Системы химводоподготовки и химводоочистки. Водоподготовка котельных

Одной из самых восприимчивых к накипи сфер, где на сегодня обойтись без умягчающих установок не получится, является теплоэнергетика. Чтобы люди были обеспечены горячей, ровно, как и холодной водами и отоплением в стужу, и круглый год, горячей, непосредственно, нужно позаботиться и о качестве технической воды. Потому и химводоочистка котельных до сих пор удерживает главенствующее место среди доступных средств получить гладкие поверхности оборудования, без особых усилий.

В чем заключается должностная инструкция аппаратчика химводоочистки котельной?

К питьевой воде преъявляются особые требования. Об этом знают абсолютно все. Если аппаратчик хочет иметь здоровье, то он, прежде всего, должен употреблять не только качественную пищу, но и не менее качественную воду. Потому подготовка воды в любой сфере, среде, где проживают люди, неотрывно будут связаны непосредственно с водоподготовкой питьевой воды. Но какая же тут связь аппаратчика химводоочистки котельной и не только?

Потребность в воде проявляет себя не только в необходимости человека чем-то питаться и что-то пить. Вот тут и стали образовываться первые запросы на техническую воду. Есть несколько бытовых запросов по бытовой воде, которые требуют чистой технической воды, и в питьевом качестве воды особой нужды нет.

Есть еще отопление, которое тоже откладывает свой неизгладимый осадок на поверхности. При этом, должностная инструкция аппаратчика заключается в слежке за работой котельной и ее систем. И уже в этой сфере химводоочистка котельной, как минимум должна быть в обязательном порядке, если собственник отопительной системы не выбрал другого способа умягчить техническую воду. Для котла качественная очистка воды напрямую связана со сроком работы оборудования. И чем чище вода подается в котельную, тем дольше и качественнее такая котельная работает. Своевременная подача умягченной воды в систему означает только одно – на внутренних поверхностях не только котла и сопутствующего оборудования, но еще и на поверхностях бытовых приборов в дальнейшем не будет образовываться накипь, и значит не будет проблемы с известковым налетом, который так легко образуется и так сложно устраняется, с тяжелыми последствиями.

Означает умягчение:

  • Это еще и антикоррозионный раствор;
  • Это антибактерицидный раствор.

Как известно химикаты в воду могут добавляться по-разным запросам, и только механическая чистка воды от твердых примесей не требует их применения. Правда, сказать, что химикаты не нужны совсем, нельзя. При фильтрации в механическом очистителе могут накапливаться бактерии. Они начинают цвести и тем самым значительно снижают пропускную способность фильтрующей засыпки.

На каком этапе простейшей водоподготовительной системы могут использовать химическое очищение воды? Для котельных такие очистки применимы и возможно воспользоваться магнитным или электромагнитным облучением в качестве очистной процедуры нет пока никакой возможности.

Самая простая водоподготовительная схема всегда начинается с осветлительной части. Чтобы получить прозрачную воду, сперва следует обратиться к должностной инструкции аппаратчика, а уже потом убрать из воды все видимые твердые примеси. А поскольку котельные, особенно в частных домах могут использовать первичную воду, то осветление или механическая чистка будут в такой системе обязательным элементом. Здесь устранят все видимые примеси, делающие воду мутной.

При наличии в воде солей металлов, наступает черед устранить соли кремния, соли железа. Потом в обязательном порядке устраняются бактериальные примеси и приходит черед умягчения. Химводоочистка котельных часто подразумевает непосредственно умягчение котловой воды путем добавки туда химических реагентов. Дальше уже все зависит от вида котельной и грамотности аппаратчика, т.к. следующие этапы могут быть специфическими, например, устранение растворенных газов. Для паровой котельной такие примеси в воде губительны. Они могут привести к поломкам и скорому износу.

Любая химическая сопровождается образованием новых веществ, которые потом либо растворяются в воде, либо выпадают в осадок, давая, таким образом, полностью очистить воду от нежелательной примеси, без лишних затрат. Но с появлением безреагентных приборов так называемая ХВО, теряет свою актуальность.

Котельные и их очистные проблемы

Котельная вода кажется обычному потребителю чем-то естественным. Разве нужна такой воде какая-то обработка, ведь централизованная очистка полностью готовит воду к работе в такой системе. В этом случае обычный человек забывает о таком понятии, как накипь и известковые отложения на внутренних поверхностях оборудования.

К чему приводит некачественная вода дома, на даче, в частном коттедже, знает каждый не понаслышке. Поломки бойлера и частота замены чайника раз в полгода – яркие свидетельства работы некачественной воды. Для котельной процесс запущенный накипью, может вызвать более ощутимые последствия.

Главным назначением работы является обеспечение города или села горячей водоподачей и теплом в домах. Для этого воду следует греть постоянно, без перерывов, круглосуточно, круглогодично. Для таких процедур, умягченная вода должна поступать в систему точно также без перебоев. Как это обеспечить? Только чисткой и подготовкой воды в режиме он-лайн, нон-стоп.

Добиться такого эффекта можно по-всякому и одна из вариаций, как раз химводоочистка котельных. В котельную вода попадает сырая, то есть мало очищенная . Во всяком случае, вопросам устранения жесткости внимания никто не уделял. Для того, чтобы передать воду дальше в систему ее следует нагреть. Чем собственно теплообменник и занимается. Это определенная сложность для работы аппратчика котельной. Сперва воду нагревают до температуры, не более 30 градусов. В таком слегка подогретом состоянии накипь только начинает формироваться, потому воду в срочном порядке дальше отправляют в умягчители, катионного типа.

Здесь воду фильтруют через катионную ионообменную смолу. Соли жесткости остаются в ней, а соли натрия уходят в новую мягкую воду.

ХВО

Данный вид очистки относится к химической, по определенным причинам. Здесь должны проходить определенные химические реакции и вид очистки считался ХВО . Но непосредственно в процессе фильтрации химические реакции происходят, но дополнительно химикаты не используются. Просто происходит замена одних ионов на другие. А вот когда забитые картриджи восстанавливают, тогда химикаты точно используют, т.к. устранить из смолы соли жесткости можно только массированной атакой сильно соленого раствора.

Что касается обычных , то по аналогии с ними были созданы дозаторы с автоматическим блоком управления. Они замеряют электропроводимость воды, спустя определенный отрезок времени. И если вода показывает высокую проводимость электричества, значит вода обладает высоким порогом жесткости. И значит пришло время примешивать в состав воды умягчающие средства и ХВО. Аналогия та же, что и при промывке с целью профилактики. Только при дозированном умягчении, соли жесткости не оседают на поверхностях, они вступают в реакцию с химикатами и выпадают в легко уносимый осадок, что очень удобно для потребителя. Правда, расходы химикатов в данном случае, назвать экономными вряд ли получится.

Химводоочистка котельных помогает быстро решить проблему образования нежелательного осадка на поверхностях оборудования. Если средств на магнитную или электромагнитную установку пока нет, то такой простой способ получить быстро мягкую воду вполне имеет право на жизнь. Точно также в котельной на даче, где использование котла непостоянное, есть смысл просчитать затраты на такую систему ХВО и полноценную электромагнитную обработку. Все-таки в российских реалиях и воровство не следует забывать. Можно потратиться на компактную магнитную установку, а ее через полгода снимут. С реагентным дозатором риск кражи ниже.

Химическая водоочистка (ХВО) современными методами и технологиями обеспечивает долгую и успешную жизнь котельному оборудованию, выгодное использование средств, исключение постоянного технического контроля и сервиса, так как предотвращает поломки, связанные с качеством питающей воды. Основной задачей систем водоподготовки для котельных является предотвращение образования накипи и последующего развития коррозии на внутренней поверхности котлов, трубопроводов и теплообменников. Такие отложения могут стать причиной потери мощности, а развитие коррозии может привести к полной остановке работы котельной из-за закупоривания внутренней части оборудования. Водоподготовке уделяется особое внимание, поскольку качественно подготовленное тепловое оборудование является залогом бесперебойной работы котельных в течение отопительного сезона. Следует иметь в виду, что водоподготовка обладает рядом особенностей, и способы очистки и подготовки воды, разработанные для крупных электростанций, не всегда применимы в отношении промышленных котельных.

Какие бывают посторонние примеси в воде?

Вода является одновременно универсальным растворителем и дешёвым теплоносителем, тем не менее она же может стать причиной поломки парового или водогрейного котла. В первую очередь, риски связаны с наличием в воде различных примесей. Предотвратить и решить проблемы связанные с работой котельного оборудования возможно только при чётком понимании причин их возникновения.

Можно выделить три основные группы посторонних примесей в воде:

  • нерастворимые механические
  • коррo зионноактивные
  • растворённые осадкo образующие

Любой тип примесей может стать причиной выхода из строя оборудования тепловой установки, а также снижения эффективности и стабильности работы котла. Применение в тепловых системах воды, не прошедшей предварительную механическую фильтрацию, приводит к более грубым поломкам - выводу из строя циркуляционных насосов, повреждению трубопроводов, уменьшению сечения, регулирующей и запорной арматуры.

Обычно в качестве механических примесей выступают глина и песок, присутствующие практически в любой воде, а также продукты коррозии теплo передающих поверхностей, трубопроводов и других металлических частей системы, находящихся в постоянном контакте с агрессивной водой.

Растворённые в воде примеси являются причиной серьёзных неполадок в работе энергетического оборудования:

  • образование нa кипных отложений;
  • коррозия котловой системы;
  • вспенивание котловой воды и выносом солей с паром.

К растворенным примесям требуется особое внимание, поскольку их присутствие в воде не так заметно, как наличие механических примесей, а последствия их воздействия могут быть весьма неприятными - от снижения энергoэффективности системы до частичного или полного её разрушения.

Карбонатные отложения, вызванные осадочным образованиями жесткой воды (накипеобразование). Процесс накипеобразования, протекающий даже в низкотемпературном теплообменном оборудовании, далеко не единственный. Так, при повышении температуры воды свыше 130°С происходит снижение растворимости сульфата кальция, а также образуется особо плотная накипь гипса.

Образовавшиеся отложения накипи приводят к увеличению теплопотерь и снижению теплоотдачи теплообменных поверхностей, что провоцирует нагрев стенок котла, и, как следствие, уменьшение срока его службы.

Ухудшение процесса теплообмена приводит к увеличению расходов энергоносителей и увеличению затрат на эксплуатацию. Осадочные слои на нагревательных поверхностях даже незначительной толщины (0,1-0,2 мм) приводят к перегреву металла и появлению свищей, o тдулин и в некоторых случаях даже разрыву труб.
Образование накипи свидетельствует об использовании воды низкого качества в котловой системе. В этом случае велика вероятность развития коррозии металлических поверхностей, накопления продуктов окисления металлов и накипных отложений.

В котловых системах проходят два типа коррозионных процессов:

  • химическая коррозия;
  • электрохимическая коррозия (образование большого количества микрогa льванических пар на металлических поверхностях).

Электрохимическая коррозия часто появляется из-за неполного удаления из воды таких примесей, как марганец и железо. В большинстве случаев коррозия образуется в нe плотностях металлических швов и развальцованных концов теплообменных труб, в результате чего образуются кольцевые трещины. Основными стимуляторами образования коррозии являются растворённый углекислый газ и кислород.

Стоит уделить особое внимание поведению газов в котловых системах. Повышение температуры приводит к снижению растворимости газов в воде - происходит их десорбция из котловой воды. Этот процесс обуславливает высокую коррозионную активность диоксида углерода и кислорода. При нагреве и испарении воды гидрокарбонаты начинают разлагаться на диоксид углерода и карбонаты, уносимые вместе с паром, вследствие чего обеспечивается низкий pН и высокие показатели коррозионной активности конденсата. Выбирая схемы внутpикотловой обработки и химводoочистки, следует учитывать способы нейтрализации диоксида углерода и кислорода.

Еще один вид химической коррозии - хлоp идная коррозия. Хлориды благодаря своей высокой растворимости присутствуют практически во всех доступных источниках водоснабжения. Хлориды вызывают разрушение пассивирующей плёнки на поверхности металла, чем провоцируют образование вторичных коррозионных процессов. Максимально допустимая концентрация хлоридов в воде котловых систем составляет 150-200 мг/л.

Результатом использования в котловой системе воды низкого качества (нестабильной, химически агрессивной) являются коррозионные и накипеобp азовательные процессы. Эксплуатация котловых систем при использовании такой воды опасна с точки зрения техногенных рисков и экономически нецелесообразна. Гарантия производителей котельного оборудования не распространяется на случаи, связанные с использованием в котлах неочищенной и неправильно подготовленной воды.

Какая бывает вода?

Чаще всего в качестве источников водоснабжения котловых систем используются артезианские скважины или водопровод. Каждый вид воды имеет свои недостатки.

Основной проблемой воды являются соли магния и кальция, показывающие общую жёсткость. Контролирование качества воды котловых систем производится путём экспp есс-тестов или лабораторных анализов.

Лабораторные анализы водогрейных систем средней мощности выполняют при каждом плановом осмотре или обслуживании, но не реже 3-х раз в год, а для промышленных проводят раз в смену. Лабораторный анализ для паровых котлов проводится раз в 72 часа, при анализе обычно берется несколько проб воды - котловая вода, вода после ХВО, конденсат. Базовый набор экспресс-тестов и карманных измерителей желательно иметь каждому специалисту по эксплуатации котлов, в то время как лабораторные анализы рекомендуется проводить в специальных лабораториях. Для проведения экспресс-тестов используют капельные экспресс-системы для выявления показателей жёсткости воды, щёлочности, содержания железа и хлоридов. Результаты анализов могут служить ориентиром для оценки качества котловой воды и повышения эффективности работы системы химводоочиc тки.

Как получить правильную воду

Котловые системы подразделяют на паровые и водогрейные. Для каждого типа котла предусмотрен свой набор требований к x имочищенной воде, которые напрямую зависят от температурного режима и мощности котла.

Качество воды для котловых систем устанавливается на уровне, обеспечивающем безопасную и эффективную работу котла при минимальных рисках коррозии и образования отложений. Надзорные органы осуществляют разработку официальных требований (Гoсэнергонадзор). Расход подпиточнoй воды и предъявленные требования к её качеству помогают создать оптимальный набор водоочистного оборудования и правильно подобрать химводоoчистительную схему. Особое внимание во всех нормативных документах по качеству подпитoчной воды уделяется таким показателям как содержание кислорода, pН, углекислоты. Показатели качества воды для котлов во всех нормативных документах существенно ниже требований к качеству питьевой воды.

Химводоподготовка для котельных подразумевает под собой комплексную обработку воды, поступающей в водогрейные и паровые котлы, специальными химическими реагентами с целью снижения жесткости воды и ее очищения от вредных примесей. Химводоподготовка для котельных различного типа обеспечивает сохранение работоспособности всех систем котельной. Главная задача химводоподготовки для котельных - предотвратить коррозию и защитить нагревательные элементы от образования накипи.

Таким образом, основным и обязательным элементом для котельных: будь то водогрейные или паровые установки, является процесс умягчения воды, который осуществляется с помощью специальных установок непрерывного действия. Подобные установки также используют на промышленных предприятиях с непрерывным производственным циклом.

Умягчение воды позволяет не только предотвратить образование твердых солевых отложений на внутренних поверхностях котлов, труб и нагревательных элементов, но и способствует экономному потреблению различных моющих средств. Практика показывает, что комплексная химводоподготовка для котельных снижает жесткость воды до 0,07-1 мг. экв/л (воду с таким показателям жесткости используют на текстильном, бумажном, химическом производствах), в некоторых случаях, например, для питания котлов среднего и низкого давления, в которых допускается использование воды с показателем жесткости не более 0,3 мг. экв/л, требуется двухступенчатая обработка воды, после которой показатель жесткости не превышает 0,01-0,02 мг. экв/л.

Как правило, умягчающие воду установки и , используемые для химводоподготовки для котельных, представляют собой конструкцию из двух фильтров, параллельно скрепленных между собой. Сами фильтры – выполненные из стеклопластика корпуса, которые имеют ламинированную полиэтиленом внутреннюю поверхность. Другими обязательными элементами установки для химводоподготовки в котельных являются два автоматических управляющих клапана, фильтрующая среда, дренажно-распределительная система и баки, в которых приготавливается раствор реагентов.

Существуют множество моделей фильтров непрерывного действия, применяемых в системах химводоподготовки для котельных, но все они работают по одной из трех схем: Twin Alternating, Twin Parallel (Duplex) и Triplex.

Первая из схем работает следующим образом: два фильтра включены параллельно, однако, только один из них работает в режиме фильтрации, другой же может быть либо в состоянии регенерации, либо ожидания. Когда цикл фильтрации завершается, фильтры меняются ролями и следующий цикл фильтрации осуществляется уже тем фильтром, который был в режиме ожидания или регенерации. Установки с подобными системами химводоподготовки для котельных используются, прежде всего, там, где необходимо постоянно поддерживать заданную изначально производительность.

Вторая из названных схем подразумевает одновременную работу двух параллельно включенных фильтров в режиме фильтрации. Такая отличается двойной производительностью. Однако фильтры также нуждаются в периодической регенерации, которая происходит по очереди и мере надобности. Соответственно, в какой-то момент на определенный временной период в режиме фильтрации будет находиться только один фильтр, в результате чего производительность установки резко падает.

Схема Triplex представляет собой усовершенствованию схему Twin Parallel: к двум параллельно включенным фильтрам, работающим в режиме фильтрации, подсоединяется третий. Такая установка химводоподготовки для котельных отличается тройной производительностью в момент работы всех трех фильтров. В режим регенерации фильтры переключаются также поочередно. Таким образом, двойная производительность схемы Twin Parallel поддерживается непрерывно.

Фильтрующая среда в установках для химводоподготовки для котельных может быть различной. Среди методов, применяемых для умягчения воды, наиболее распространенными являются: реагентный, при котором в воду вмешивают реагенты, вступающие в химические реакции с солевыми растворами, содержащимися в воде. В результате образуются малорастворимые кальциево-магниевые соединения, которые выпадают в осадок.

Другой метод – катионитовый, основанный на свойствах некоторых веществ, заключается в том, чтобы обменивать свои катионы (это может быть натрий или водород) на катионы магния и кальция, которые содержаться в соли, растворенной в воде. В результате образуются натриевые соли, не передающие воде жесткость. Зачастую в процессе комплексной химводоподготовки для котельных используют комбинацию названных методов умягчения воды.

ВОДОПОДГОТОВКА И ВОДОХИМИЧЕСКИЙ РЕЖИМ КОТЕЛЬНОЙ

5.1.Водоподготовка имеет большое значение для безопасной и экономичной работы котельных установок. При неудовлетворительной водоподготовке на поверхности нагрева котлов, тепловых сетей и водоподогревателей откладываются твердые отложения, и происходит коррозия поверхности нагрева.

5.2.Водоподготовка подпиточной воды включает в себя умягчение жесткой воды в натри-катионитовых фильтрах и удаление агрессивных газов, кислорода и свободной углекислоты, в вакуумных деаэраторах.

5.3.Вода из городского водопровода мимо или через повысительные насосы холодной воды поступает на охладитель рабочей жидкости. Затем на подогреватель сырой воды (I ступень ХВО) /12/. Нагревается до температуры не выше 40 С и поступает в натрий-катионитовый фильтр /1/. Повышение воды выше 40 С вызывает коксование сульфоугля, что снижает его обменные способности. Умягченная вода после фильтра /1/ поступает на подогреватель химочищенной воды II ступени /13/, где нагревается до температуры 70-80 С, а затем подается на вакуумные деаэраторы /6,7/. Де аэрированная умягченная вода свободно сливается в баки подпиточной воды /10/. Смотри схему №5.

5.4.Натрий-катионитовый фильтр представляет собой вертикальные цилиндрические напорные баки, работающие с давлением выше атмосферного. Нижняя часть фильтра заполнена слоем бетона, на котором расположено нижнее дренажное устройство.

Дренажное устройство предназначено для равномерного распределения поступающей воды по всей площади фильтра. Оно состоит из коллектора с системой дренажных трубок со щелями, щели которых меньше диаметра наименьших зерен сульфоугля /катионита/.

Выше дренажного устройства располагается катионит /сульфоуголь/ высотой 2,2м.

В верхней части фильтра расположено распределительное устройство для воды и солевого раствора. Оно предназначено для равномерного распределения воды и солевого раствора по всей поверхности сульфоугля.

Фильтр имеет два лаза: верхний – для загрузки катионита и для доступа во внутрь фильтра; и нижний – для ревизии нижней дренажной системы.

Катионитовые фильтры обвязаны трубопроводами с арматурой и измерительными приборами – расходомерами, манометрами, термометрами, устройствами для отбора проб воды.

5.5.К вспомогательному оборудованию водоподготовки относится устройство для подготовки раствора соли, необходимого для регенерации фильтра, устройство ""мокрого хранения"" соли /14/, перекачивающие солевые насосы /15/, бак мерник /3/. бак подсоленной воды /8/, солерастворитель /4/.

5.5.1.Установка ""мокрого хранения"" соли представляет собой четыре железобетонных бака-хранилища, рассчитанных на трех-четырех месячную потребность соли.

Сухая соль автотранспортом засыпается в ямы. В верхней части ям имеется коллектор с отверстиями для равномерного размыва соли холодной/1/ или горячей водой /2/подаваемой из котельной. Смотри схему №5.

На дне ямы ""мокрого хранения"" соли имеется всасывающая труба (в коробе со щебнем – для фильтрации солевого раствора), по которой раствор насосом /5/ подается в бак мерник /3/ котельной.

5.5.2.Всасывающие трубы из ям ""мокрого хранения"" соли входят в рядом стоящую насосную, где расположены два насоса /5/ для перекачки солевого раствора и трубопроводы с запорной арматурой обвязывающие солевые ямы. Обвязка солевых ям позволяет перекачать солевой раствор из любой ямы в любую, а так же подавать горячую и холодную воду в ямы, как через размывочный коллектор, так и через заборную трубу.

5.5.3.Из ямы ""мокрого хранения"" соли солевой раствор перекачивающими насосами подается в бак мерник. В баке мернике насыщенный раствор разбавляется до 7-10% концентрации и подается в регенерируемый фильтр солевым насосом /15/.

5.5.4.Солевой раствор для регенерации фильтра может быть приготовлен и в проточном солерастворителе /4/. Соль ""сухого хранения"" засыпается в солерастворитель и пропускают через него холодную воду. Полученный солевой раствор может быть подан как непосредственно в фильтр, так и на бак мерник. Этот способ приготовления солевого раствора применяется при выходе из строя перекачивающих насосов /5/ или солевого насоса /15/.

5.6.Цикл работы фильтра состоит из операций взрыхления, регенерации, контакта, отмывки, умягчения.

5.6.1.Цель взрыхления – устранить уплотнения слежавшейся массы катионита, для обеспечения более свободного доступа регенерационного раствора к зернам катионита. Взрыхление производится отмывочной водой подаваемый насосом взрыхления /9/ из бака подсоленной воды /8/. В случае отсутствия отмывочной воды, взрыхление производится холодной водой.

При взрыхлении сначала открывается задвижка на линии подвода взрыхляющей воды, а затем задвижку на линии сброса воды в верхней части фильтра в канализацию. Взрыхление должно производится до тех пор, пока вода, отходящая от фильтра вода, не станет прозрачной. При взрыхлении не допускается полное опорожнение промывочного бака, во избежание засоса воздуха в фильтр.

5.6.2.Регенерация катионита в фильтре производится раствором соли, приготовленным в баке мернике. Раствор соли 7-10% концентрации подается солевым насосом в фильтр, он проходит сверху вниз сквозь слой катионита и выходит в канализацию. При помощи дренажной задвижки на фильтре устанавливаем скорость подачи раствора 3-4м3/час. В процессе регенерации необходимо следить, чтобы в фильтре был все время подпор жидкости. После пропуска раствора соли, закрывается дренаж, фильтр ставится на контакт.

5.6.3.Контакт катионита с раствором соли длится 5-10 минут. Он необходим для дополнительного обменного процесса между катионами натрия и солями жесткости. При увеличении времени контакта свыше 15 минут эффект регенерации возрастает незначительно.

5.6.4.После окончания контакта производится отмывка сульфоугля от регенерационного раствора и продуктов регенерации. Для отмывки фильтра холодную воду пропускаем сквозь катионит сверху вниз 25-45 минут. Сбрасываем воду в канализацию. Сброс производится до тех пор, пока отмывочная вода станет соленой на вкус. Тогда фильтр переключается на отмывку в промывочный бак. Отмывка в бак заканчивается тогда, когда отмывочная вода становится прозрачной и ее общая жесткость не превышает 200мкг.экв/кг, а концентрация хлоридов превышает их содержание в исходной воде не более чем на 30мг/л.

Если бак отмывочной воды заполнится раньше, чем отмоется фильтр, отмывка продолжается в канализацию.

Катионитовый фильтр, поставленный после регенерации в резерв, в избежания пептизации катионита отмывается от регенерационного раствора только частично. В этом случае отмывка в бак не ведется, и фильтр оставляется в резерве со слабым регенерационным раствором. Окончание отмывки и отмывка на бак производится непосредственно перед включением фильтра в работу.

5.6.5.Закончив отмывку, фильтр включается в работу. Умягченная вода поступает через задвижку на входе в верхнее распределительное устройство, проходит через фильтр, через катионит и далее через дренажную систему, через задвижку на выходе отводится на подогреватель II ступени ХВО /13/.

При включении фильтра в работу необходимо еще раз произвести химический контроль выходящей воды, которая должна отвечать следующим показателям: жесткость не более 200мкг.экв/л.; хлориды – 30мг/л больше, чем их содержание в исходной воде.

Во время умягчения следует периодически /один-два раза в смену/, открывать воздушный вентиль для выпуска скопившегося в фильтре воздуха.

По достижении остаточной жесткости в умягченной воде 200мкг.экв/л. фильтр отключают и повторяют цикл операций.

5.6.6.Для подготовки питательной воды паровых котлов ДЕ-10-14ГМ применяется двухступенчатое умягчение. При двухступенчатом умягчении: исходную воду вначале умягчают в основных катионитовых фильтрах (фильтры I ступени) /1/ до остаточной жесткости 1000мкг.экв/л., а затем доумягчают в катионитовых фильтрах II ступени /2/ до конечной жесткости 20мкг.экв/л.

5.7.Химически очищенная вода после натрий-катионитовых фильтров I ступени /1/ поступает на подогреватель ХВО II ступени /13/, где нагревается до температуры 70-80 С. На вход подогревателя ХВО II ступени поступает еще и подпиточная вода после подпиточных насосов /11,17/ на повторную деаэрацию. Ее количество регулируется в ручную.

5.7.1.Греюшая вода поступает сразу на подогреватель ХВО II ступени, а затем последовательно на подогреватель I ступени и на регулятор ""Температуры ХВО"". В случае работы без подогревателя ХВО I ступени, теплоноситель после подогревателя II ступени ХВО поступает на регулятор ""Температуры ХВО"" через байпас.

5.7.2.Регулятор ""Температуры ХВО"" регулирует температуру на выходе воды с теплообменника ХВО II ступени. Температуру на выходе воды с подогревателя ХВО I ступени, регулируется в ручную. В случае ее повышения до 38 С в операторской срабатывает звуковая и световая сигнализация.

5.7.3.Греющая и нагреваемая вода на подогревателе ХВО II ступени подключены противотоком, а на подогревателе ХВО I ступени – прямотоком.

5.7.4.Для аварийной подпитки тепловых сетей напрямую, минуя деаэрацию необходимо:

Закрыть задвижку на входе в подогреватель ХВО II ступени

Открыть перемычку между трубопроводами (выход натрий-катионитовых фильтров и нагнетательный коллектор подпиточных насосов /11,17/).

Эта линия подпитывает тепловые сети химически очищенной водой давлением исходной воды, без подпиточных насосов (пуск после остановки со сливом воды, выход из строя подпиточного насоса).

5.8.После подогревателя ХВО II ступени химически очищенная вода поступает на вакуумную деаэрационную установку подпитки. Она включает в себя вакуумные деаэрационные колонки производительностью 25 т/час /7/, 50 т/час/6, охладитель выпара колонки /16/, бак деаэрированной воды /10/, эжектора – общие с колонками ГВС. Смотри схему №15. Одна из деаэраторных колонок подпитки находится в работе, а другая в резерве, в зависимости от нагрузки на узел ХВО.

5.9.Режимная карта натрий-катионитовых фильтров I и II ступеней котельной по ул. Товарищеская

№ пп Показатели Ед. изм. Значение
Фильтры I ступени.
Диаметр фильтра мм
Катионит Сульфоуголь
Высота загрузки мм
Площадь фильтра м2 3,14
Объем катионита м3 6,9
Рабочая обменная способность гр-экв/м3
Умягчение
мкг-экв/ кг 1000-200
мкг-экв/ кг 1500-200
9 Среднее количество воды за фильтроцикл Ер. * Gк. G ум.= Жисх. - Жум. м3
Взрыхление
Время взрыхления мин 20-30
Регенерация
кг
кг
Процент содержания соли в растворе %
м3 4,14
Скорость пропуска раствора соли м3/ч 3-5
Время пропуска солевого раствора мин.
Время контакта мин.
Фильтры II ступени.
Диаметр фильтра мм
Катионит Сульфоуголь
Высота загрузки мм
Площадь фильтра м2 0,23
Объем катионита м3 0,23
Рабочая обменная способность г-экв/м3
Жесткость воды при включении в работу мкг-экв/кг 15-20
Жесткость при срабатывании фильтра мкг-экв/кг 15-20
Среднее количество воды за фильтроцикл м3
Взрыхление
Время взрыхления мин. 10-15
Регенерация
Удельный расход соли на 1м3 сульфоугля кг
Расход технической соли на регенерацию кг
Процент соли в растворе %
Расход раствора соли на регенерацию м3 0,138
Скорость пропуска соли м3/час 3-5
Время контакта мин. 10-15
Экспликация оборудования ХВО
№ пп Наименование оборудования Характеристика оборудования Кол-во
Натрий катионитовый фильтрI D=2000мм
2 Натрий катионитовый фильтрII D=1000мм
Бак-мерник раствора соли V=3 м3
Солерастворитель С-0.2-0.5 D=1000мм
Насос перекачки раствора соли К-20-30 G=20м3/ч, Н=30м.в.ст, n=2900об/мин,N=4кВт
Вакуумный деаэратор ВД-50 G=50м3/час
Вакуумный деаэратор ВД-25 G=25м3/час
Бак промывки фильтров ОСТ-34-42-395-77 V=30 м3
Насос промывки фильтра К-45-30 G=45м3/ч, Н=30м.в.ст, n=2900об/мин,N=5кВт
Бак подпиточной воды БП-200 V=200 м3
Насос подпиточной воды К-90-35 G=90м3/ч, Н=35м.в.ст, n=2900об/м, N=15кВт
Подогреватель холодной воды 3-12-ОСТ.34-588-68 Q=1,1Гкал/ч,tmax=40СGт/н=10т/ч,F=30м2.
Подогреватель хим.очищенной воды 3-13-ОСТ.34-588-68 Q=2,2Гкал/ч,tmax=81С Gт/н=50т/ч,F=60м2
Солевая яма
Насос раствора соли 8/15ДСУ4 G=8м3/ч, Н=15м.вюст, n=2900об/м,N=3кВт
Охладитель выпари ОВВ-8 F=8м2
Насос подпиточной воды К-20-50 G=20м3/ч, Н=50м.в.ст, n=2900об/м, N=15кВт

Водоподготовка для котельных установок – обязательный процесс для каждого производства рассматриваемой категории. Системы водоподготовки применяется в целях предотвращения образования отложений на рабочих элементах котлов. При этом именно качественная водоподготовка котлов является главной гарантией безаварийной и высокоэффективной работы котельного оборудования в течение отопительного сезона.

Водоподготовка представляет собой процесс подачи жидкости в котельную станцию после прохождения предварительного умягчения. При этом очистка производится за счет применения блочных фильтров многоступенчатого типа. Вода проходит подготовку перед использованием в судовых, а также водогрейных котлах.

Оборудование, применяемое для умягчения, очень эффективно смягчает жесткую воду. Далее в ходе очистки из жесткой воды будет удалена значительная часть растворенных в ней загрязняющих частиц. Поскольку главной причиной высокой жесткости рабочей среды является именно повышенная концентрация солей, грубодисперсных механических примесей, умягчение решает проблему действительно эффективно.

Первый этап водоподготовки котельных предполагает механическую фильтрацию. Второй уже более сложный и трудоемкий – требует предварительного удаления минеральных солей, растворенных в рабочей среде. Умягчение в данном случае производится с помощью современного метода тонкой очистки, имеющего высокую эффективность. Он предполагает применение мембранных технологий. Смягчители не используются ввиду применения ультрафильтрационных методов, а также обратного осмоса.

Водоподготовка: предварительные расчеты системы

Водоподготовка, многоступенчатая очистка, умягчение водогрейных систем осуществляет только после выполнения предварительных расчетов. Эти расчеты включают в себя сбор и систематизацию систем данных о протяженности водонагревательных систем, уровне их засоренности. Водоподготовка котельных с последующей очисткой системы транспортировки теплоносителей состоит из нескольких этапов:

  1. Удаление взвесей, органики, коллоидов – или начальная очистка.
  2. Умягчение – деминерализация.
  3. Аннигиляция СО2 и О2 (агрессивные газы).
  4. Коррекционная постобработка.
  5. Расчет параметров следующей очистки.

Во всех системах теплоснабжения, включая те, в которых применяется ультрасовременное оборудование и постоянно производится точный расчет рабочих параметров, возможны непланомерные утечки теплопередающих сред. На котельных станциях, оборудованных чугунными и стальными котлами, утечки компенсируются подпилочной жидкостью. Такая вода обязательно проходит предварительную обработку с применением смягчителей. Смягчители располагаются в установках химической очистки воды.

Большая часть котельных, отвечающих за теплоснабжение объектов разного назначения, получает воду из водопроводных систем, которую дополнительной очистке подвергать не нужно – дегазации и смягчения оказывается достаточно. Все дело в том, что в состав водопроводной жидкости входит большое количество газов и солей, которые нужно убрать, поскольку они оседают в качестве осадка и начинают скапливаться на рабочих поверхностях котельных установок. С течением времени объем слоистых отложений увеличивается, и коэффициент теплоотдачи падает. В конечном счете это приводит к перерасходу топлива. Опасность осадков, которые образуют накипь, состоит в увеличении рисков аварий – это объясняется постоянным перегревом стенок котла. При этом агрессивные соединения, имеющие вид газообразных примесей, регулярно вступают в контакт со стенками котла, вызывая коррозийные процессы. Чугунные устройства коррозии не боятся, а вот для стальных они представляют опасность.

Чтобы на стенках котлов и основных рабочих элементах не появлялась накипь, нужно использовать воду оптимальной степени жесткости, а также подвергать ее дегазации, смягчать. Дегазация осуществляется путем вакуумдеаэрации. Умягчитель жидкости, используемой в котлах, имеет несколько разновидностей – и каждая из них имеет свои характеристики, особенности. Засыпка смягчающего вещества должна производиться заблаговременно. Жидкость, образующаяся на выходе устройств с химическим способом обработки, для питья является не пригодной. Самыми долговечными являются смягчители ионообменного типа, но они и стоят немало. Магнитные устройства универсальны, а самыми производительными являются установки, работающие на электромагнитном генераторе.

Популярные способы водоподготовки котельных

На сегодняшний день используются разные способы водоподготовки котельных станций, каждый из которых имеет свои особенности и преимущества. Назовем основные:

  • Осаждение.
  • Коагуляция.
  • Адсорбация.
  • Флокуляция.
  • Обратный осмос.
  • Безреагентная водоподготовка.
  • Ионобмен.

В процессе осаждения взвешенные в воде твердые частички оседают на фильтрующих поверхностях и на внутренних элементах устройства. Фильтры используются магнитные, съемные. Сам процесс осаждения протекает за счет использования специальных реагентов – данный способ является оптимальным для выведения взвешенных частиц и коллоидных соединения из воды. Он простой, быстрый и эффективный.

Обратный осмос предполагает применение специальной мембраны. Она обеспечивает эффективную фильтрацию находящихся в жидкости примесей (органика). Также мембрана неплохо справляется с задачей фильтрации бактерий и вирусов. При этом обратный осмос очищает воду слишком тщательно – и ее состав обедняется. Стоимость мембраны высокая, кроме того, она является не слишком надежной и часто выходит из строя в результате контакта с большими объемами загрязняющих веществ. Скорость очистки низкая, поскольку мембранный компонент является полупроницаемым.

При ионном обмене используется специальная смола, помещаемая в картридж. Смола состоит из ионов натрия, подготовленных соответствующим образом для последующего обмена. Умягчающий фильтр пропускает через себя жесткую воду и смягчает ее. Главные недостатки способа – высокая стоимость картриджей и потребность в их частой замене.

Химические реагенты – это специальные окислители. Они представлены преимущественно озоном, кислородом, хлорамином, марганцовкой и перекисью водорода. Эти элементы являются активными и сохраняют стойкость даже после того, как полностью растворятся в жидкости. Перманганат калия играет роль восстановителя, а перекись водорода слишком токсичная, поэтому используется в небольших количествах. Озон экологичный дорогой окислитель.

Безреагентные методы смягчения предполагают использование специальных электромагнитных, магнитных и ультразвуковых приборов. Очистка в данном случае основывается на принципе интенсивного электромагнитного, волнового или ультразвукового воздействия. Безреагентные устройства активно используются в теплосистемах жилых частных домов и квартир.

Оборудование, применяемое для водоподготовки котельных

Оборудование, которое используется для водоподготовки на котельных станциях – это различные установки и фильтры. Рассмотрим основные категории:

  1. Загрузочные баллонные устройства являются самыми распространенными и идеально подходят для частных домов. Принцип работы – механическая фильтрация. Некоторые модели также могут использоваться для удаления железистых примесей из жидкостей. Стоят баллоны сравнительно недорого.
  2. Мембранные умягчители могут иметь разные параметры и рабочие показатели. Современные модели снабжаются специальным автоматическим блоком, что обеспечивает максимальный уровень удобства применения и управления прибором. Мембранный умягчитель – лучшая защита от накипи.
  3. Ультрафиолетовые обеззараживатели максимально быстро удаляют соли тяжелых металлов, вредные бактерии.

Реже, но тоже используются ртутные бактерицидные лампы, предназначенные для установки в системах низкого давления. Ртутные лампы долговечны и имеют хороший КПД.

Законодательные нормы и требования

Нормы проектирования водоподготовки систем котельных определяются на законодательном уровне. Ознакомиться с ними можно в СНиП II-35-76 (актуализированный документ СП СНиП 89.13330.2012) «Котельные установки». В соответствие с положениями названного документа, режим работы котельной станции должен обеспечивать нормальную работу пароводяного тракта, котлов, теплового оборудования и тепловых сетей без отложений накипи и появления коррозии на внутренних рабочих поверхностях. Состав системы водоподготовки определяется уровнем качества исходной воды, действующими требованиями к очищенной воде, общей производительностью установки. Нормы очищенной воды зависят от ее назначения и прописываются в соответствующих документах. Требования к очищенной воде зависят от ее назначения и определяются нормативными документами.

Кроме нормативной документации, в ходе водоподготовки следует учитывать рекомендации производителя оборудования, которые прописываются в руководстве пользователя. Параметры сетевой ГВС воды устанавливаются и проверяются СанПиНом.

Основные ошибки водоподготовки

Рассмотрим типичные ошибки подготовки воды для котельных:

  • неэффективность системы предварительной очистки или ее полное отсутствие;
  • неправильный расчет установок деминерализации/умягчения (он должен производиться в индивидуальном порядке);
  • отсутствие или некорректная отладка деаэраторов;
  • плохая коррекционная обработка жидкости.

Дело в том, что главными источниками воды для котельных станций являются скважины, водоемы и городские водопроводы. Та же водопроводная вода поступает на установку неподготовленной. Если она хлорированная, дехлорирование обязательно, поскольку хлор разрушает мембраны обратного осмоса и аниониты (составляющие части ряда станций водоподготовки). В воде, которую получают из грунтовых источников, которое вызывает преждевременную коррозию труб, способствует зарастанию мембран характерным осадком и, соответственно, появлению потребности в проведении частых кислотных промывок (а они уменьшают срок службы мембран). Взвеси и органика – главные причины образования отложений на поверхностях нагрева, в трубах, коррозии. Также органические вещества вызывают обрастание мембран обратного осмоса, деградацию и уменьшают обменную емкость аонитов.

Качественная водоподготовка – почему это важно?

Водоподготовка для котельной, выполненная по всем правилам, избавит вас от ряда неприятностей, финансовых потерь, улучшит эффективность оборудования. Срок службы котельных станций и их оборудования во многом зависит именно от свойств пара и воды. Низкое качество подпитывающей, питательной воды, плохой контроль, отсутствие химической коррекции жидкостей приводит к образованию накипи, началу кислородных, углекислотных коррозионных процессов. В итоге падает теплопередача, оборудование забивается, уменьшается срок его службы, падает рентабельность котельной, возрастает частота простоев.

Наиболее опасной для котельных является жидкость с высокой концентрацией загрязнителей вроде солей , магния. Они оседают на внутренних рабочих деталях и образуют толстый, не удаляемый слой накипи. В итоге страдает теплопроводность металлов, и для обеспечения нормальной производительности станции приходится расходовать намного больше энергии. Единственным методом предотвращения образования накипи является многоступенчатая качественная очистка воды от примесей.

Для справки. Классификация котлов

Существующие сегодня котлы делятся на несколько категорий:

  1. Паровые – для получения пара.
  2. Водогрейные – для нагрева под давлением.
  3. Пароводогрейные – для нагрева воды и получения пара.

В зависимости от используемого способа получения энергии устройства бывают:

  • энерготехнологическими – они служат для переработки технологических материалов (то есть топлива);
  • утилизационными – в них используется тепло от отходящих газов;
  • электрическими – данные устройства для получения пара или нагрева воды используют электрическую энергию.

Типы циркуляции – естественная и принудительная. С учетом числа циркуляционных циклов, котлы бывают прямоточными (с однократными движениями рабочих сред) и комбинированными (с многократными циркуляционными процессами).

В зависимости от направления движения рабочей среды по отношении к поверхности нагрева выделяются:

  • Котлы газотрубного типа – в них конечные продукты, образующиеся в результате сгорания топлива, движутся внутри поверхностей нагрева в трубах, а смесь пара с водой и сама вода – снаружи.
  • Водотрубные котлы – в них все происходит с точностью наоборот.

Тип котла обязательно нужно учитывать при определении требований к очищаемой и смягчаемой воде.

Терминология. Виды воды

Вода, применяемая в котлах, в зависимости от конкретного технологического участка, имеет различные названия, которые закрепляются в соответствующих нормативных документах. Среди них:

  • Сырая вода – ее получают из источника водоснабжения, то есть это жидкость без предварительной обработки.
  • Питательная вода – жидкость, которая находится на входе в котел, отвечает заданным химическим, температурным и прочим требованиям.
  • Добавочная вода – нужна для компенсации потерь, которые возникают в результате продувки котла, а также утечки пара, воды в тракте пароконденсатора.