительной жидкости; 111 – ввод воды;; – вывод воды; 1 – корпус насоса; 2 - нажимная втулка; 3 – защитная втулка; 4 - фонарь; 5 – набивка; 6 – вал;; 7 – грундбукса; 8 – канал для охлаждающей жидкости.

В камере сальника находится эластичная набивка 5, состоящая из разрезанных колец. В среднюю часть набивки устанавливают специальное полое кольцо 4 (фонарь), имеющее радиально расположенные отверстия. В основании сальниковой камеры со стороны проточной части насоса расположена грундбукса 7, зазор между которой и защитной гильзой 3, предохраняющей вал 6 от износа, составляет 0,2-0,3 мм .

Уплотнение между защитной гильзой вала и корпусом насоса достигается поджатием эластичной набивки 5 нажимной втулкой 2. Для отвода тепла, выделяющегося при трении набивки о гильзу вала, в корпусе насоса 1 предусмотрены каналы 8 вокруг сальника для ввода охлаждающей воды (рубашка сальника).

Температура уплотнительной жидкости на входе достигает 35 о С и на выходе 50 о С.

Тупиковую схему подачи уплотнительной жидкости применяют для перекачки холодных нефтепродуктов, кислот и щелочей. Циркуляционную схему рекомендуется применять для перекачки горячих нефтепродуктов и сжиженных углеводородных газов.

Торцовые уплотнения центробежных насосов. Уплотнения этого вида рекомендуется применять при перекачке сжиженных углеводородных газов и легких нефтепродуктов, когда сальниковые уплотнения с мягкой набивкой не обеспечивают полной герметичности.

Рис. 11.9.Одинарное торцовое уплотнение:

1, 11 - ввод и вывод воды; 111, 1У - ввод и вывод уплотнительной жидкости; 1 - нажимная гайка; 2 – гильза вала; 3, 7, 12 – уплотняющие кольца; 4 – крышка; 5 – штуцер; 6 – вращающаяся втулка; 8 – нажимная втулка; 9 – пружина; 10 – шпонка; 11 – упорная втулка; 13 - неподвижная втулка; 14 – специальный винт.

Торцовые уплотнения могут быть одинарными (рис.11.9) и двойными. При одинарном уплотнении с внешней стороны насоса сальниковая камера изолирована крышкой 4, которая на прокладке крепится шпильками и гайками к корпусу. В крышке установлена неподвижная втулка 13. Через штуцер 5 подводится вода для охлаждения. Уплотняющее кольцо 3 предотвращает утечку охлаждающей воды наружу. Вращающиеся детали торцового уплотнения установлены на гильзе, которая крепится к валу на резьбе. Чтобы предотвратить проникновение перекачиваемого нефтепродукта вдоль вала наружу, используют уплотняющее кольцо 12, которое поджимается гайкой 1. Втулка 6 приводится во вращение нажимной втулкой 8, которую специальными винтами 14 вводят в пазы вращающейся втулки 6. Нажимная втулка связана с гильзой вала шпонкой 10, которая позволяет нажимной втулке свободно перемещаться вдоль вала.

Усилие пружины 9 предается через нажимную втулку и уплотняющее кольцо 7 вращающейся втулке 6.

Тщательно притертые торцевые поверхности вращающейся 6 и неподвижной 13 втулок постоянно находятся в контакте, обеспечивая герметичность сальника. Эластичное уплотняющее кольцо 12 предотвращает утечку жидкости через зазор между гильзой и вращающейся втулкой и позволяет втулкам перемещаться одна относительно другой в радиальном направлении.

Одинарные торцовое уплотнение обычно работает без уплотнительной жидкости. Охлаждение и смазка трущихся торцов вращающейся и неподвижной втулок осуществляется перекачиваемым нефтепродуктом. В крышку уплотнения подается охлаждающая вода.

Неподвижная втулка торцового уплотнения выполнена из антифрикционной бронзы или графита, уплотняющие кольца – из бензомаслостойкой резины, остальные детали из различных сталей в зависимости от коррозионных свойств перекачиваемого нефтепродукта.

Рис. 11.10. Двойное торцовое уплотнение

1 – ввод воды; 11 – вывод воды; 111 – ввод уплотнительной жидкости; - -вывод уплотнительной жидкости; 1, 8, 15 – нажимные втулки; 2 – гильза вала; 3, 7, 14, 18 – уплотняющие кольца; 4 – крышка; 5 – штуцер; 6, 13 – вращающаяся втулка; 9 – пружина; 10 – шпонка; 11 – упорная втулка; 12, 17 – неподвижная втулка; 16 – специальный винт.

В двойном торцовом уплотнении (см. рис. 11-10) герметичность между валом и корпусом обеспечивается двумя трущимися торцовыми поверхностями вращающихся 6, 13 и неподвижных 12, 17 втулок. Усилия пружины 9 и от давления уплотнительного масла, циркулирующего через камеру торцового уплотнения, передается через нажимные втулки 8, 15 вращающимся втулкам 6,13

Уплотнительная жидкость (масло) охлаждает и смазывает трущиеся торцы вращающихся и неподвижных втулок. Давление циркулирующего масла в камере торцового уплотнения на 0,05-0,15 МПа превышает давление перекачиваемого нефтепродукта перед камерой уплотнения. Перепад давлений поддерживается автоматически регулятором давления.

Насосы для перекачки кислот и щелочей. Кислотные и щелочные насосы должны быть изготовлены из материалов, которые противостоят коррозии; через сальники не должно быть утечки жидкости.

Для изготовления таких насосов применяют, хромоникелевые стали, монель-металл, легированные чугуны; из неметаллических материалов используют специальные резины, керамику, пластмассы, стекло.

Частота вращения ротора насосов обычно не превышает 1500 об/мин, так как при больших скоростях возрастает значительно скорость коррозии рабочих элементов. Сальники насоса должны работать, возможно, с меньшим давлением или даже с небольшим разрежением.

При перекачке разбавленных кислот в фонарь сальника подводят чистую воду под давлением примерно на 0,05 МПа выше, чем перед сальником. Уплотнительная вода улучшает охлаждение и смазку сальников и обеспечивает хороший гидравлический затвор. При перекачке концентрированной серной кислоты (75 – 96%) сальники должны работать под разрежением. Уплотнение сальника обеспечивается подачей в фонарь консистентной смазки через масленку.

ГОСТ 10168-95 устанавливает основные параметры центробежных химических насосов и регламентирует подачу, напор, частоту вращения вала, допускаемый кавитационный запас. Стандарт распространяется на центробежные насосы с уплотнением вала, с подачей от 1,5 до 2500 м 3 /ч и напором от 10 до 250 м столба перекачиваемой жидкости плотностью не более 1850 кг/м 3 , имеющих твердые включения размером до 5 мм , объемная концентрация которых не превышает 15%. В условном обозначении типоразмера указаны номинальные подача (м 3 /ч ) и напор (в м столба перекачиваемой жидкости). Так насос типа Х с номинальной подачей 20 м 3 /ч и номинальным напором 18 м имеет условное обозначение Х20/18.

Консольные центробежные насосы типа Х для перекачивания чистых химически активных жидкостей состоят из 19 типоразмеров, охватывающих диапазон подач от 2 до 700 м 3 /ч и напоров от 10 до 140 м столба жидкости.

Для перекачки кристаллизирующихся и легкозастывающих жидкостей при температуре до 200 о С изготовляют химические насосы типа ХО.

Рис.11.11. Продольный разрез консольного насоса типа Х:

1 - крышка корпуса; 2 - корпус; 3 – уплотнительное кольцо; 4 – рабочее колесо; 5 – сальник; 6 – вал; 7 – опорный кронштейн; 8 – упругая муфта.

Гуммированные насосы выпускают следующих марок: 1Х-2Р-1 (2); 2Х-6Р-1 (2); 4АХ-5Р-1; 4ПХ-4Р-1. Обозначения в маркировке насоса следующее: первая цифра – диаметр всасывающего патрубка в миллиметрах; уменьшенный в 25 раз; АХ – химический для абразивных жидкостей; ПХ – пульповый; Х – химический,; Р – резина, материал покрытия, соприкасающихся с перекачиваемой средой; 1 – сальник с мягкой набивкой; 2 – торцовое уплотнение.

Гуммированные насосы по сравнению с металлическими более стойки к коррозии и долговечны. Детали проточной части насосов, соприкасающихся с перекачиваемой средой, покрыты резиной.

Пластмассовые и керамические насосы предназначены для перекачки кислот (серной, соляной) и других технологических агрессивных растворов с температурой до 100оС. Детали насоса, соприкасающиеся с перекачиваемой жидкостью, изготовлены из пластмасс или керамики.

Гуммированные, пластмассовые и керамические насосы – горизонтальные одноступенчатые консольные.

Поршневые насосы являются основным видом объемных насосов. Отличительные особенности этих насосов: постоянное разобщение напорной и всасывающей областей насоса специальными клапанами; независимость развиваемого наосом напора от величины подачи (напор определяется прочностью деталей насоса и мощностью двигателя); подача жидкости отдельными порциями, зависящими от размеров рабочей части насоса и скорости движения поршня.

Принципиальная схема поршневого насоса приведена на рис. 9.2.

Поршневой насос (рис.9.2) состоит из двух частей - гидравлической и приводной. Гидравлическая часть, предназначенная для перекачки жидкости, состоит из цилиндра 1, в котором возвратно-поступательно движется поршень 2 со штоком 11, и клапанов 3 и 4, помещенных в специальные клапанные коробки. Всасывающий клапан 3 отделяет внутреннюю полость насоса от всасывающего трубопровода 5, а нагнетательный клапан 4 - от нагнетательного трубопровода 6.

Рис.9.1. Схема насосной установки: Н в – высота всасывания; Н н – высота нагнетания
Рис.9.2. Схема поршневого насоса одинарного действия

Приводная часть поршневого насоса служит для передачи энергии от двигателя к поршню. Она состоит из кривошипно-шатунного механизма, включающего кривошип 7, шатун 8, ползун 9 и направляющее 10 для ползуна. Кривошип 7 жестко посажен на вал двигателя или редуктора и вращается вместе с ним. Кривошип шарнирно соединен с шатуном 8 , который также шарнирно связан с ползуном 9. При вращении кривошипа шатун 8 перемешает ползун 9 в направляющих 10 взад и вперед. Благодаря этому совершает возвратно-поступательное движение и поршень 2, связанный штоком 11 с ползуном. Движение поршня оказывается неравномерным: его скорость непрерывно изменяется от нуля в крайних положениях до максимального значения в среднем положении.

Поршневой насос, показанный на рис.9.2, подает жидкость один раз за один полный оборот кривошипа. Подобные насосы называют насосами одностороннего действия.

Кроме насосов одностороннего действия, в промышленности используются поршневые насосы многократного действия, в которых за один полный оборот кривошипа жидкость подается в напорный трубопровод два и большее число раз. В соответствии с этим они называются насосами двустороннего, трехстороннего и т. д. действия.

В возвратно-поступательном насосе двустороннего действия (рис. 9.3) четыре клапана (по два с каждой стороны): два всасывающих 1 и и два нагнетательных 2 и 2¢ . При движении поршня вправо (по чертежу) в левой части цилиндра этого насоса происходит всасывание, в правой - нагнетание. При обратном движении поршня, наоборот, справа происходит всасывание, слева - нагнетание.

Рис.9.3. Схема поршневого насоса двустороннего действия

Возвратно-поступательные насосы, у которых рабочие органы выполнены в виде плунжеров, называют плунжерными насосами. Они используются в основном для перекачивания жидкостей под большим давлением, так как плунжер легче уплотнить, чем поршень.

Один из типов плунжерных насосов - дифференциальный плунжерный насос показан на рис. 9.4. Этот насос имеет два клапана (всасывающий 1 и нагнетательный 2 ) и две камеры (рабочую 4 и дополнительную 5 ). Камеры соединены между собой напорным коленом 3 . В дифференциальном насосе всасывание производится один раз за оборот коленчатого вала, а нагнетание - дважды. Благодаря этому достигается более равномерная подача жидкости в нагнетательный трубопровод, чем в насосе однократного действия.

Поршневые насосы для перекачки нефтепродуктов. Поршневые и плунжерные насосы на нефтеперерабатывающих заводах используют для перекачивания небольших количеств жидкости при больших давлениях, для перекачивания горячих жидких нефтепродуктов (мазута, гудрона и др.), а также холодных нефтепродуктов с температурой менее 100 о С. Применяют поршневые паровые прямодействующие насосы двойного действия, а также поршневые насосы с приводом от электродвигателя через редуктор. Прямодействующие паровые насосы горизонтального типа состоят из трех основных частей: гидравлической, паровой и средника, соединяющего обе части, на котором смонтирована стойка парораспределительного механизма. Гидравлический и паровой поршни расположены на одном штоке. Подача таких насосов регулируется открытием паровпускного клапана.

Прямодействующие поршневые насосы обладают рядом преимуществ по сравнению с поршневыми насосами, имеющими привод: постоянная готовность к пуску, надежность в работе, простота обслуживания, легкость регулирования подачи, путем изменения подачи пара в паровые цилиндры. Недостаток прямодействующих насосов – низкий к.п.д.

Подачу поршневых наосов регулируют изменением длины хода поршня (плунжера), изменением скорости вращения приводного вала. Их недостаток - громоздкость, сложность привода, неравномерность подачи жидкости и малая подача. Они более дороги и сложнее в эксплуатации, так как имеют отдельные двигатель и редуктор. Преимущество – более экономичны, возможность создания высокого давления в жидкости, величина которого ограничивается механической прочностью деталей насоса.

Эксплуатация поршневых насосов . Перед пуском необходимо залить рабочие камеры насоса перекачиваемой жидкостью, проверить состояние системы смазки, открыть задвижки на всасывающем и нагнетательном трубопроводах. Если имеется байпас, то задвижку на напорном трубопроводе закрывают, а на байпасе открывают. После пуска насоса постепенно закрывают задвижку на байпасе и открывают на напорном трубопроводе. В случае паровых прямодействующих насосов, кроме того, должны быть открыты краны на паровыпускной трубе и продуты паровые цилиндры.

Нарушение нормальной работы поршневых насосов проявляется в падении производительности и развиваемого напора. Причиной этого может быть износ гильзы цилиндра, поршня или поршневых колец. Поломка поршневых колец может разрушить цилиндр, клапанную коробку и разгерметизировать его Заклинивание поломанных колец между гильзой и поршнем может привести к обрыву штока или поломке привода. Поломки клапанов или седел приводит к резкому падению параметров работы насоса и создает р6альную опасность. Поэтому обслуживающий персонал должен регулярно «прослушивать» работу клапанов и по характерному стуку определять их состояние: стук должен быть мягким и плавным; усиление стука говорит о разрегулированности подъема клапанов и о необходимости их ревизии.

В результате ослабления крепежных болтов возможны пропуски в местах сопряжения с корпусом цилиндровых и клапанных крышек. Устранить эти дефекты можно только после остановки насоса и снятия давления в цилиндре и в клапанной коробке.

В электроприводных насосах должна быть обеспечена строгая центровка штоков цилиндров, поэтому крейцкопф кривошипно-шатунного механизма не должен иметь люфтов.

Штоки гидравлических цилиндров имеют сальниковые уплотнения, набивку сальников периодически подтягивают без лишних усилий, чтобы избежать повышения трения сальника о шток.

Чтобы остановить насос, выключают двигатель, а при использовании паровых насосов перекрывают паровыпускной трубопровод. После остановки насоса закрывают задвижки на выпускном и всасывающем трубопроводах. Закрывают паровыпускной вентиль паровых насосов и продувают паровой цилиндр.

Во время работы насоса необходимо следить за показаниями манометров, вакуумметров и других измерительных приборов. В напорных воздушных колпаках должен поддерживаться нормальный запас воздуха (примерно 2/3 объема колпака). Периодически необходимо проверять плотность сальников и гидравлической части насоса.

Обслуживающий персонал обязан хорошо знать и выполнять правила и инструкции по эксплуатации, подготовки насосов к ремонту, а также пуска их после ремонта.

Отремонтированный насос обкатывают, постепенно наращивая нагрузку, для проверки герметичности, исправности работы систем охлаждения, смазки и т.д.

Специальные насосы.Шестеренчатые насосы состоят из пары шестерен с внутренним или внешним зацеплением, которые помещены в корпус (рис. 249 –М).

Рис. Шестеренчатый насос

При вращении шестерен в месте выхода их из зацепления создается разряжение и жидкость из приемного трубопровода поступает в корпус насоса. В том месте, где шестерни входят в зацепление, жидкость выдавливается из пространства между зубьями и нагнетается в трубопровод. Зубчатые колеса изготовляют с прямыми зубъями, число которых колеблется от 8 до 12; иногда используются зубчатые колеса с косыми и шевронными зубьями. (Шестеренчатые насосы используют для подач от десятых долей (0,25 – 0,4) м3/ч до 50 м3/ч при давлениях нескольких мегапаскалей. (число оборотов – до 3000 об/мин; число зубьев – 8 – 12, к.п.д. насосов около 0,7). Шестеренчатые насосы с внутренним зацеплением имеют больший объем вытеснения при вращении шестерен, благодаря чему заполненный насос обладает лучшей всасывающей способностью, имеет меньшие габариты, но более сложны по конструкции по сравнению с насосами, имеющими внешнее зацепление. Всасывающая и нагнетательная полости насоса обычно сообщаются через байпас, на котором установлен предохранительный клапан.

Преимущества шестеренчатого насоса : способность создавать большое давление, способность перекачивать вязкие и высокотемпературные жидкости, неприхотливость в эксплуатации, невысокая стоимость, возможность изменять направление перекачки.

Недостатки шестеренчатого насоса : работа на сухую губительна, нарушает структуру перекачиваемой жидкости и разрушает суспензии.

Винтовые насосы имеют в корпусе два или три вращающихся цилиндра с винтовой нарезкой по наружной цилиндрической поверхности. Один винт является ведущим. Создаваемый насосом напор определяется числом шагов нарезки. Винты насоса выполняются двухзаходными с передаточным числом, равным единице. Форма нарезки винтов обеспечивает герметичное разделение нагнетательной и всасывающей полостей насоса. Давление до 2 Мпа создается винтами, имеющими длину несколько больше шага нарезки. Дальнейшее повышение давления достигается пропорциональным увеличением длины винтов, что позволяет создать достаточно компактную конструкцию.


Рис. Винтовой насос

На рис. 250 М представлена конструкция трехвинового насоса. В корпусе 1закреплена обойма 2. В обойме размещены три винта: ведущий 3 и два ведомых 4. Ведущий винт получает вращение от двигателя, а ведомые от ведущего винта. Все винты двухзаходные, направление нарезки у ведущего и ведомого винтов разное. Жидкость поступает в корпус насоса через всасывающий патрубок 6, а затем через отверстия в обойме подходит к винтам, захватывается ими и выбрасывается из насоса через нагнетательный патрубок 7. Возникающая во время работы насоса осевая сила воспринимается подпятниками 5.

Винты подобных насосов изготавляют из стали, а обоймы – из резины или стали, выложенной изнутри резиной.

Поступившая во впадины нарезки со стороны всасывания жидкость при повороте винтов герметически отсекается от всасывающей камеры и затем перемещается в канале нарезки вдоль оси винтов в напорную камеру. Регулирование подачи достигается изменением числа оборотов двигателя или приводного вала ведущего винта. К.п.д. винтовых насосов составляет 0,8 – 0,9.

Одновинтовые насосы споосбны развивать напоры около 2 Мпа с производительностью 0,9 - 3,2 м3/ч. Трехвинтовые насосы способны создать давление до 20 МПа с производительностью 1,5 – 800 м3/ч. и частоте вращения до 1000 об/мин.

Преимущества винтового насоса: ровный поток перекачиваемого продукта на выходе из насоса; перекачивание продуктов с включениями без повреждения включений; пропорциональная скорости вращения винта подача продукта (позволяет легко регулировать производительность насоса); способность насоса к самовсасыванию продукта с глубины до 10 м, в зависимости от модели насоса; низкий уровень шума при работе.

Недостатки винтового насоса : эластичный винт периодически изнашивается и требует ремонта; при работе винтового насоса без перекачиваемого продукта (сухой ход) винт быстро приходит в негодность.

Вихревые насосы. В корпусе 1 вихревого насоса (рис.251-М) размещается рабочее колесо 2 с ячейками на наружной поверхности.


Рис. Вихревой насос

Рабочее колесо, представляет собой плоский диск с короткими радиальными прямолинейными лопастями или с ячейками на наружной поверхности, смонтировано на валу 6, который приводится во вращение от двигателя. Вал имеет две опоры 5, заключенные в стойке 4. В отличие от центробежных насосов перекачиваемая жидкость подводится и отводится по боковым каналам 7. При вращении рабочего колеса жидкость, поступающая по боковому каналу, увлекается в движение по кольцевому пространству между колесом и корпусом и выбрасывается по другому боковому каналу в напорный патрубок. Особенность работы вихревого насоса заключается в том, что одна и та же частица жидкости, двигаясь по винтовой траектории, на участке от входа в кольцевую полость до выхода из нее многократно попадает в межлопаточное пространство колеса, где каждый раз получает дополнительное приращение энергии, а, следовательно, и напора. Благодаря этому вихревой насос в состоянии развить напор в несколько раз больший, чем центробежный насос при одном и том же диаметре рабочего колеса и тех же оборотах. Это, в свою очередь, приводит к значительно меньшим габаритным размерам и весу вихревых насосов в сравнении с центробежными насосами

Достоинством вихревых насосов является: они обладают самовсасывающей способностью, особенно насосы типа ВКС с воздушными колпаками; исключают необходимость заливки корпуса и всасывающей линии насоса перекачиваемой жидкостью перед каждым пуском.

Недостатком вихревых насосов является сравнительно низкий к.п.д. (18 – 40%) и быстрый износ их деталей при работе на жидкостях, содержащих взвешенные твердые частицы.

С целью повышения к.п.д., предупреждения кавитации, повышения подачи на вал рабочего колеса вихревого насоса устанавливается центробежное колесо. Насос, состоящий из двух последовательно включенных колес – центробежного (первая ступень) и вихревого (вторая ступень) – называется центробежно-вихревым насосом.

Для перекачивания легко застывающих жидкостей насосы изготавливают с обогревом – исполнение ВКС. Воздушный колпак, присоединенный к напорному патрубку, имеет воздухоотвод и за счет инжекторного эффекта обеспечивает самовсасывающие способности насоса. При заполненном водой корпусе насос может обеспечить самовсасывание 4 м вакуумметрической высоты.

Уплотнение вала насоса – двойной мягкий сальник или двойное торцовое уплотнение. Насосы с торцовым уплотнением применяются для перекачивания токсичных, горючих, легковоспламеняющихся и взрывоопасных жидкостей с температурой от – 4 до + 85 о С. При этом насосы комплектуются электродвигателями во взрывозащищенном исполнении.

Пластинчатые насосы имеют вращающийся ротор, установленный эксцентрично или концентрично в корпусе и снабженный подвижными пластинами.

Рис Насос пластинчатый.

Пластины прижимаются к корпусу силой пружин, центробежной силой или давлением подводимой по оси насоса жидкостью. Отсекаемые между пластинами и корпусом объемы жидкости при вращении ротора вытесняются в напорный трубопровод. Пластин может быть две и более.

Водокольцевые насосы имеют вращающийся ротор с лопатками. При вращении ротора находящаяся в корпусе насоса рабочая жидкость отбрасывается с периферии и образует жидкостное кольцо. Если ротор расположен эксцентрично в корпусе, то между ротором и жидкостным кольцом образуется серповидное пространство. Проходя это пространство, лопатки сначала увеличивают объем камеры между ротором и жидкостным кольцом (всасывание), а затем уменьшают его (нагнетание). Поэтому насос может засасывать не только жидкость, но и воздух (газы), т.е. является самовсасывающим.

Рис. Схема водокольцевого насоса открытого типа:

1 – рабочее колесо (крыльчатка); 2 – корпус; 3 – канал обводной; 4 - нагнетательная щель; 5 - нагнетательный патрубок 6 - всасывающий патрубок; 7 - всасывающая щель; 8 – полость насоса.

Хотя к.п.д. водокольцевых насосов ниже (обычно равен 0,2 – 0,4), чем обычных центробежных насосов, в ряде случаев их применение оказывается целесообразным, особенно при необходимости быстрого пуска, перекачки агрессивных жидкостей и т.п.

На установках сбора и подготовки нефти наибольшее применение получили центробежные насосы исполнения:

1) моноблочного, при котором рабочее колесо крепится на удлиненном валу электродвигателя;

2) бескорпусного, при котором каждая ступень насоса выполнена в виде отдельной секции, а затем все ступени стягиваются длинными шпильками вместе с концевыми секциями, в которых расположены опоры.

1. Агрегаты ЦНС 300 – 120…540 и ЦНС 105 - 98…441 предназначены для перекачивания обводненной газонасыщенной и товарной нефти с температурой 0 - 45 о С плотностью 700-1050 кг/м 3 , содержание парафина не более не более 20%, содержание механических примесей размером твердых частиц до 0,2 мм , объемная концентрация 0,2%, обводненностью не более 90%, давление на входе 0.5-6 кг/м 3 . Насосы ЦНС получили наибольшее распространение на объектах сбора и подготовки нефти.

2. Насосы типа НД – агрегат электронасосной дозировочной одноплунжерный, предназначен для объемного напорного дозирования нейтральных и агрессивных жидкостей. Эмульсий и суспензий с кинематической вязкостью 3,5х10 -7 - 8х10 -4 м 2 /с , с температурой до 100 о С , с максимальной плотностью 2000 кг/м 3 , с концентрацией твердой неабразивной фазы не более 1%. НД – тип агрегата с регулированием подачи вручную при остановленном агрегате. 1.0 – категория точности дозирования (не указывается в обозначении агрегата с предельным давлением 400 кгс/м 2 ).

3. Насос НВ 50/50 – погружной одноступенчатый, предназначен для перекачивания из подземных дренажных емкостей смеси воды и нефтепродуктов, содержащих твердые включения размером до 1 мм, объемная концентрация которых не превышает 1,5%.

4. Насосы типа ”Д” – горизонтальные насосы двустороннего входа с полуспиральным подводом жидкости к рабочему колесу. Предназначены для перекачивания воды и других жидкостей, сходных с водой по вязкости и химической активности, содержащие твердые включения размером до 0,2 мм, объемная концентрация которых не превышает 0,05%, и микротвердостью до 6,5 ГПа. Установка агрегатов во взрывоопасных помещениях не допускается. После цифр указывается климатическое исполнение и категория размещения насоса при эксплуатации по ГОСТ 15150 – 69. Установленный ресурс до капитального ремонта 12000 часов.

Тип, марка оборудования Подача, м 3 /час Напор, м Частота вращения, об/мин Мощность, кВт
Д 200-40
Д 315-71

5. Насосы типа “Ш” - горизонтальные одноступенчатые, предназначены для перекачивания гидросмесей с мелкой твердой фракцией плотностью 1200 – 1500 кг/м 3 и максимальным размером частиц до 20 мм .

6. Насос НА – артезианский многоступенчатый насос с рабочим колесом одностороннего входа. Предназначен для откачки из заглубленных резервуаров нефтепродуктов, содержащих твердые включения размером до 0,2 мм , объемная концентрация которых не превышает 0,2%.

7. Насосы ЦН-900-310, ЦН –100-180-3 горизонтальные спиральные, с рабочим колесом одностороннего входа. Предназначены для перекачки чистой воды и других жидкостей, сходных с водой по вязкости и химической активности, температурой до 100 о С , содержащих твердые включения не более 0.005% по массе размером до 0,2 мм .

Жидкостный поршневой насос – это одно из древнейших устройств, назначением которых является перекачивание жидких сред. Поршневые насосы работают на основе простейшего принципа вытеснения жидкостей, которое осуществляется механическим способом. По сравнению с первыми моделями подобных устройств, современные жидкостные насосы поршневого типа отличаются значительно более сложной конструкцией, они более надежны и эффективны в использовании. Так, поршневые насосы, выпускаемые современными производителями, имеют не только эргономичный и прочный корпус, но и развитую элементную базу, а также предоставляют более широкие возможности для монтажа в трубопроводные системы. Благодаря такой универсальности насосы жидкостные поршневого типа активно используются в трубопроводных системах как промышленного, так и бытового назначения.

Конструктивные особенности

Основным элементом жидкостного поршневого насоса является полый металлический цилиндр, в котором и протекают все рабочие процессы, осуществляемые с перекачиваемой жидкостью. Физическое же воздействие на жидкость осуществляет поршень плунжерного типа. Благодаря этому элементу данный жидкостный насос и получил свое название.

Принцип работы поршневого насоса основывается на возвратно-поступательном движении его рабочего органа, действующего как . При этом в конструкции такой машины, в отличие от классических гидравлических устройств, присутствует механизм клапанного распределения, а также ряд дополнительных конструктивных элементов (в частности, кривошип и шатун, составляющие основу силовой части насоса жидкостного поршневого типа).

Принцип работы

От большинства из тех, кто подбирает технические устройства для оснащения трубопроводных систем, специалисты слышат: «Объясните работу поршневого насоса с воздушной камерой». Следует сразу сказать, что принцип, по которому действует жидкостный поршневой насос, изобретенный еще несколько столетий назад, достаточно прост. Заключается он в следующем: совершая поступательное движение, поршень создает разрежение воздуха в рабочей камере, за счет чего в камеру и всасывается жидкость из подводящего трубопровода. При обратном движении поршня такого насоса, который, по некоторым историческим данным, изобрел древнегреческий механик, жидкость из рабочей камеры выталкивается в нагнетающую магистраль. Поршневые насосы, как уже говорилось выше, оснащаются клапанным механизмом, основная задача которого состоит в том, чтобы не дать перекачиваемой жидкости попасть обратно во всасывающий канал в тот момент, когда она выталкивается в нагнетательную магистраль.

Принципом, по которому работают поршневые насосы, объясняется тот факт, что поток, создаваемый такими устройствами, двигается по трубопроводу с различной скоростью, скачками. Чтобы избежать этого негативного явления, используют насосы, оснащенные сразу несколькими поршнями, работающими в определенной последовательности. Преимущества, которые достигаются при использовании жидкостных насосов с несколькими поршнями, заключается еще и в том, что такие устройства способны закачивать жидкость даже в тот момент, когда их рабочая камера ею не заполнена. Такое качество многопоршневого плунжерного насоса, которое получило название «сухое всасывание», актуально во многих сферах, где используются подобные устройства.

Насосы двухстороннего действия

Основная причина, по которой был разработан и стал активно применяться поршневой насос двойного действия, заключается в стремлении производителей уменьшить уровень пульсации потока жидкости, нагнетаемой в трубопроводную систему. Для того чтобы разобраться в преимуществах использования насосного устройства двойного действия, достаточно понять, как работает поршневой жидкостный насос данного типа.

Особенность устройства жидкостного поршневого насоса двойного действия заключается в том, что штоковые и поршневые полости этой машины оснащены индивидуальными клапанными системами. Такая конструкция поршневого насоса двойного действия, уникальность которой можно заметить даже по фото, позволяет не только устранить пульсации потока в трубопроводной системе, но и значительно повысить эффективность использования самой машины. Между тем поршневые насосы одностороннего действия, если сравнивать их с двухсторонними моделями, из-за простой конструкции отличаются более высокой надежностью и долговечностью.

Существует еще одна конструктивная схема поршневого насоса, при использовании которой удается добиться устранения пульсационных процессов в трубопроводных системах. Насосное оборудование, выполненное по данной схеме, предполагает применение специального гидроаккумулятора. Основное назначение таких гидроаккумуляторов, используемых для оснащения насосных станций, заключается в том, чтобы накапливать энергию потока жидкости в моменты пикового давления в трубопроводе и отдавать ее тогда, когда такого давления для нормальной работы системы недостаточно.

Однако какие бы виды поршневых насосов ни использовались и какими бы дополнительными техническими устройствами ни оснащались насосные станции, устранить пульсационные процессы в трубопроводах не всегда удается. В таких ситуациях часто применяется дополнительное оборудование, обеспечивающее эффективный отвод лишней жидкости за пределы насосной станции.

Сферы применения

Область применения жидкостных насосов поршневого типа достаточно широка, что объясняется их высокой универсальностью. Между тем конструкция таких машин не позволяет использовать их в тех случаях, когда перекачивать необходимо значительные объемы воды или другой жидкости. Одним из основных достоинств этих гидравлических машин является то, что их поршни, вытесняя жидкость через нагнетательную магистраль, одновременно всасывают ее новую порцию через подающий канал, что в условиях сухого цилиндра очень важно. Этим качеством и предопределяется назначение поршневых жидкостных насосов как наиболее эффективных устройств, используемых на предприятиях химической промышленности.

Сферы применения жидкостных насосов поршневого типа расширяются и за счет того, что такое оборудование может успешно использоваться для работы с химически агрессивными средами, некоторыми видами топлива и взрывоопасными смесями. Активно применяются насосы данного типа и в бытовых целях, с их помощью можно создавать трубопроводные системы для автономного водоснабжения частных строений и для полива. Между тем, решив использовать такой прибор, не забывайте о том, что для перекачивания больших объемов жидкости он не предназначен.

Еще одной сферой, в которой активно используются жидкостные насосы поршневого типа, является пищевая промышленность. Это объясняется тем, что такие устройства отличаются очень деликатным отношением к перекачиваемой через них жидкости.

Преимущества и недостатки

Если говорить о достоинствах, которыми обладают насосы поршневого типа, служащие для перекачивания жидких сред, то к наиболее значимым можно отнести:

  • простоту конструкции, которую демонстрируют даже картинки и схематическое изображение подобных устройств;
  • высокую надежность, которая определяется не только использованием высокопрочных материалов для производства таких машин, но и принципом действия поршневого насоса;
  • возможность работы с носителями, при использовании которых предъявляются особые требования к условиям пуска насосного оборудования.
Основным недостатком рассматриваемого насосного оборудования, упомянутым выше, является его невысокая производительность. Конечно, расширить технические возможности таких устройств можно, но зачем это делать, если данная задача решается с меньшими финансовыми затратами посредством насосного оборудования другого вида.

Выбирая жидкостные насосы поршневого типа, сначала определитесь с тем, для чего такое оборудование будет использоваться. Если не предполагается перекачивание слишком больших объемов жидкости, то доступные по стоимости и надежные жидкостные насосы поршневого типа оптимально подойдут для реализации ваших целей.

Ручной насос пригодится каждому владельцу загородного или дачного дома, к которому общий водопровод не подведен. Конечно, можно воспользоваться и более простой конструкцией, такой как «журавль», но если глубина скважины или колодца большая, лучше все-таки отдать предпочтение насосу. Если глубина залегания грунтовой воды до 10 метров, то вы можете с успехом использовать ручной поршневой насос для воды, который несложно сделать своими руками.

Особенности использования поршневого насоса

В частном секторе не всегда имеется возможность подключения к централизованному водоснабжению. Поэтому садоводам-любителям зачастую приходится использовать в своих целях грунтовую воду. Однако не все огородники знают, как извлечь воду с самыми меньшими затратами труда, и какое оборудование использовать для этого.

Однако вы можете быть уверенными, что устройство своими силами дешевых, простых и в это время надежных забивных колодцев придется по карману каждому дачнику-любителю. И при этом не обязательно воду таскать ведрами, достаточно просто установить насос, который способен обеспечить ее поставку непосредственно в дом.

Для подъема из скважины воды в основном используются два типа насосов: центробежный и поршневой. Причем центробежный аппарат нуждается в усилиях, которые почти в 3 большие, чем этого требует поршневой насос. К тому же центробежный аппарат не может обеспечивать всасывание воды на такую высоту, как поршневой. Поэтому в последнее время значительно вырос интерес к поршневым насосам.

Такие насосы принято использовать тогда, когда зеркало воды имеет высокий уровень, то есть вода находится близко к земли. Максимальный предел залегания воды для подобных насосов составляет 8 - 10 метров. Поднять воду с большей глубины поршневому насосу не позволит атмосферное давление.

К тому же не всегда хочется использовать мощный насос, если воды нужно немного - ведро-другое. Стоит также отметить, что не всегда устройства, работающие от электрической сети, могут свою функцию выполнять без сбоев. В этом случае крайне полезным может быть поршневой насос для воды ручного типа. Энергонезависимый поршневой насос придется кстати, если в сети происходят сбои, отключили на время свет, или его на садовом участке попросту нет.

Устройство поршневого насоса для воды

Поршневой насос называется так, потому что процесс прокачки жидкостей обеспечивает рабочий орган под названием поршень. Сам насос представляет из себя металлический корпус с поршнем и штоком, который приводит в движение рабочий орган. Поршень в свою очередь располагается в трубе, которая присоединена ко дну устройства. Рабочий орган перемещается в цилиндре вверх-вниз под действием усилия штока, привод которого осуществляется специальным рычагом. В этом случае обычно применяется простейший мультипликатор, который увеличивает усилие от ручки на тягу.

Когда поршень будет опускаться вниз, вода перетекает через клапан в поршне в надпоршневое пространство (под давлением воды нижний клапан закрыт). Когда поршень начнет двигаться вверх, вода станет вытесняться из надпоршневого пространства и выливается в выходную трубу. Одновременно с этим образуется разряжение в подпоршневом пространстве, открывается нижний клапан, а вода подсасывается вслед за поршнем вверх. Дальше цикл повторяется в автоматическом режиме.

Глубинные варианты поршневого насоса применяются, если воды залегают на глубине больше 8 - 10 метров. По своей конструкции подобный аппарат полностью повторяет модель, что была описана выше, но имеются и некоторые отличия. К примеру, шток поршня «ходит» в выпускной трубе, которая располагается на верхней крышке цилиндра, а не сбоку.

Виды поршневых насосов для воды

Поршневые насосы для воды могут иметь механический или ручной привод. Насосы с механическим приводом, в свою очередь, разделяются на два вида: приводные аппараты, в которых поршень активируется с помощью шатунно-кривошипного механизма от мотора, который размещается отдельно и с насосом соединяется путем передачи; насосы прямого действия, в которых возвратно-поступательные движения поршень совершает с помощью штока.

По виду рабочего органа, обеспечивающего вытеснение жидкости, различают такие насосы:

  1. Поршневые (поршень имеет форму диска);
  2. Плунжерные (поршень отличается цилиндрообразной формой);
  3. Диафрагмовые (от поршня рабочая жидкость отделена специальной диафрагмой, а в цилиндре имеется эмульсия или масло).

В соответствии с методикой действия выделяют следующие разновидности поршневых насосов для подъема воды:

  • Насос одинарного действия.
  • Насос двойного действия, который жидкость подает более равномерно по сравнению с аппаратами дифференциального или простого действия, потому что оборудован двумя рабочими камерами, а поршень жидкость нагнетает за один оборот два раза.
  • Дифференциальные насосы. Подобные насосы являются аппаратами двустороннего действия и оснащены 2 рабочими камерами: одна не имеет клапанов, а в другой располагаются рабочий и всасывающий клапан.

По расположению поршневые насосы бывают горизонтальными и вертикальными, по количеству цилиндров - такие, что оснащены одним, двумя и более цилиндрами. Выделяют по числу поршней насосы с одним, двумя и больше поршнями. Помимо этого, различают поршневые насосы с большими поршнями, диаметр которых больше 150 миллиметров, средними с диаметром около 50 - 150 миллиметров и малыми поршнями, что имеют диаметр меньше 50 миллиметров.

В соответствии с быстродействием рабочего органа, выделяют тихоходные поршневые насосы, аппараты средней быстроходности и быстроходные насосы. Поршневые насосы могут использоваться для перекачивания холодной воды (обычные насосы), горячей воды (горячие насосы), а также для работы с различными кислотными веществами (кислотные насосы) и глинистыми растворами (буровые насосы).

Бурение скважины для поршневого насоса

Насос вывешивается в скважине или колодце. Перед установкой поршневого насоса для воды необходимо пробурить скважину, выяснив предварительно примерную глубину залегания грунтовой воды на вашем участке. Работу рекомендуется проводить в такой последовательности:

  1. Чтобы было удобнее бурить, на месте скважины необходимо вырыть шурф, что имеет глубину 1—1,2 метра. По центру над ним установите треногу, изготовленную из тонких бревен. На треногу нужно подвесить блок. На нижний конец трубы навинтите бур, на верхний — закрепите вороток.
  2. Трубу рекомендуется установить вертикально в центре шурфа. Верхний ее конец будет при этом опираться на треногу или располагаться на блоке в подвешенном состоянии. Вращая трубу вправо воротом, её необходимо заглубить на всю длину бура в почву - около 30—40 сантиметров.
  3. Затем трубу нужно поднять до уровня дна шурфа, вычистить из бура землю, после этого снова продолжайте бурить скважину. Так необходимо работать до той поры, пока в землю не уйдет вся труба.
  4. Потом навинтите с помощью соединительной муфты второе звено трубы на неё и продолжайте бурение, пока бур не достанет до грунта, что насыщен водой.
  5. После этого замените бур фильтром, тщательно уплотните стык с трубой фильтра паклей, пропитанной суриком. Трубу с фильтром опускайте в скважину и осаживайте ударом кувалды ее в грунт.
  6. Чтобы верхний конец трубы предохранить от повреждений, навинтите муфту на него и положите сверху прокладку, изготовленную из твердой породы дерева. Сделайте на трубе при этом отметки для наблюдения уровня погружения трубы.
  7. Прокладку время от времени придется заменять. Периодически измеряйте шнуром с грузиком расстояние до воды в трубе.
  8. Когда в трубе слой воды поднимется выше головки фильтра на 30—40 сантиметров, то есть будет равняться 1,2—-1,3 метра, можно прекратить забивку.
  9. Проверьте интенсивность поступления в скважину воды. Налейте в верхний конец трубы воду из ведра. Если вода, заполнив скважину, не будет убывать, то, значит, вы недостаточно пробили скважину и придется продолжать бурение. Если из трубы вода быстро поглощается скважиной, то можно считать работу законченной.

Поршневой насос для воды своими руками

Вопрос об изготовлении поршневого насоса своими руками является наиболее актуальным для огородников и дачников. Производители в наше время предлагают широкий ассортимент водяных насосов, однако их главный недостаток цена. К тому же подавляющее большинство из них электрические, а в условиях периодического использования воды целесообразнее запастись резервной установкой для перекачивания воды в любых условиях.

Итак, вы можете самостоятельно изготовить ручной поршневой насос для воды из подручных материалов, воспользовавшись такой инструкцией:

  1. Изготовляем корпус. Корпусом ручного поршневого насоса является металлический цилиндр, в качестве которого вы можете приспособить кусок трубы, корпус гидроцилиндра или гильзу от дизельного двигателя. Подобрать корпус будет несложно, если вы понимаете, что хотите получить в итоге. Но лучше всего в качестве корпуса применить отрезок трубы, что имеет диаметр от 80 миллиметров. Длина отрезка - порядка 60-80 сантиметров. Идеальный вариант, если вы сможете проточить на токарном станке внутренности трубы или хотя бы снять шабером внутренние неровности. Тогда поршневой насос получится качественным и будет легко качать воду. Кстати, корпус не обязательно должен иметь цилиндрическую форму. Он может быть 4- или 6-угольным, главное, чтобы по всей рабочей длине было одинаковое сечение, и поршень имел аналогичную форму.
  2. Вырезаем крышку. Крышки можно изготовить из толстого пластика или металла. Вы можете их сделать даже из древесины! Если применить лиственницу или дуб, то такие крышки прослужат дольше, чем один сезон. Дерево будет разбухать в воде и надежно герметизировать имеющий зазор между корпусными стенками. В крышке необходимо проделать отверстие под шток, дно отрезать и внутрь вставить поршень, а в дно вставить новую крышку с клапаном. Сбоку приваривается выпускная труба.
  3. Устанавливаем поршень. Поршень можно изготовить из разного материала - дерева, металла, пластика. Главное - чтобы он был уплотнен резиновым кольцом. Как ни странно, поршень может формировать большой зазор между стенками корпуса. Но желательно его установить поплотнее, но чтобы он свободно ходил без особого натяга. Вода в незначительной степени будет просачиваться между корпусными стенками и поршнем, но её основная масса будет проходить по клапанам.
  4. Входная труба. Все комплектующие самодельного поршневого насоса для воды должны быть надежными. Входная труба, посредством которой внутрь аппарата подается вода, должна быть жесткой, чтобы при всасывании воды ее стенки не схлопывались. Лучше использовать специальные шланги, что армированы стальной пружиной, пластиковые или металлические трубы.
  5. Обратные клапана. Достаточно важной частью насоса выступают обратные клапана, от них зависит производительность всего поршневого насоса. Они должны быть достаточно прочными, чтобы вода не смогла вернуться обратно во входящий шланг. Помните, если клапаны будут «травить», вы будете без толку гонять половину воды туда-сюда, а оставленный без работы насос потихоньку всю воду из труб сольет обратно в колодец. Поэтому уделите самое пристальное внимание притирке клапанов. Самыми простыми из них являются мембранные и шариковые. Если вы используете круглый клапан, будет лучше, если он изготовлен из стекла, тяжелого пластика или эбонита. Отличный вариант заключается в изготовлении мембранных клапанов из достаточно прочной резины, однако не слишком толстой. Кусок такой резины нужно закрепить на отверстие клапана. Вы можете применить клепку или винтики - гаечки.
  6. Другие комплектующие. Выпускная труба, как и шток, должна иметь такую длину, которая позволяет погрузить насос в слой воды с заглублением на полметра-метр. Для облегчения обычно применяют шток из тонких дюралевых труб.

Таким образом, для забора воды из скважины на даче принято использовать поршневые насосы, которые дают возможность огородникам использовать в своих целях грунтовую воду. Ручной насос поршневого типа вы можете изготовить своими руками, и он станет вашим помощникам на случай перебоев в электросети. К тому же такой аппарат можно приспособить для подъема воды из пруда, что размещается недалеко от вашего участка.

Для работы с водной средой человек создал гидравлические машины. Те разновидности, которые передают энергию от воды механическим частям, называются гидромоторами. Но возможно и обратное действие, когда механизм воздействует на воду. В этом случае речь идет о гидравлических насосах.

Рис. 1 Гидронасос

Первые гидравлические агрегаты были ручными. Сейчас используется не только ручная механическая гидравлика, но и электрическая. Чаще всего встречается в эксплуатации поршневой жидкостный насос.

Виды поршневых насосов

Разнообразие гидравлических насосных агрегатов делится на несколько видов. Они отличаются конструкцией и характером работы. Наиболее распространенный вариант – гидравлический насос с поршневой конструкцией. Такие устройства бывают радиально поршневыми и аксиально-поршневыми.


Существует две разновидности аксиально-поршневых устройств в зависимости от расположения оси вращения поршневой группы: прямые и наклонные. Работают они по одному принципу. Когда вращается вал, приходят в движение цилиндры. Они тоже вращаются и одновременно двигаются возвратно-поступательно. Когда ось цилиндра и всасывающее отверстие совпадают, поршень выдавливает жидкость. После этого цилиндр вновь заполняется жидкостью.

Наклонные аксиально-поршневые приборы разделяются на агрегаты с наклонным диском и устройства с наклонным блоком цилиндров.

Плюсы и минусы аксиально поршневых устройств

Агрегаты аксиально-поршневого типа обладают множеством преимуществ по сравнению с другими гидравлическими насосными устройствами. Они отличаются компактными размерами и относительно небольшим весом. Эти характеристики не мешают им обладать значительной мощностью и производительностью. Небольшие размеры деталей имеют малую инерцию.


Рис. 4 Насосы гидравлические аксиально-поршневые компактны

В аксиальных устройствах имеется возможность регулировки частоты вращения мотора.

Самое важное достоинство насосного оборудования такого типа заключается в возможности работы при значительном давлении. Частота вращений при этом не уменьшается. Есть возможность изменять рабочий объем непосредственно во время работы. Частота вращений составляет от пятисот до четырех тысяч оборотов в минуту. По этому показателю аксиальные агрегаты превосходят радиальные.

Аксиальные устройства способны работать при давлении от тридцати пяти до сорока мегапаскаль. Объемные потери невелики и составляют всего от трех до пяти процентов.

Рабочие камеры герметичны. Обуславливается это высокой точностью изготовления и малыми зазорами между расточками и поршнями.

Используя насос такого типа можно легко регулировать силу и направления перекачки жидкости.

Существуют у аксиально-поршневых насосов и недостатки:

  • Высокая цена устройства.
  • Конструкция сложная, что делает ремонт и обслуживание сложным и затратным процессом.
  • При использовании обязательно надо следовать инструкции. Нарушения ведут к частым поломкам.
  • Перекачка жидкости пульсирующая. Если использовать насос для водопроводной системы, то пульсация будет заметна и в ней.
  • Процесс ремонта может быть длительным из-за высокой сложности процесса.
  • Для работы такого насоса требуется чистая вода. Ее надо очищать от всех примесей крупнее десяти микрометров.
  • Агрегат довольно шумный.