Какое устройство и принцип работы счетчика гейгера. Строение и принцип работы счётчика Гейгера - Мюллера

Радиационная безопасность и степень загрязнения окружающей среды не беспокоила многих граждан стран мира до того момента, пока не произошли катастрофические события, унесшие жизни и здоровье сотен и тысяч людей. Максимально трагическими в плане радиационного загрязнения были Фукусима, Нагасаки и Чернобыльская катастрофа. Эти территории и связанные с ними истории хранятся в памяти каждого человека до сих пор и являются уроком о том, что независимо от внешнеполитической ситуации и уровня финансового благополучия о радиационной безопасности стоит беспокоиться всегда. Необходимо знать, для регистрации каких частиц применяется счетчик Гейгера, какие меры спасения профилактики стоит применять, если случается катастрофа.

Для чего используется счетчик Гейгера? В связи со множественными техногенными катастрофами и критическим повышением уровня радиации в воздухе за последние несколько десятков лет, человечество придумало и изобрело уникальные и максимально удобные приборы для регистрации частиц с помощью счетчика Гейгера бытового и промышленного использования. Эти приборы позволяют измерить уровень радиационного загрязнения, а также статично контролировать ситуацию загрязнения на территории или местности, учитывая погодные условия, географическое расположение и климатические перепады.

Каков принцип действия счетчика Гейгера? Сегодня приобрести дозиметр бытового типа и устройство счетчика Гейгера может каждый желающий человек. Следует отметить, что в условиях того, что радиация может быть как естественного, так и искусственного типа, человек обязан постоянно следить за радиационным фоном в своем доме, а также точно знать о том, какие частицы регистрирует счетчик Гейгера, о методах и способах профилактической защиты от ионизирующих веществ и . Из-за того, что радиация не может быть замечена или почувствована человеком без специального оснащения, многие люди могут на протяжении длительного времени находиться в состоянии зараженности, не подозревая об этом.

От какой радиации нужен счетчик Гейгера?

Важно напомнить, что радиация может быть разной, это зависит от того, из каких заряженных частиц она состоит и как далеко распространилась от своего источника. Для чего нужен счетчик Гейгера? К примеру, альфа-частицы радиации не считаются опасными и агрессивными по отношению к человеческому организму, однако при длительном воздействии они могут приводить к некоторым формам заболеваний, доброкачественным опухолям и воспалениям. Бета-радиация считается максимально опасной и губительной для человеческого здоровья. Именно на измерение таких частиц в воздухе и направлен принцип работы счетчика Гейгера.

Бета-заряды могут производиться как искусственным путем в результате работы АЭС или химических лабораторий, так и природным, из-за вулканических пород и других подземных источников. В тех или иных случаях, высокая концентрация в воздухе ионизирующих элементов бета-типа может привести к раковым недугам, доброкачественным опухолям, инфекциям, отслоениям слизистых оболочек, нарушениям работы щитовидной железы и костного мозга.

Что такое счетчик Гейгера и как работает счетчик Гейгера? Так называют специальное устройство, которым оснащаются дозиметры и радиометры бытового и профессионального типа. Счетчик Гейгера – это чувствительный элемент дозиметра, который при условиях настройки определенного уровня чувствительности помогает выявить концентрацию в воздухе ионизирующих веществ за отведенный промежуток времени.

Счетчик Гейгера, фото которого показано выше, был впервые изобретен и проверен на практике в начале двадцатого века ученым Вальтером Мюллером. Преимущества и недостатки счетчика Гейгера могут оценить и нынешние поколения. Данное устройство широко применяется в быту для и промышленной сфере до настоящих пор. Некоторые умельцы даже делают счетчик Гейгера своими руками.

Улучшенные дозиметры для радиации

Следует сказать, что с момента изобретения счетчика Гейгера и дозиметра до настоящих дней эти универсальные устройства прошли много этапов улучшения и модернизации. Сегодня такие приборы можно использовать не только для проверки низких показателей радиационного фона в бытовых условиях или на производстве, но также использовать более оптимизированные и улучшенные модели, которые помогают измерить уровень радиации на АЭС, а также в процессе ведения военных действий.

Современные способы применения счетчика Гейгера позволяют улавливать не только общее количество ионизирующих веществ в воздухе за определенный отрезок времени, но также реагировать на их плотность, степень заряженности, тип излучения и характер воздействия на поверхности.

К примеру, назначение счетчиков Гейгера для бытовых нужд или личного пользования не предусматривает необходимость наличия модернизированных возможностей, поскольку они, как правило, применяются для бытового использования и служат для проверки радиационного фона в доме, на продуктах питания, одежде или строительных материалах, которые потенциально могут содержать в себе определенный уровень заряда. Однако, промышленные и профессиональные дозиметры необходимы для того, чтобы проверять более серьезные и комплексные радиационные излучения и служить постоянным способом контролирования радиационного поля на АЭС, химических лабораториях или атомных станциях.

Позвоните сейчас
и получите бесплатную
консультацию специалиста

получить

Учитывая тот факт, что многие современные страны сегодня имеют сильнодействующее ядерное оружие, иметь профессиональные дозиметры и счетчики Гейгера должен каждый человек на планете, чтобы в случае аварийной ситуации и катастрофы иметь возможность вовремя проконтролировать радиационное поле и спасти свою жизнь и жизнь своих близких людей. Также полезно заранее изучить плюсы и минусы счетчика Гейгера.

Стоит сказать, что принцип действия счетчиков Гейгера обеспечивает реакцию не только на интенсивность радиационного заряда и количество ионизирующих частиц в воздухе, но также позволяет разделять альфа-излучение от бета-радиации. Поскольку бета-радиация считается максимально агрессивной и сильнодействующей при своем заряде и концентрации ионов, счетчики Гейгера для ее проверки покрывают специальными хомутами из свинца или стали, чтобы отсеять лишние элементы и не повредить оборудование при проверке.

Возможность отсеивать и разделять различные потоки радиационного типа позволила многим людям сегодня качественно использования дозиметры, максимально четко просчитывать опасность и уровень загрязнения той или иной территории радиационными элементами различного характера.

Из чего состоит счетчик Гейгера?

Где применяется счетчик Гейгера? Как уже говорилось выше, счетчик Гейгера не является отдельным элементом, но служит для того, чтобы быть ведущим и основным элементом в конструкции дозиметра. Он необходим для максимально качественной и точной проверки радиационного фона в той или иной местности.

Следует сказать о том, что счетчик Гейгера имеет относительно незамысловатую схему устройства. В общем и целом, его конструкция имеет следующие особенности.


Счетчик Гейгера представляет собой небольшой контейнер, внутри которого содержится инертный газ. В качестве газа различные производители используют разные элементы и вещества. Максимально часто счетчики Гейгера производят с баллонами, наполненными аргоном, неоном или смесями этих двух веществ. Стоит сказать о том, что газ, который заполняет баллон счетчика, находится под минимальным давлением. Это нужно для того, чтобы не было напряжения между катодом и анодом и не возникало электрического импульса.

Катод – это конструкция всего счетчика. Анод представляет собой проволоку или металлическое соединение между баллоном и основной конструкцией дозиметра, подведенную к датчику. Следует отметить, что в некоторых случаях анод, который непосредственно реагирует на радиационные элементы, может изготавливаться со специальным защитным покрытием, которое позволяет контролировать ионы, проникающие на анод и влияющие на итоговые показатели измерения.

Как работает счетчик Гейгера?

После того, как мы выяснили основные моменты конструкции счетчика Гейгера, стоит описать кратко принцип действия счетчика Гейгера. Учитывая несложность его обустройства, работа его и функционирование тоже крайне легко объяснить. Счетчик Гейгера работает по такому принципу:
  1. Когда дозиметр включается между катодом и анодом возникает повышенное электрическое напряжение с помощью резистора. Однако напряжение не может спадать во время работы по причине того, что баллон счетчика наполнен инертным газом.
  2. Когда на анод попадает заряженный ион – он начинает смешиваться с инертным газом чтобы ионизироваться. Таким образом радиационный элемент фиксируется с помощью датчика и может влиять на показатели радиационного фона в проверяемой области. Об окончании проверки обычно сигнализирует характерный звук счетчика Гейгера.
Как уже говорилось выше, некоторые аноды для счетчиков Гейгера производятся со специальным покрытием. Такие меры необходимы для того, чтобы счетчик максимально качественно улавливал только бета излучение и реагировал на максимально опасные для человеческого организма заряженные частицы.

Хотим мы или нет, но радиация прочно вошла в нашу жизнь и уходить не собирается. Нам нужно научиться жить с этим, одновременно полезным и опасным, явлением. Радиация проявляет себя невидимыми и неощутимыми излучениями, и без специальных приборов обнаружить их невозможно.

Немного из истории радиации

В 1895 году были открыты рентгеновские лучи. Год спустя была открыта радиоактивность урана, тоже в связи с рентгеновскими лучами. Ученые поняли, что они столкнулись с совершенно новыми, невиданными до сих пор явлениями природы. Интересно, что феномен радиации замечался несколькими годами раньше, но ему не придали значение, хотя ожоги от рентгеновских лучей получал еще Никола Тесла и другие работники эдисоновской лаборатории. Вред здоровью приписывали чему угодно, но не лучам, с которыми живое никогда не сталкивалось в таких дозах. В самом начале XX века стали появляться статьи о вредном действии радиации на животных. Этому тоже не придавали значения до нашумевшей истории с «радиевыми девушками» - работницами фабрики, выпускавшей светящиеся часы. Они всего лишь смачивали кисточки кончиком языка. Ужасная участь некоторых из них даже не публиковалась, по этическим соображениям, и осталась испытанием только для крепких нервов врачей.

В 1939 году физик Лиза Мейтнер, которая вместе с Отто Ганом и Фрицем Штрассманом относится людям, впервые в мире поделившим ядро урана, неосторожно сболтнула о возможности цепной реакции, и с этого момента началась цепная реакция идей о создании бомбы, именно бомбы, а вовсе не «мирного атома», на который кровожадные политики XX века, понятно, не дали бы ни гроша. Те, кто был «в теме», уже знали, к чему это приведет и началась гонка атомных вооружений.

Как появился счетчик Гейгера - Мюллера

Немецкий физик Ганс Гейгер, работавший в лаборатории Эрнста Резерфорда, в 1908 году предложил принцип работы счетчика «заряженных частиц» как дальнейшее развитие уже известной ионизационной камеры, которая представляла собой электрический конденсатор, наполненный газом при небольшом давлении. Она применялась еще Пьером Кюри с 1895 года для изучения электрических свойств газов. У Гейгера возникла идея использовать ее для обнаружения ионизирующих излучений как раз потому, что эти излучения оказывали прямое воздействие на степень ионизации газа.

В 1928 году Вальтер Мюллер, под началом Гейгера, создает несколько типов счетчиков радиации, предназначенных для регистрации различных ионизирующих частиц. Создание счетчиков было очень острой необходимостью, без которой невозможно было продолжать исследование радиоактивных материалов, поскольку физика, как экспериментальная наука, немыслима без измерительных приборов. Гейгер и Мюллер целенаправленно работали над созданием счетчиков, чувствительных к каждому из открытых к тому видов излучений: α, β и γ (нейтроны открыли только в 1932 году).

Счетчик Гейгера-Мюллера оказался простым, надежным, дешевым и практичным датчиком радиации. Хотя он не является самым точным инструментом для исследования отдельных видов частиц или излучений, однако на редкость подходит в качестве прибора для общего измерения интенсивности ионизирующих излучений. А в сочетании с другими детекторами используется физиками и для точнейших измерений при экспериментах.

Ионизирующие излучения

Чтобы лучше понять работу счетчика Гейгера-Мюллера, полезно иметь представление об ионизирующих излучениях вообще. По определению, к ним относится то, что может вызвать ионизацию вещества, находящегося в нормальном состоянии. Для этого необходима определенная энергия. Например, радиоволны или даже ультрафиолетовый свет не относятся к ионизирующим излучениям. Граница начинается с «жесткого ультрафиолета», он же «мягкий рентген». Этот вид является фотонным видом излучения. Фотоны большой энергии принято называть гамма-квантами.

Впервые разделил ионизирующие излучения на три вида Эрнст Резерфорд. Это было сделано на экспериментальной установке при помощи магнитного поля в вакууме. Впоследствии выяснилось, что это:

α - ядра атомов гелия
β - электроны с высокой энергией
γ - гамма-кванты (фотоны)

Позже были открыты нейтроны. Альфа-частицы легко задерживаются даже обычной бумагой, бета-частицы имеют немного большую проникающую способность, а гамма-лучи - самую высокую. Наиболее опасны нейтроны (на расстоянии до многих десятков метров в воздухе!). Из-за их электрической нейтральности они не взаимодействуют с электронными оболочками молекул вещества. Но попав в атомное ядро, вероятность чего достаточно высока, приводят к его нестабильности и распаду, с образованием, как правило, радиоактивных изотопов. А уже те, в свою очередь, распадаясь, сами образуют весь «букет» ионизирующих излучений. Хуже всего то, что облученный предмет или живой организм сам становится источником радиации на протяжении многих часов и суток.

Устройство счетчика Гейгера-Мюллера и принцип его работы

Газоразрядный счетчик Гейгера-Мюллера, как правило, выполняется в виде герметичной трубки, стеклянной или металлической, из которой откачан воздух, а вместо него добавлен инертный газ (неон или аргон или их смесь) под небольшим давлением, с примесью галогенов или спирта. По оси трубки натянута тонкая проволока, а коаксиально с ней расположен металлический цилиндр. И трубка и проволока являются электродами: трубка - катод, а проволока - анод. К катоду подключают минус от источника постоянного напряжения, а к аноду - через большое постоянное сопротивление - плюс от источника постоянного напряжения. Электрически получается делитель напряжения, в средней точке которого (место соединения сопротивления и анода счетчика) напряжение практически равно напряжению на источнике. Обычно это несколько сотен вольт.

Когда сквозь трубку пролетает ионизирующая частица, атомы инертного газа, и так находящиеся в электрическом поле большой напряженности, испытывают столкновения с этой частицей. Энергии, отданной частицей при столкновении, хватает для отрыва электронов от атомов газа. Образующиеся вторичные электроны сами способны образовать новые столкновения и, таким образом, получается целая лавина электронов и ионов. Под действием электрического поля, электроны ускоряются в направлении анода, а положительно заряженные ионы газа - к катоду трубки. Таким образом, возникает электрический ток. Но так как энергия частицы уже израсходована на столкновения, полностью или частично (частица пролетела сквозь трубку), то кончается и запас ионизированных атомов газа, что является желательным и обеспечивается кое-какими дополнительными мерами, о которых мы поговорим при разборе параметров счетчиков.

При попадании в счетчик Гейгера-Мюллера заряженной частицы, за счет возникающего тока падает сопротивление трубки, а вместе с ним и напряжение в средней точке делителя напряжения, о которой шла речь выше. Затем сопротивление трубки вследствие возрастания ее сопротивления восстанавливается, и напряжение опять становится прежним. Таким образом, мы получаем отрицательный импульс напряжения. Считая импульсы, мы можем оценить число пролетевших частиц. Особенно велика напряженность электрического поля вблизи анода из-за его малых размеров, что делает счетчик более чувствительным.

Конструкции счетчиков Гейгера-Мюллера

Современные счетчики Гейгера-Мюллера выпускаются в двух основных вариантах: «классическом» и плоском. Классический счетчик выполняют из тонкостенной металлической трубки с гофрированием. Гофрированная поверхность счетчика делает трубку жесткой, устойчивой к внешнему атмосферному давлению и не дает ей сминаться под его действием. На торцах трубки расположены герметизирующие изоляторы из стекла или термореактивной пластмассы. В них же находятся выводы-колпачки для подключения к схеме приборов. Трубка снабжена маркировкой и покрыта прочным изолирующим лаком, не считая, конечно, ее выводов. Полярность выводов также обозначена. Это универсальный счетчик для любых видов ионизирующих излучений, особенно для бета и гамма.

Счетчики, чувствительные к мягкому β-излучению, делаются иначе. Из-за малого пробега β-частиц, их приходится делать плоскими, со слюдяным окошком, которое слабо задерживает бета-излучение, одним из вариантов такого счетчика, является датчик радиации БЕТА-2 . Все остальные свойства счетчиков определяются материалами, из которых их изготавливают.

Счетчики, предназначенные для регистрации гамма-излучения, содержат катод, изготовленный из металлов с большим зарядовым числом, или покрывают такими металлами. Газ крайне плохо ионизируется гамма-фотонами. Но зато гамма-фотоны способны выбить много вторичных электронов из катода, если его выбрать подходящим образом. Счетчики Гейгера-Мюллера для бета-частиц делают с тонкими окнами для лучшей проницаемости частиц, поскольку они являются обычными электронами, всего лишь получившими большую энергию. С веществом они взаимодействуют весьма хорошо и быстро эту энергию теряют.

В случае альфа-частиц дело обстоит еще хуже. Так, несмотря на весьма приличную энергию, порядка нескольких МэВ, альфа-частицы очень сильно взаимодействуют с молекулами, находящимися на пути, и быстро теряют энергию. Если вещество сравнить с лесом, а электрон с пулей, то тогда альфа-частицы придется сравнивать с танком, ломящимся через лес. Впрочем, обычный счетчик хорошо реагирует на α-излучение, но только на расстоянии до нескольких сантиметров.

Для объективной оценки уровня ионизирующих излучений дозиметры на счетчиках общего применения часто снабжают двумя параллельно работающими счетчиками. Один более чувствителен к α и β излучениям, а второй к γ-лучам. Такая схема применения двух счетчиков реализована в дозиметре RADEX RD1008 и в дозиметре-радиометре РАДЭКС МКС-1009 , в котором установлены счетчик БЕТА-2 и БЕТА-2М . Иногда между счетчиками помещают брусок или пластину из сплава, в котором есть примесь кадмия. При попадании нейтронов в такой брусок возникает γ-излучение, которое и регистрируется. Это делается для получения возможности определять нейтронное излучение, к которому простые счетчики Гейгера практически нечувствительны. Еще один способ - покрытие корпуса (катода) примесями, способными придавать чувствительность к нейтронам.

Галогены (хлор, бром) к газу подмешивают для быстрого самогашения разряда. Той же цели служат и пары спирта, хотя спирт в таком случае недолговечен (это вообще особенность спирта) и «протрезвевший» счетчик постоянно начинает «звенеть», то есть, не может работать в предусмотренном режиме. Это происходит где-то после регистрации 1e9 импульсов (миллиарда) что не так уж и много. Счетчики с галогенами намного долговечнее.

Параметры и режимы работы счетчиков Гейгера

Чувствительность счетчиков Гейгера.

Чувствительность счетчика оценивается отношением числа микрорентген от образцового источника к числу вызываемых этим излучением импульсов. Поскольку счетчики Гейгера не предназначены для измерения энергии частиц, точная оценка затруднительна. Счетчики калибруют по образцовым изотопным источникам. Необходимо отметить, что данный параметр у разных типов счетчиков может сильно отличаться, ниже приведены параметры самых распространённых счетчиков Гейгера-Мюллера:

Счетчик Гейгера-Мюллера Бета-2 - 160 ÷ 240 имп / мкР

Счетчик Гейгера-Мюллера Бета-1 - 96 ÷ 144 имп / мкР

Счетчик Гейгера-Мюллера СБМ-20 - 60 ÷ 75 имп / мкР

Счетчик Гейгера-Мюллера СБМ-21 - 6,5 ÷ 9,5 имп / мкР

Счетчик Гейгера-Мюллера СБМ-10 - 9,6 ÷ 10,8 имп / мкР

Площадь входного окна или рабочая зона

Площадь датчика радиации, через которую пролетают радиоактивные частицы. Данная характеристика напрямо связана с габаритами датчика. Чем больше площадь, тем больше частиц уловит счетчик Гейгера-Мюллера. Обычно данный параметр указывается в квадратных сантиметрах.

Счетчик Гейгера-Мюллера Бета-2 - 13,8 см 2

Счетчик Гейгера-Мюллера Бета-1 - 7 см 2

Это напряжение соответствует приблизительно середине рабочей характеристики. Рабочая характеристика составляет плоскую часть зависимости числа регистрируемых импульсов от напряжения, поэтому ее еще называют «плато». В этой точке достигается наибольшая скорость работы (верхний предел измерений). Типичное значение 400 В.

Ширина рабочей характеристики счетчика.

Это разность между напряжением искрового пробоя и напряжением выхода на плоскую часть характеристики. Типичное значение 100 В.

Наклон рабочей характеристики счетчика.

Наклон измеряется в процентах от числа импульсов на вольт. Он характеризует статистическую погрешность измерений (подсчета числа импульсов). Типичное значение 0.15%.

Допустимая температура эксплуатации счетчика.

Для счетчиков общего применения -50 … +70 градусов Цельсия. Это весьма важный параметр, если счетчик работает в камерах, каналах, и других местах сложного оборудования: ускорителей, реакторов и т.п.

Рабочий ресурс счетчика.

Общее число импульсов, которое счетчик регистрирует до того момента, когда его показания начнут становиться неверными. Для приборов с органическими добавками самогашения, как правило, составляет число 1e9 (десять в девятой степени, или один миллиард). Ресурс считается только в том случае, если к счетчику приложено рабочее напряжение. Если счетчик просто хранится, этот ресурс не расходуется.

Мертвое время счетчика.

Это время (время восстановления), в течение которого счетчик проводит ток после срабатывания от пролетевшей частицы. Существование такого времени означает, что для частоты импульсов есть верхний предел, и это ограничивает диапазон измерений. Типичное значение 1e-4 с, то есть десять микросекунд.

Нужно отметить, что благодаря мертвому времени, датчик может оказаться «зашкаленным» и молчать в самый опасный момент (например, самопроизвольной цепной реакции на производстве). Такие случаи бывали, и для борьбы с ними применяют свинцовые экраны, закрывающие часть датчиков аварийных систем сигнализации.

Собственный фон счетчика.

Измеряется в свинцовых камерах с толстыми стенками для оценки качества счетчиков. Типичное значение 1 … 2 импульса в минуту.

Практическое применение счетчиков Гейгера

Советская и теперь российская промышленность выпускает много типов счетчиков Гейгера-Мюллера. Вот несколько распространенных марок: СТС-6, СБМ-20, СИ-1Г, СИ21Г, СИ22Г, СИ34Г, счетчики серии «Гамма», торцевые счетчики серии «Бета » и есть еще множество других. Все они применяются для контроля и измерений радиации: на объектах ядерной промышленности, в научных и учебных учреждениях, в гражданской обороне, медицине, и даже быту. После чернобыльской аварии, бытовые дозиметры , ранее неизвестные населению даже по названию, стали очень популярными. Появилось много марок бытовых дозиметров. Все они используют именно счетчик Гейгера-Мюллера в качестве датчика радиации. В бытовых дозиметрах устанавливают от одного до двух трубок или торцевых счетчиков.

ЕДИНИЦЫ ИЗМЕРЕНИЯ РАДИАЦИОННЫХ ВЕЛИЧИН

Долгое время была распространена единица измерения Р (рентген). Однако, при переходе к системе СИ появляются другие единицы. Рентген - это единица экспозиционной дозы, «количество радиации», которое выражается числом образовавшихся ионов в сухом воздухе. При дозе в 1 Р в 1 см3 воздуха образуется 2.082e9 пар ионов (что соответствует 1 единице заряда СГСЭ). В системе СИ экспозиционную дозу выражают в кулонах на килограмм, а с рентгеном это связано уравнением:

1 Кл/кг = 3876 Р

Поглощенная доза излучения измеряется в джоулях на килограмм и называется Грей. Это взамен устаревшей единицы рад. Мощность поглощенной дозы измеряется в греях в секунду. Мощность экспозиционной дозы (МЭД) раньше измерявшаяся в рентгенах в секунду, теперь измеряется в амперах на килограмм. Эквивалентная доза излучения, при которой поглощенная доза составляет 1 Гр (грей) и коэффициент качества излучения 1, называется Зиверт. Бэр (биологический эквивалент рентгена) - это сотая часть зиверта, в настоящее время уже считается устаревшей. Тем не менее, и сегодня очень активно применяются все устаревшие единицы.

Главными понятиями в радиационных измерениях считаются доза и мощность. Доза - это число элементарных зарядов в процессе ионизации вещества, а мощность - это скорость образования дозы за единицу времени. А уж в каких единицах это выражается, это дело вкуса и удобства.

Даже минимальная доза опасна в смысле отдаленных последствий для организма. Расчет опасности достаточно прост. Например, ваш дозиметр показывает 300 миллирентген в час. Если вы останетесь в этом месте на сутки, вы получите дозу 24*0.3 = 7.2 рентген. Это опасно и нужно как можно скорее уходить отсюда. Вообще, обнаружив даже слабую радиацию надо уходить от нее и проверять ее даже на расстоянии. Если она «идет за вами», вас можно «поздравить», вы попали под нейтроны. А не каждый дозиметр может на них отреагировать.

Для источников радиации используют величину, характеризующую число распадов за единицу времени, ее называют активностью и измеряют также множеством различных единиц: кюри, беккерель, резерфорд и некоторыми другими. Величина активности, замеренная дважды с достаточным разносом по времени, если она убывает, позволяет рассчитать время, по закону радиоактивного распада, когда источник станет достаточно безопасным.

В 1908 году физик из Германии Ганс Гейгер трудился в химических лабораториях, принадлежащих Эрнсту Резерфорду. Там же им было предложено испытать счетчик заряженных частиц, представлявший собой ионизированную камеру. Камера являлась электро-конденсатором, который наполняли газом под высоким давлением. Еще Пьер Кюри применял это устройство на практике, изучая электричество в газах. Идея Гейгера - обнаруживать излучения ионов - была связана с их влиянием на уровень ионизации летучих газов.

В 1928 г. немецкий ученый Вальтер Мюллер, работавший с Гейгером и под его началом, создал несколько счетчиков, регистрирующих ионизирующие частицы. Устройства были нужны для дальнейшего исследования радиации. Физика, будучи наукой экспериментов, не могла бы существовать без измерительных конструкций. Были открыты только несколько излучений: γ, β, α. Задача Гейгера состояла в том, чтобы измерить чувствительными приборами все виды излучения.

Счетчик Гейгера-Мюллера - простой и дешевый радиоактивный датчик. Это не точный инструмент, который фиксирует отдельные частицы. Техника измеряет общую насыщенность ионизирующего излучения. Физики используют его с другими датчиками, чтобы добиться точности расчетов при проведении экспериментов.

Немного об ионизирующих излучениях

Можно было бы сразу перейти к описанию детектора, но его работа покажется непонятной, если вы мало знаете об ионизирующих излучениях. При излучении происходит эндотермическое влияние на вещество. Этому способствует энергия. К примеру, ультрафиолет или радиоволна к таким излучениям не относятся, а вот жесткий ультрафиолетовый свет - вполне. Здесь определяется граница влияния. Вид именуется фотонным, а сами фотоны - это γ-кванты.

Эрнст Резерфорд поделил процессы испускания энергии на 3 вида, используя установку с магнитным полем:

  • γ - фотон;
  • α - ядро атома гелия;
  • β - электрон с высокой энергией.

От частиц α можно защититься бумажным полотном. β проникают глубже. Способность проникновения γ самая высокая. Нейтроны, о которых ученые узнали позже, являются опасными частицами. Они воздействуют на расстоянии нескольких десятков метров. Имея электрическую нейтральность, они не вступают в реакцию с молекулами разных веществ.

Однако нейтроны легко попадают в центр атома, провоцируют его разрушение, из-за чего образуются радиоактивные изотопы. Распадаясь, изотопы создают ионизирующие излучения. От человека, животного, растения или неорганического предмета, получившего облучение, радиация исходит несколько дней.

Устройство и принцип работы счетчика Гейгера

Прибор состоит из металлической или стеклянной трубки, в которую закачан благородный газ (аргоново-неоновая смесь либо вещества в чистом виде). Воздуха в трубке нет. Газ добавляется под давлением и имеет примесь спирта и галогена. По всей трубке протянута проволока. Параллельно ей располагается железный цилиндр.

Проволока называется анодом, а трубка - катодом. Вместе они - электроды. К электродам подводится высокое напряжение, которое само по себе не вызывает разрядных явлений. В таком состоянии индикатор будет пребывать, пока в его газовой среде не возникнет центр ионизации. От источника питания к трубке подключается минус, а к проволоке - плюс, направленный через высокоуровневое сопротивление. Речь идет о постоянном питании в десятки сотен вольт.

Когда в трубку попадает частица, с ней сталкиваются атомы благородного газа. При соприкосновении выделяется энергия, отрывающая электроны от атомов газа. Затем образуются вторичные электроны, которые тоже сталкиваются, порождая массу новых ионов и электронов. На скорость электронов по направлению к аноду влияет электрическое поле. По ходу этого процесса образуется электрический ток.

При столкновении энергия частиц теряется, запас ионизированных атомов газа подходит к концу. Когда заряженные частицы попадают в газоразрядный счетчик Гейгера, сопротивление трубки падает, что немедленно снижает напряжение средней точки деления. Затем сопротивление вновь растет - это влечет за собой восстановление напряжения. Импульс становится отрицательным. Прибор показывает импульсы, а мы можем их сосчитать, заодно оценив количество частиц.

Виды счётчиков Гейгера

По конструкции счетчики Гейгера бывают 2 видов: плоский и классический.

Классический

Сделан из тонкого гофрированного металла. За счет гофрирования трубка приобретает жесткость и устойчивость к внешнему воздействию, что препятствует ее деформации. Торцы трубки оснащены стеклянными или пластмассовыми изоляторами, в которых находятся колпачки для вывода к приборам.

На поверхность трубки нанесен лак (кроме выводов). Классический счетчик считается универсальным измерительным детектором для всех известных видов излучений. Особенно для γ и β.

Плоский

Чувствительные измерители для фиксации мягкого бета-излучения имеют другую конструкцию. Из-за малого количества бета-частиц, их корпус имеет плоскую форму. Есть окошко из слюды, слабо задерживающее β. Датчик БЕТА-2 - название одного из таких приборов. Свойства других плоских счетчиков зависят от материала.

Параметры и режимы работы счетчика Гейгера

Чтобы рассчитать чувствительность счетчика, оцените отношение количества микрорентген от образца к числу сигналов от этого излучения. Прибор не измеряет энергию частицы, поэтому не дает абсолютно точной оценки. Калибровка устройств происходит по образцам изотопных источников.

Также нужно смотреть на следующие параметры:

Рабочая зона, площадь входного окна

Характеристика площади индикатора, через которую проходят микрочастицы, зависит от его размеров. Чем шире площадь, тем большее число частиц будет поймано.

Рабочее напряжение

Напряжение должно соответствовать средним характеристикам. Сама характеристика работы - это плоская часть зависимости количества фиксированных импульсов от напряжения. Ее второе название - плато. В этом месте работа прибора достигает пиковой активности и именуется верхним пределом измерений. Значение - 400 Вольт.

Рабочая ширина

Рабочая ширина - разница между напряжением выхода на плоскость и напряжением искрового разряда. Значение - 100 Вольт.

Наклон

Величина измеряется в виде процента от количества импульсов на 1 вольт. Он показывает погрешность измерения (статистическую) в подсчете импульсов. Значение - 0,15 %.

Температура

Температура важна, поскольку счётчик часто приходится применять в сложных условиях. Например, в реакторах. Счетчики общего использования: от -50 до +70 С по Цельсию.

Рабочий ресурс

Ресурс характеризуется общим числом всех импульсов, зафиксированных до момента, когда показания прибора становятся некорректными. Если в устройстве есть органика для самогашения, количество импульсов составит один миллиард. Ресурс уместно подсчитывать только в состоянии рабочего напряжения. При хранении прибора расход останавливается.

Время восстановления

Это промежуток времени, за который устройство проводит электричество после реагирования на ионизирующую частицу. Существует верхний предел для частоты импульсов, ограничивающий интервал измерений. Значение - 10 микросекунд.

Из-за времени восстановления (его ещё называют мертвое время) прибор может подвести в решающий момент. Для предотвращения зашкаливания производители устанавливают свинцовые экраны.

Есть ли у счетчика фон

Фон измеряется в толстостенной свинцовой камере. Обычное значение - не более 2 импульсов за минуту.

Кто и где применяет дозиметры радиации?

В промышленных масштабах выпускают много модификаций счетчиков Гейгера-Мюллера. Их производство началось во времена СССР и продолжается сейчас, но уже в Российской Федерации.

Устройство применяют:

  • на объектах атомной промышленности;
  • в научных институтах;
  • в медицине;
  • в быту.

После аварии на Чернобыльской АЭС дозиметры покупают и рядовые граждане. Во всех приборах установлен счетчик Гейгера. Такие дозиметры оснащают одной или двумя трубками.

Можно ли сделать счетчик Гейгера своими руками?

Изготовить счетчик самостоятельно сложно. Нужен датчик излучения, а его купить смогут далеко не все. Сама схема счетчика давно известна - в учебниках физики, например, её тоже печатают. Однако воспроизвести устройство в домашних условиях сумеет только настоящий «левша».

Талантливые мастера-самоучки научились делать счетчику заменитель, который также способен замерять гамма- и бета-излучения с помощью люминесцентной лампы и лампы накаливания. Также используют трансформаторы от сломанной техники, трубка Гейгера, таймер, конденсатор, различные платы, резисторы.

Заключение

Диагностируя излучения, нужно учитывать собственный фон измерителя. Даже при наличии свинцовой защиты приличной толщины скорость регистрации не обнуляется. У этого явления есть объяснение: причина активности - космическое излучение, проникающее через толщи свинца. Над поверхностью Земли ежеминутно проносятся мюоны, которые регистрируются счетчиком с вероятностью 100%.

Есть и еще один источник фона - радиация, накопленная самим устройством. Поэтому по отношению к счётчику Гейгера тоже уместно говорить об износе. Чем больше радиации прибор накопил, тем ниже достоверность его данных.

Счетчик Гейгера - Мюллера

Д ля определения уровня радиации применяется специальный прибор – . И для таких приборов бытового и большинства профессиональных устройств дозиметрического контроля, в качестве чувствительного элемента используется счетчик Гейгера . Это часть радиометра позволяет достаточно точно определить уровень радиации.

История появления счетчика Гейгера

В первые, устройство для определения интенсивности распада радиоактивных материалов появилось на свет в 1908 году, его изобрел немецкий физик Ганс Гейгер . Спустя двадцать лет, совместно с еще одним физиком Вальтером Мюллером прибор был усовершенствован, и в честь этих двух ученых и был назван.

В период развития и становления ядерной физики в бывшем советском союзе, также были созданы соответствующие устройства, которые широко применялись в вооруженных силах, на атомных электростанциях, и в специальных группах радиационного контроля гражданской обороны. В состав таких дозиметров, начиная с семидесятых годов прошлого века, входил счетчик, основанный на принципах Гейгера, а именно СБМ-20 . Данный счетчик, ровно, как и еще один его аналог СТС-5 , широко применяется и по настоящий момент, а также входит в состав современных средств дозиметрического контроля .

Рис.1. Газоразрядный счетчик СТС-5.


Рис.2. Газоразрядный счетчик СБМ-20.

Принцип работы счетчика Гейгера – Мюллера

И дея регистрации радиоактивных частиц предложенной Гейгером относительно проста. Она основана на принципе появления электрических импульсов в среде инертного газа под действием высокозаряженной радиоактивной частицы или кванта электромагнитных колебаний. Чтобы подробней остановиться на механизме действия счетчика, остановимся немного на его конструкции и процессах происходящих в нем, при прохождении радиоактивной частицы через чувствительный элемент прибора.

Р егистрирующее устройство представляет собой герметичный баллон или контейнер, который наполняется инертным газом, это может быть неон, аргон и т.д. Такой контейнер может быть изготовлен из металла или стекла, причем газ в нем находиться под низким давлением, это делается специально, чтобы упростить процесс регистрации заряженной частицы. Внутри контейнера расположены два электрода (катод и анод) на которые подается высокое напряжение постоянного тока через специальный нагрузочный резистор.


Рис.3. Устройство и схема включения счетчика Гейгера.

П ри активации счетчика в среде инертного газа на электродах не возникает разряда за счет высокого сопротивления среды, однако ситуация меняется если в камеру чувствительного элемента прибора попадает радиоактивная частица или квант электромагнитных колебаний. В этом случае частица, имеющая заряд достаточно высокой энергии, выбивает некоторое количество электронов из ближайшего окружения, т.е. из элементов корпуса или физически самих электродов. Такие электроны, оказавшись в среде инертного газа, под действием высокого напряжения между катодом и анодом, начинают двигаться в сторону анода, по пути ионизируя молекулы этого газа. В результате они выбивают из молекул газа вторичные электроны, и этот процесс растет в геометрических масштабах, пока между электродами не происходит пробой. В состоянии разряда цепь замыкается на очень короткий промежуток времени, а это обуславливает скачок тока в нагрузочном резисторе, и именно этот скачок и позволяет зарегистрировать прохождение частицы или кванта через регистрационную камеру.

Т акой механизм позволяет зарегистрировать одну частицу, однако в среде, где ионизирующее излучение достаточно интенсивно, требуется быстрое возвращение регистрационной камеры в исходное положение, для возможности определения новой радиоактивной частицы . Это достигается двумя различными способами. Первый из них заключается в том, чтобы на короткий промежуток времени прекратить подачу напряжения на электроды, в этом случае ионизация инертного газа резко прекращается, а новое включение испытательной камеры, позволяет начать регистрацию с самого начала. Такой тип счетчиков носит название несамогасящиеся дозиметры . Второй тип устройств, а именно самогасящиеся дозиметры, принцип их действия заключается в добавлении в среду инертного газа специальных добавок на основе различных элементов, к примеру, бром, йод, хлор или спирт. В этом случае их присутствие автоматически приводит к прекращению разряда. При таком строении испытательной камеры в качестве нагрузочного резистора используются сопротивления иногда на несколько десятков мегаом. Это позволяет во время разряда резко уменьшить разность потенциалов на концах катода и анода, что прекращает токопроводящий процесс и камера возвращается в исходное состояние. Стоит отметить, что напряжение на электродах менее 300 вольт автоматически прекращает поддержание разряда.

Весь описанный механизм позволяет регистрировать огромное количество радиоактивных частиц за короткий промежуток времени.

Виды радиоактивного излучения

Ч тобы понимать, что именно регистрируют счетчики Гейгера – Мюллера , стоит остановиться на том, и какие виды ее существуют. Сразу стоит оговориться, что газоразрядные счетчики, которые входят в состав большинства современных дозиметров, способны только зарегистрировать количество радиоактивных заряженных частиц или квантов, но не могут определить, ни их энергетических характеристик, ни тип излучения. Для этого дозиметры делают более многофункциональными и целевыми, и чтобы правильно их сравнивать следует более точно понимать их возможности.

П о современным представлениям ядерной физики радиационное излучение можно разделить на два типа, первый в виде электромагнитного поля , второй в виде потока частиц (корпускулярное излучение). К первому типу можно отнести поток гамма-частиц или рентгеновское излучение . Главной их особенностью является способность распространяться в виде волны на очень большие расстояния, при этом они достаточно легко проходят через различные предметы и могут без труда проникать в самые различные материалы. Для примера, если человеку нужно спрятаться от потока гамма-лучей, вследствие ядерного взрыва, то укрывшись в подвале дома или бомбоубежища, при условии его относительной герметичности, он сможет обезопасить себя от этого типа излучения только на 50 процентов.


Рис.4. Кванты рентгеновского и гамма-излучения.

Т акой тип излучения носит импульсный характер и характеризуется распространением в окружающей среде в виде фотонов или квантов, т.е. коротких вспышек электромагнитного излучения. Такое излучение может иметь различные энергетические и частотные характеристики, к примеру, рентгеновское излучение имеет в тысячи раз меньшую частоту, чем гамма–лучи. Поэтому гамма-лучи существенно более опасны для человеческого организма и их воздействие носит значительно более разрушительный характер.

И злучение, основанное на корпускулярном принципе, это альфа и бета частицы (корпускулы). Они возникают в результате ядерной реакции, при которой происходит превращение одних радиоактивных изотопов в другие с выделением колоссального количества энергии. При этом бета-частицы представляют собой поток электронов, а альфа-частицы, существенно более крупные и более устойчивые образования, состоящие из двух нейтронов и двух протонов связанных друг с другом. По сути, такое строение имеет ядро атома гелия, поэтому вполне можно утверждать, что поток альфа-частиц это поток ядер гелия.

П ринята следующая классификация , наименьшей проникающей способностью обладают альфа-частицы, чтобы от них защититься, человеку достаточно и плотного картона, большей проникающей способностью обладают бета-частицы, чтобы человек мог обезопасить себя от потока такого излучения ему потребуется уже металлическая защита в несколько миллиметров толщиной (к примеру, алюминиевый лист). От гамма - квантов практически не существует защиты, и они распространяются на значительные расстояния, затухая по мере отдаления от эпицентра или источника, и подчиняясь законам распространения электромагнитных волн.


Рис.5. Радиоактивные частицы альфа и бета типа.

К оличество энергии, которой обладают все эти три типа излучения, также различны, и наибольшей из них обладает поток альфа частиц. Для примера, энергия, которой обладают альфа частицы в семь тысяч раз больше, чем энергия бета-частиц , т.е. проникающая способность различных типов радиации, находится в обратно пропорциональной зависимости от их проникающей способности.

Д ля человеческого организма наиболее опасным типом радиоактивного излучения считаются гамма кванты , за счет высокой проникающей способности, а затем по убывающей, бета-частицы и альфа-частицы. Поэтому, определить альфа-частицы достаточно трудно, если сказать невозможно обычным счетчиком Гейгера - Мюллера , так как для них является препятствием практически любой объект, не говоря уже о стеклянном или металлическом контейнере. Определить бета-частицы таким счетчиком можно, но лишь в том случае, когда их энергии достаточно для прохождения через материал контейнера счетчика.

Для бета-частиц с малыми энергиями обычный счетчик Гейгера – Мюллера неэффективен.

О братная ситуация с гамма-излучением, есть вероятность, что они насквозь пройдут через контейнер, не запустив реакцию ионизации. Для этого в счетчиках устанавливают специальный экран (из плотной стали или свинца), который позволяет снизить энергию гамма-квантов и активировать, таким образом, разряд в камере счетчика.

Базовые характеристики и отличия счетчиков Гейгера – Мюллера

С тоит также осветить некоторые базовые характеристики и отличия различных дозиметров, оборудованных газоразрядными счетчиками Гейгера – Мюллера . Для этого следует сравнить некоторые из них.

Наиболее распространенные счетчики Гейгера – Мюллера оборудованы цилиндрическими или торцевыми датчиками . Цилиндрические похожи на продолговатый цилиндр в виде трубки с небольшим радиусом. Торцевая ионизационная камера имеет округлую или прямоугольную форму небольших размеров, но со значительной торцевой рабочей поверхностью. Иногда встречаются разновидности торцевых камер с удлиненной цилиндрической трубкой с небольшим входным окном с торцевой стороны. Различные конфигурации счетчиков, а именно самих камер, в состоянии регистрировать разные типы излучений, или же их комбинации, (к примеру, комбинации гамма и бета лучей, или всего спектра альфа, бета и гамма). Такое становится возможным благодаря специально разработанной конструкции корпуса счетчика, а также материала, из которого он изготавливается.

Е ще одной важной составляющей для целевого применения счетчиков это площадь входного чувствительного элемента и рабочей зоны . Другими словами это сектор, через который будут попадать, и регистрироваться интересующие нас радиоактивные частицы. Чем больше эта площадь, тем больше счетчик будет в состоянии уловить частиц, и тем сильнее будет его чувствительность к радиации. В паспортных данных к указывается площадь рабочей поверхности, как правило, в квадратных сантиметрах.

Е ще один важный показатель, который указывается в характеристиках к дозиметру, это величина шума (измеряется в импульсах в секунду). Другими словами, этот показатель можно назвать величиной собственного фона. Его можно определить в лабораторных условиях, для этого прибор помещают в хорошо защищенном помещении или камере, как правило, с толстыми стенками из свинца, и регистрируют уровень радиации, который испускает само устройство. Понятно, что если такой уровень будет достаточно существенным, то эти наведенные шумы непосредственно отразятся на погрешности измерений.

Каждый профессиональный и радиации обладает такой характеристикой, как радиационная чувствительность, также измеряется в импульсах в секунду (имп/с), или в импульсах на микрорентген (имп/мкР). Такой параметр, а точнее его использование, напрямую зависит от источника ионизирующего излучения, на который настраивается счетчик, и по которому будет проводиться дальнейшее измерение. Часто настройку производят по источникам, включающим такие радиоактивные материалы как, радий – 226, кобальт – 60, цезий – 137, углерод – 14 и другие.

Е ще один показатель, по которому стоит сравнивать дозиметры, это эффективность регистрации ионного излучения или радиоактивных частиц. Существование этого критерия связано с тем, что не все пройденные через чувствительный элемент дозиметра радиоактивные частицы будут зарегистрированы. Это может происходить в случае, когда квант гамма-излучения не вызвал ионизацию в камере счетчика, или количество прошедших частиц и вызвавших ионизацию и разряд столь велико, что устройство неадекватно их подсчитывает, и по некоторым другим причинам. Чтобы точно определить данную характеристику конкретного дозиметра, его тестируют при помощи некоторых радиоактивных источников, к примеру, плутония- 239 (для альфа-частиц), или таллия – 204, стронция – 90, иттрия - 90 (бета-излучатель), а также других радиоактивных материалов.

С ледующий критерий, на котором необходимо остановиться, это диапазон регистрируемых энергий . Любая радиоактивная частица или квант излучения обладают различной энергетической характеристикой. Поэтому, дозиметры рассчитаны на измерение не только конкретного типа излучения, но и на их соответствующую энергетическую характеристику. Такой показатель измеряется в мегаэлектронвольтах или килоэлектронвольтах, (МэВ, КэВ). К примеру, если бета-частицы не обладают достаточной энергией, то они не смогут выбить электрон в камере счетчика, и поэтому не будут зарегистрированы, или, только высокоэнергетические альфа-частицы смогут пробиться через материал корпуса счетчика Гейгера – Мюллера и выбить электрон.

И сходя из всего вышеизложенного, современные производители дозиметров радиации выпускают широкий ассортимент приборов для различных целевых назначений и конкретных отраслей промышленности. Поэтому стоит рассмотреть конкретные разновидности счетчиков Гейгера.

Различные варианты счетчиков Гейгера – Мюллера

П ервый вариант дозиметров, это устройства, рассчитанные на регистрацию и обнаружение гамма-фотонов и высокочастотного (жесткого) бета-излучения. На данный диапазон измерений рассчитаны практически все из ранее произведенных и современных, как бытовых например: , так и профессиональных дозиметров радиации, например: . Такое излучение обладает достаточной энергией и большой проникающей способностью, чтобы камера счетчика Гейгера смогла их зарегистрировать. Такие частицы и фотоны легко проникают через стенки счетчика и вызывают процесс ионизации, а это легко регистрируется соответствующей электронной начинкой дозиметра.

Д ля регистрации такого типа радиации прекрасно подходят популярные счетчики типа СБМ-20 , имеющие датчик в виде цилиндрической трубки-баллона с расположенными коаксиально проволочными катодом и анодом. Причем, стенки трубки датчика служат одновременно катодом и корпусом, и изготовлены из нержавеющей стали. Данный счетчик имеет следующие характеристики:

  • площадь рабочей зоны чувствительного элемента 8 квадратных сантиметров;
  • радиационная чувствительность по гамма излучению порядка 280 имп/с, или 70 имп/мкР (тестирование проводилось по цезию – 137 при 4 мкР/с);
  • собственный фон дозиметра составляет порядка 1 имп/с;
  • датчик рассчитан на регистрацию гамма-излучения с энергией в диапазоне от 0,05МэВ до 3МэВ, и бета-частиц с энергией 0,3МэВ по нижней границе.


Рис.6. Устройство счетчика Гейгера СБМ-20.

У данного счетчика существовали различные модификации, к примеру, СБМ-20- 1 или СБМ-20У , которые имеют похожие характеристики, но отличаются принципиальной конструкцией контактных элементов и измерительной схемой. Другие модификации этого счетчика Гейгера – Мюллера, а это СБМ-10, СИ29БГ, СБМ-19, СБМ-21, СИ24БГ имеют похожие параметры также, многие из них встречаются в бытовых дозиметрах радиации, которые можно найти в магазинах и на сегодняшний день.

С ледующая группа дозиметров радиации рассчитана на регистрацию гамма-фотонов и рентгеновского излучения . Если говорить о точности таких устройств, то следует понимать, что фотонное и гамма излучение представляет собой кванты электромагнитного излучения, которые движутся со скоростью света (порядка 300 000 км/с), поэтому зарегистрировать подобный объект представляется достаточно трудной задачей.

Эффективность работы таких счетчиков Гейгера составляет порядка одного процента.

Ч тобы повысить ее требуется увеличение поверхности катода. По сути, гамма-кванты регистрируются косвенным способом, благодаря выбитым ими электронам, которые участвуют в последствие в ионизации инертного газа. Чтобы максимально эффективно способствовать этому явлению, специально подбираются материал и толщина стенок камеры счетчика, а также размеры, толщина и материал катода. Здесь, большая толщина и плотность материала могут снизить чувствительность регистрационной камеры, а слишком малая позволит легко попадать высокочастотному бета-излучению в камеру, а также увеличит количество естественных для прибора радиационных шумов, что заглушит точность определения гамма-квантов. Естественно, что точные пропорции подбираются производителями. По сути, на данном принципе, изготавливаются дозиметры на основании счетчиков Гейгера – Мюллера для прямого определения гамма излучения на местности, при этом такой прибор исключает возможность определения любых других видов излучения и радиоактивного воздействия, что позволяет точно определить радиационную загрязненность и уровень негативного воздействия на человека только по гамма-излучению.

В отечественных дозиметрах, которые оснащены цилиндрическими датчиками, устанавливаются следующие их типы: СИ22Г, СИ21Г, СИ34Г, Гамма 1-1, Гамма – 4, Гамма – 5, Гамма – 7ц, Гамма – 8, Гамма – 11 и многие другие. Причем в некоторых типах устанавливается специальный фильтр на входном, торцевом, чувствительном окне, который специально служит для отсечения альфа и бета-частиц, и дополнительно увеличивающий площадь катода, для более эффективного определения гамма-квантов. К таким датчикам можно отнести Бета – 1М, Бета – 2М, Бета – 5М, Гамма – 6, Бета – 6М и прочие.

Ч тобы понять более наглядно принцип их действия стоит подробней рассмотреть один из таких счетчиков. К примеру, торцевой счетчик с датчиком Бета – 2М , который имеет округлую форму рабочего окна, составляющего порядка 14 квадратных сантиметров. При этом радиационная чувствительность к кобальту - 60 составляет порядка 240 имп/мкР. Данный тип счетчика имеет очень низкие показатели собственного шума , который составляет не более 1 импульса в секунду. Это возможно за счет толстостенной свинцовой камеры, которая в свою очередь рассчитана на регистрацию фотонного излучения с энергией в диапазоне от 0,05 МэВ до 3 МэВ.


Рис.7. Торцевой гамма-счетчик Бета-2М.

Для определения гамма излучения вполне можно использовать счетчики для гамма-бета импульсов, которые рассчитаны на регистрацию жестких (высокочастотных и высокоэнергетических) бета-частиц и гамма-квантов. К примеру, модель СБМ – 20. Если в этой модели дозиметра вы хотите исключить регистрацию бета-частиц, то для этого достаточно установить свинцовый экран, или щит из любого другого металлического материала (свинцовый экран эффективнее). Это наиболее распространенный способ, каким пользуются большинство разработчиков при создании счетчиков для гамма и рентгеновского излучения.

Регистрация «мягкого» бета-излучения.

К ак мы уже ранее упоминали, регистрация мягкого бета излучения (излучение с низкими энергетическими характеристиками и сравнительно небольшой частоты), достаточно трудная задача. Для этого требуется обеспечить возможность более легкого их проникновения в регистрационную камеру. Для этих целей, изготавливается специальное тонкое рабочее окно, как правило, из слюды или полимерной пленки, которое практически не создает препятствий для проникновения бета-излучения этого типа в ионизационную камеру. При этом катодом может выступать непосредственно сам корпус датчика, а анод представляет собой систему линейных электродов, которые равномерно распределены и смонтированы на изоляторах. Регистрационное окно выполнено в торцевом варианте, и на пути бета-частиц в таком случае оказывается только тонкая слюдяная пленка. В дозиметрах с такими счетчиками регистрация гамма излучения идет, как приложение и по сути, как дополнительная возможность. А если требуется избавиться от регистрации гамма-квантов, то необходимо минимизировать поверхность катода.


Рис.8. Устройство торцевого счетчика Гейгера.

С тоит отметить, что счетчики для определения мягких бета-частиц были созданы уже достаточно давно и с успехом применялись во второй половине прошлого века. Среди них наиболее распространенными были датчики типа СБТ10 и СИ8Б , которые имели тонкостенные слюдяные рабочие окна. Более современный вариант такого прибора Бета-5 имеет площадь рабочего окна порядка 37 кв/см, прямоугольной формы из слюдяного материала. Для таких размеров чувствительного элемента, прибор в состоянии регистрировать около 500 имп/мкР, если измерять по кобальту – 60. При этом эффективность определения частиц составляет до 80 процентов. Прочие показатели этого прибора выглядят следующим образом: собственный шум составляет 2,2 имп/с., диапазон определения энергий от 0,05 до 3 МэВ, при этом нижний порог определения мягкого бета-излучения составляет 0,1 МэВ.


Рис.9. Торцевой бета-гамма-счетчик Бета-5.

И естественно, стоит упомянуть о счетчиках Гейгера – Мюллера , способных регистрировать альфа-частицы. Если регистрация мягкого бета-излучения представляется достаточно сложной задачей, то зафиксировать альфа-частицу, даже имеющую высокие энергетические показатели, еще более сложная задача. Такую проблему можно решить только соответствующим уменьшением толщины рабочего окна до толщины, которой будет достаточно для прохождения альфа-частицы в регистрационную камеру датчика, а также практически полным приближением входного окна к источнику излучения альфа-частиц. Такое расстояние должно равняться 1 мм. Понятно, что такое устройство автоматически будет регистрировать любые другие типы излучения, и, причем с достаточно высокой эффективностью. В этом есть и положительная и отрицательная сторона:

Положительная – такой прибор можно использовать для самого широкого спектра анализа радиоактивного излучения

Отрицательная – за счет повышенной чувствительности, будет возникать значительное количество шумов, которые затруднят анализ полученных регистрационных данных.

К роме того, слишком тонкое слюдяное рабочее окно хотя и повышает возможности счетчика, однако в ущерб механической прочности и герметичности ионизационной камеры, тем более что само окно имеет достаточно большую площадь рабочей поверхности. Для сравнения, в счетчиках СБТ10 и СИ8Б, о которых мы упоминали выше, при площади рабочего окна около 30 кв/см, толщина слюдяного слоя составляет 13 – 17 мкм, а при необходимой толщине для регистрации альфа-частиц в 4-5 мкм, входное окно можно сделать лишь не более 0,2 кв/см., речь идет о счетчике СБТ9.

О днако, большую толщину регистрационного рабочего окна можно компенсировать близостью к радиоактивному объекту, и наоборот при сравнительно небольшой толщине слюдяного окна, появляется возможность зарегистрировать альфа-частицу на уже большем расстоянии, чем 1 -2 мм. Стоит привести пример, при толщине окна до 15 мкм, приближение к источнику альфа-излучения должно составлять менее 2 мм, при этом под источником альфа-частиц понимается излучатель плутоний – 239 с энергией излучения 5 МэВ. Продолжим, при толщине входного окна до 10 мкм, зарегистрировать альфа-частицы возможно уже на расстоянии до 13 мм, если сделать слюдяное окно толщиной до 5 мкм, то альфа-излучение будет регистрироваться на расстоянии 24 мм, и т.д. Еще один важный параметр, который напрямую влияет на возможность обнаружения альфа-частиц, это их энергетический показатель. Если энергия альфа-частицы больше чем 5 МэВ, то соответственно увеличиться расстояние ее регистрации для толщины рабочего окна любого типа, а если энергия меньше, то и расстояние требуется уменьшать, вплоть до полной невозможности зарегистрировать мягкое альфа-излучение.

Е ще одним важным моментом, позволяющим увеличить чувствительность альфа счетчика, это уменьшение регистрационной способности для гамма-излучения. Чтобы сделать это, достаточно минимизировать геометрические размеры катода, и гамма-фотоны будут проходить через регистрационную камеру не вызывая ионизации. Такая мера позволяет уменьшить влияние на ионизацию гамма-квантов в тысячи, и даже десятки тысяч раз. Устранить влияние бета-излучения на регистрационную камеру уже не представляется возможным, однако из этой ситуации есть довольно простой выход. Вначале регистрируется альфа и бета излучение суммарного типа, затем устанавливается фильтр из плотной бумаги, и совершается повторный замер, который зарегистрирует только бета-частицы. Величина альфа-излучения в этом случае рассчитывается как разность общего излучения и отдельного показателя расчета бета-излучения.

Для примера , стоит предложить характеристики современного счетчика Бета-1, который позволяет зарегистрировать альфа, бета, гамма излучения. Вот эти показатели:

  • площадь рабочей зоны чувствительного элемента 7 кв/см;
  • толщина слюдяного слоя 12 мкм, (расстояние эффективного обнаружения альфа-частиц по плутонию – 239, порядка 9 мм,. По кобальту - 60 радиационная чувствительность достигается порядка 144 имп/мкР);
  • эффективность измерения радиации для альфа-частиц - 20% (по плутонию - 239), бета-частиц – 45% (по таллию -204), и гамма-квантов – 60% (по составу стронций – 90, иттрий – 90);
  • собственный фон дозиметра составляет порядка 0,6 имп/с;
  • датчик рассчитан на регистрацию гамма-излучения с энергией в диапазоне от 0,05МэВ до 3МэВ, и бета-частиц с энергией более 0,1 МэВ по нижней границе, и альфа-частиц с энергией 5МэВ и более.

Рис.10. Торцевой альфа-бета-гамма-счетчик Бета-1.

К онечно, существует еще достаточно широкий ряд счетчиков , которые предназначены для более узкого и профессионального использования. Такие приборы имеют ряд дополнительных настроек и опций (электрические, механические, радиометрические, климатические и пр.), которые включают в себя множество специальных терминов и возможностей. Однако на них мы концентрироваться не будем. Ведь для понимания базовых принципов действия счетчиков Гейгера – Мюллера , описанных выше моделей вполне достаточно.

В ажно также упомянуть, что существуют специальные подклассы счетчиков Гейгера , которые специально сконструированы для определения различных видов другого излучения. К примеру, для определения величины ультрафиолетового излучения, для регистрации и определения медленных нейтронов, которые функционируют по принципу коронного разряда, и другие варианты, которые не относятся к данной теме напрямую, и рассматриваться не будут.

Газоразрядный счетчик Гейгера-Мюллера (Г-М). Рис.1 – это стеклянный цилиндр (баллон) заполненный инертным газом (с

примесями галогенов) под давлением несколько ниже атмосферного. Тонкий металлический цилиндр внутри баллона служит катодом К; анодом А служит тонкий проводник, проходящий по центру цилиндра. Между анодом и катодом прикладывается напряжение U В =200-1000 В. Анод и катод подключаются к электронной схеме радиометрического прибора.

Рис.1 Цилиндрический счетчик Гейгера-Мюллера.

1 – нить анода 2 – трубчатый катод

U в – источник высоковольтного напряжения

R н – нагрузочное сопротивление

С V – разделительно-накопительная емкость

Р – пересчетное устройство с индикацией

ξ – источник радиации.

С помощью счетчика Г-М можно регистрировать все частицы излучения (кроме легко поглощаемых α-частиц); чтобы β- частицы не поглощались корпусом счетчика в нем имеются прорези, закрытые тонкой пленкой.

Поясним особенности работы счетчика Г-М.

β-частицы непосредственно взаимодействуют с молекулами газа счетчика, в то время как нейтроны и γ-фотоны (незаряженные частицы) с молекулами газа взаимодействуют слабо. В этом случае механизм возникновения ионов иной.

проведем дозиметрический замер окружающей среды около точек К и А, полученные данные занесем в табл. 1.

Для проведения замера необходимо:

1. Подключить дозиметр к источнику питания (9в).

2. На тыльной стороне дозиметра закрыть задвижкой (экраном) окно детектора.

3. Установить переключатель MODE (режим) в положение γ («Р»).

4. Установить переключатель RANGE (диапазон) в положение x 1 (Р н =0,1-50 мкЗв/час).

5. Установить переключатель питания дозиметра в положение ON (Вкл.).

6. Если в положении х1 раздастся звуковой сигнал и числовые ряды дисплея полностью заполнятся, то необходимо перейти на диапазон х10 (Р н =50-500 мкЗв/час).

7. После завершения суммирования импульсов на дисплее дозиметра высветится доза, эквивалентная мощности P мкЗв/час; через 4-5 сек. произойдет сброс показаний.

8. Дозиметр вновь готов к замерам радиации. Автоматически начинается новый цикл замеров.

Таблица 1.

Результирующее значение в рабочем пространстве (АВ) определяется формулой

=
, мкЗв/час (6)

- показания дозиметра дают значения радиационного фона в точке;

Величина радиации в каждой точке замера подчиняется законам флуктуации. Поэтому, чтобы получить наиболее вероятное значение измеряемой величины, необходимо производить серию замеров;

- при дозиметрии β – излучений замеры необходимо проводить вблизи поверхности исследуемых тел.

4. Проведение измерений. П.1. Определение мощности эквивалентной дозы естественного радиационного фона.

Для определения γ-фона окружающей среды выделим (относительно каких-либо объектов (тел)) две точки А, К, расположенные друг от друга на расстоянии ~1 метр, и, не касаясь тел,

Нейтроны, взаимодействуя с атомами катода, порождают заряженные микрочастицы (осколки ядер). Гамма излучение

взаимодействует главным образом с веществом (атомами) катода, порождая фотонное излучение, которое далее ионизирует молекулы газа.

Как только в объеме счетчика появляются ионы, то под действием анодно-катодного электрического поля начнется движение зарядов.

Вблизи анода линии напряженности электрического поля резко сгущаются (следствие малого диаметра нити анода), напряженность поля резко возрастает. Электроны, подходя к нити, получают большое ускорение, возникает ударная ионизация нейтральных молекул газа , вдоль нити распространяется самостоятельный коронный разряд.

За счет энергии этого разряда, энергия первоначального импульса частиц резко усиливается (до 10 8 раз). При распространении коронного разряда часть зарядов будет медленно стекать через большое сопротивление R н ~10 6 Ом (рис.1). В цепи детектора на сопротивлении R н будут возникать импульсы тока, пропорциональный исходному потоку частиц. Возникший импульс тока передается на накопительную емкость С V (С~10 3 пикофарад), далее усиливается и регистрируется пересчетной схемой Р.

Наличие большого сопротивления R н в цепи детектора приводит к тому, что на аноде будут скапливаться отрицательные заряды. Напряженность электрического поля анода будет понижаться и в какой-то момент ударная ионизация прервется, разряд затухнет.

Важную роль в гашении возникшего газового разряда играют галогены, находящиеся в газе счетчика. Потенциал ионизации галогенов ниже, чем у инертных газов, поэтому атомы галогенов активнее «поглощают» фотоны, вызывающие самостоятельный разряд, переводя эту энергию в энергию диссипации, гася тем самостоятельный разряд.

После того как ударная ионизация (и коронный разряд) прервется, начинается процесс восстановление газа в исходное (рабочее) состояние. В течение этого времени счетчик не работает, т.е. не регистрирует пролетающие частицы. Этот промежуток

времени называется «мертвым временем» (временем восстановления). Для счетчика Г-М мертвое время = Δ t ~10 -4 секунды.

Счетчик Г-М реагирует на попадание каждой заряженной частицы, не различая их по энергиям, но, если мощность падаю

щего излучения неизменна, то скорость счета импульсов оказывается пропорциональна мощности излучения, и счетчик можно будет проградуировать в единицах доз излучения.

Качество газоразрядного самогасящегося детектора определяется зависимостью средней частоты импульсов N в единицу времени от напряжения U на его электродах при неизменной интенсивности излучения. Эта функциональная зависимость называется счетной характеристикой детектора (рис.2).

Как следует из рисунка 2, при U < U 1 приложенного напряжения недостаточно для возникновения газового разряда при попадании в детектор заряженной частицы или гамма-кванта. Начиная с напряжения U В > U 2 в счетчике возникает ударная ионизация, вдоль катода распространяется коронный разряд, счетчик фиксирует пролет почти каждой частицы. С ростом U В до U 3 (см. рис. 2) число фиксируемых импульсов несколько увеличивается, что связано с некоторым увеличением степени ионизации газа счетчика. У хорошего счетчика Г-М участок графика от U 2 до U Р почти не зависит от U В , т.е. идет параллельно оси U В , средняя частота импульсов почти не зависит U В .

Рис. 2. Счетная характеристика газоразрядного самогасящегося детектора.

3. Относительная погрешность приборов при измерении Р н : δР н = ±30%.

Поясним, как импульс счетчика преобразуются в показания дозы мощности излучений.

Доказывается, что при неизменной мощности излучений скорость счета импульсов пропорциональна мощности излучений (измеряемой дозе). На этом принципе основывается измерение дозы мощности радиации.

Как только в счетчике возникает импульс, сигнал этот передается в блок пересчета, где фильтруется по длительности, амплитуде, суммируется и результат передается на дисплей счетчика в единицах дозы мощности.

Соответствие между скоростью счета и измеряемой мощностью, т.е. градуировка дозиметра производится (на заводе) по известному источнику радиации С s 137 .