Влияние условий на интенсивность процесса фотосинтеза. Влияние условий на интенсивность процесса фотосинтеза Какие факторы могут влиять на интенсивность фотосинтеза

Интенсивность фотосинтеза

В физиологии растений пользуются двумя понятиями: истинный и наблюдаемый фотосинтез. Это обусловлено следующими соображениями. Скорость или интенсивность фотосинтеза характеризуется количеством СО 2 , поглощенного единицей поверхности листа в единицу времени. Определение интенсивности фотосинтеза проводят газометрическим методом по изменению (уменьшению) количества СО 2 в замкнутой камере с листом. Однако, вместе с фотосинтезом идет процесс дыхания, во время которого выделяется СО 2 . Поэтому получаемые результаты дают представление об интенсивности наблюдаемого фотосинтеза. Для получения величины истинного фотосинтеза необходимо сделать поправку на дыхание. Поэтому перед опытом определяют в темноте интенсивность дыхания, а потом уже интенсивность наблюдаемого фотосинтеза. Затем количество СО 2 , выделенного при дыхании, прибавляют к количеству СО 2 , поглощенного на свету. Внося эту поправку, считают, что интенсивность дыхания на свету и в темноте одинакова. Но эти поправки не могут дать оценку истинного фотосинтеза потому, что, во-первых, при затемнении листа исключается не только истинный фотосинтез, но и фотодыхание; во-вторых, так называемое темновое дыхание в действительности зависит от света (см. дальше).

Поэтому во всех экспериментальных работах по фотосинтетическому газообмену листа отдают преимущество данным по наблюдаемому фотосинтезу. Более точный метод изучения интенсивности фотосинтеза – метод меченных атомов (измеряют количество поглощенного 14 СО 2).

В том случае, когда пересчет количества поглощенного СО 2 на единицу поверхности трудно провести (хвойные, семена, плоды, стебель), полученные данные относят к единице массы. Учитывая, что фотосинтетический коэффициент (отношение объема выделенного кислорода к объему поглощенного СО 2 равен единице, скорость наблюдаемого фотосинтеза можно оценивать по количеству миллилитров кислорода, выделенной единицей площади листа за 1 час.

Для характеристики фотосинтеза пользуются и другими показателями: квантовый расход, квантовый выход фотосинтеза, ассимиляционное число.

Квантовый расход – это отношение количества поглощенных квантов к количеству ассимилированных молекул СО 2 . Обратная величина названа квантовым выходом .

Ассимиляционное число – это соотношение между количеством СО 2 и количеством хлорофилла, который содержится в листе.

Скорость (интенсивность) фотосинтеза – один из важнейших факторов, влияющих на продуктивность с/х культур, а значит и на урожай. Поэтому выяснение факторов, от которых зависит фотосинтез, должно вести к усовершенствованию агротехнических мероприятий.

Теоретически скорость фотосинтеза, как и скорость любого многостадийного биохимического процесса, должна лимитироваться скоростью самой медленной реакции. Так, например, для темновых реакций фотосинтеза нужны НАДФН и АТФ, поэтому темновые реакции зависят от световых реакций. При слабой освещенности скорость образования этих веществ слишком мала, чтобы обеспечить максимальную скорость темновых реакций, поэтому свет будет лимитирующим фактором.

Принцип лимитирующих факторов можно сформулировать следующим образом: при одновременном влиянии нескольких факторов скорость химического процесса лимитируется тем фактором, который ближе всех к минимальному уровню (изменение именно этого фактора будет непосредственно влиять на данный процесс).

Этот принцип впервые был установлен Ф. Блекманом в 1915 г. С тех пор было неоднократно показано, что разные факторы, например концентрация СО 2 и освещенность, могут взаимодействовать между собой и лимитировать процесс, хотя часто один из них все же главенствует. Освещенность, концентрация СО 2 и температура – вот те главные внешние факторы, влияющие на скорость фотосинтеза. Однако большое значение имеет также водный режим, минеральное питание и др.

Свет. При оценке действия света на тот или иной процесс важно различать влияние его интенсивности, качества (спектрального состава) и времени экспозиции на свету.

При низкой освещенности скорость фотосинтеза пропорциональна интенсивности света. Постепенно лимитирующими становятся другие факторы, и увеличение скорости замедляется. В ясный летний день освещенность составляет примерно 100 000 лк, а для светового насыщения фотосинтеза хватает 10 000 лк. Поэтому свет обычно может быть важным лимитирующим фактором в условиях затенения. При очень большой интенсивности света иногда начинается обесцвечивание хлорофилла, и это замедляет фотосинтез; однако в природе, растения находящиеся в таких условиях, обычно тем или иным образом защищены от этого (толстая кутикула, опущенные листья и т. п.).

Зависимость интенсивности фотосинтеза от освещенности описывается кривой, которая получила название световой кривой фотосинтеза (рис. 2.26).

Рис. 2.26. Зависимость интенсивности фотосинтеза от освещенности (световая кривая фотосинтеза): 1 – скорость выделения СО 2 в темноте (скорость дыхания); 2 – компенсационная точка фотосинтеза; 3 – положение светового насыщения

При слабом освещении в процессе дыхания выделяется больше СО 2 , чем связывается его в процессе фотосинтеза, поэтому начало световой кривой с осью абсцисс – компенсационная точка фотосинтеза, которая показывает, что в этом случае при фотосинтезе используется ровно столько СО 2 , сколько его выделяется при дыхании. Иными словами, со временем наступает такой момент, когда фотосинтез и дыхание будут точно уравновешивать друг друга, так что видимый обмен кислорода и СО 2 прекратиться. Световая точка компенсации – это такая интенсивность света, при которой суммарный газообмен равен нулю.

Световые кривые одинаковы не для всех растений. У растений, которые растут на открытых солнечных местах, поглощение СО 2 увеличивается до тех пор, пока интенсивность света не будет равна полному солнечному освещению. У растений, которые растут на затененных местах (например, кислица), поглощение СО 2 увеличивается только при малой интенсивности света.

Все растения по отношению к интенсивности света делят на световые и теневые, или светолюбивые и теневыносливые. Большинство с/х растений является светолюбивыми.

У теневыносливых растений, во-первых, световое насыщение происходит при более слабом освещении, во-вторых, в них компенсационная точка фотосинтеза наступает раньше, т. е. при меньшей освещенности (рис. 2.27).


Последнее связано с тем, что теневыносливые растения отличаются малой интенсивностью дыхания. В условиях слабой освещенности интенсивность фотосинтеза выше у теневыносливых растений, а при сильном свете, наоборот, – у светолюбивых.

Интенсивность света влияет и на химический состав конечных продуктов фотосинтеза. Чем выше освещенность, тем больше образуется углеводов; при низкой освещенности – больше органических кислот.

Опыты в лабораторных условиях показали, что на качество продуктов фотосинтеза влияет и резкий переход «темнота – свет» и наоборот. Сначала после включения света высокой интенсивности преимущественно образуются неуглеводные продукты из-за недостатка НАДФН и АТФ, и только через некоторое время начинают образовываться углеводы. И наоборот, после выключения света листья не сразу теряют способность к фотосинтезу, потому что на протяжении нескольких минут в клетках остается запас АТФ и НАДФ.

После выключения света сначала тормозится синтез углеводов и только потом органических веществ и аминокислот. Основная причина этого явления обусловлена тем, что торможение превращения ФГК в ФГА (и через него в углеводы) происходит раньше, чем торможение ФГК в ФЕП (и через него в аланин, малат и аспарат).

На соотношение образующих продуктов фотосинтеза влияет и спектральный состав света. Под влиянием синего света в растениях увеличивается синтез малата, аспартата и других аминокислот и белков. Эта реакция на синий свет выявлена и в С 3 -растениях и в С 4 -растениях.


Спектральный состав света влияет и на интенсивность фотосинтеза (рис. 2.28). Рис. 2.28. Спектр действия фотосинтеза листьев пшеницы

Спектр действия – это зависимость эффективности химического (биологического) действия света от длины его волны. Интенсивность фотосинтеза в разных участках спектра неодинакова. Максимальная интенсивность наблюдается при освещении растений теми лучами, которые максимально поглощаются хлорофиллами и другими пигментами. Интенсивность фотосинтеза наиболее высокая в красных лучах, потому что она пропорциональна не количеству энергии, а количеству квантов.

Из суммарного уравнения фотосинтеза:

6СО 2 + 6Н 2 О → С 6 Н 12 О 6 + 6О 2

следует, что для образования 1 моля глюкозы нужно 686 ккал; это значит, что для ассимиляции 1 моля СО 2 нужно 686: 6 = 114 ккал. Запас энергии 1 кванта красного света (700 нм) равен 41 ккал/энштейн, а синего (400 нм) 65 ккал/энштейн. Минимальный квантовый расход при освещении красным светом равен 114: 41 ≈ 3, а в действительности тратиться 8–10 квантов. Таким образом, эффективность использования красного света 114/41 · 8 = 34 %, а синего 114/65 ·8 = 22 %.

Концентрация СО 2 . Для темновых реакций нужна двуокись углерода, которая включается в органические соединения. В обычных полевых условиях именно СО 2 является главным лимитирующим фактором. Концентрация СО 2 в атмосфере составляет 0,045 %, но если повышать ее, то можно увеличить и скорость фотосинтеза. При кратковременном действии оптимальная концентрация СО 2 составляет 0,5 %, однако при длительном воздействии возможно повреждение растений, поэтому оптимум концентрации в этом случае ниже – около 0,1 %. Уже сейчас некоторые тепличные культуры, например томаты, стали выращивать в атмосфере, обогащенной СО 2 .

В настоящее время большой интерес вызывает группа растений, которые намного эффективнее поглощают СО 2 из атмосферы и поэтому дают более высокий урожай – так называемые С 4 -растения.

В искусственных условиях зависимость фотосинтеза от концентрации СО 2 описывается в углекислотной кривой, которая напоминает световую кривую фотосинтеза (рис.2.29).

При концентрации СО 2 0,01 % скорость фотосинтеза равна скорости дыхания (компенсационная точка). Углекислотное насыщение наступает при 0,2–0,3 % СО 2 , а у некоторых растениях даже при этих концентрациях наблюдается небольшое увеличение фотосинтеза.

Рис. 2.29. Зависимость интенсивности фотосинтеза хвои сосны от концентрации СО 2 в воздухе

В природных условиях зависимость фотосинтеза от концентрации СО 2 описывается только линейной частью кривой. Отсюда следует, что обеспеченность растений СО 2 в природных условиях является фактором, который лимитирует урожай. Поэтому целесообразно выращивать растения в закрытых помещениях с повышенным содержанием СО 2 .

Температура оказывает заметное влияние на процесс фотосинтеза, поскольку темновые, а отчасти и световые реакции фотосинтеза контролируются ферментами. Оптимальная температура для растений умеренного климата обычно составляет около 25 о С.

Поглощение и восстановление СО 2 у всех растений с повышением температуры увеличиваются, пока не будет достигнут некоторый оптимальный уровень. У большинства растений умеренной зоны снижение интенсивности фотосинтеза начинается уже после 30 о С, у некоторых южных видов после 40 о С. При большой жаре (50–60 о С), когда начинается инактивация ферментов, а также нарушается согласованность разных реакций, фотосинтез быстро прекращается. По мере повышения температуры интенсивность дыхания повышается значительно быстрей, чем интенсивность естественного фотосинтеза. Это влияет на величину наблюдаемого фотосинтеза. Зависимость интенсивности наблюдаемого фотосинтеза от температуры описывается температурной кривой, в которой выделяют три основные точки: минимум, оптимум и максимум.

Минимум – та температура при которой фотосинтез начинается, оптимум – температура, при которой фотосинтез наиболее устойчивый и достигает наибольшей скорости, максимум – та температура, после достижения которой фотосинтез прекращается (рис. 2.30).

Рис. 2.30. Зависимость интенсивности фотосинтеза от температуры листа: 1 – хлопчатник; 2 – подсолнечник; 3 – сорго

Влияние кислорода . Более полувека назад было отмечено на первый взгляд парадоксальное явление. Кислород воздуха, который является продуктом фотосинтеза, является одновременно и его ингибитором: выделение кислорода и поглощение СО 2 падают по мере увеличения концентрации О 2 в воздухе. Этот феномен назвали именем его открывателя – эффект Варбурга. Этот эффект присущ всем С 3 -растениям. И только в листьях С 4 -растений его не удалось выявить. Сейчас твердо установлено, что природа эффекта Варбурга связана с оксигеназными свойствами основного фермента цикла Кальвина – РДФ-карбоксилазы. При большой концентрации кислорода начинается фотодыхание. Установлено, что при снижении концентрации О 2 до 2–3 % фосфогликолат не образуется, исчезает и эффект Варбурга. Таким образом, оба эти явления – проявление оксигеназных свойств РДФ-карбоксилазы и образование гликолата, а также уменьшение фотосинтеза в присутствии О 2 тесно связаны один с другим.

Очень низкое содержание О 2 или полное отсутствие, как и увеличение концентрации до 25–30 %, тормозит фотосинтез. Для большинства растений некоторое снижение природной концентрации (21 %) О 2 активирует фотосинтез.

Влияние оводненности тканей . Как уже отмечалось, вода участвует в световой стадии фотосинтеза как донор водорода для восстановления СО 2 . Однако, роль лимитирующего фотосинтез фактора играет не минимальное количество воды (приблизительно 1 % поступившей), а та вода, которая входит в состав клеточных мембран и является средой для всех биохимических реакций, активирует ферменты темновой фазы. Кроме того, от количества воды в замыкающих клетках зависит степень открытия устьиц, а тургорное состояние всего растения определяет расположение листьев по отношению к солнечным лучам. Количество воды косвенно влияет на изменение скорости отложения крахмала в строме хлоропласта и даже на изменение структуры и расположение тилакоидов в строме.

Зависимость интенсивности фотосинтеза от оводненности тканей растений, как и зависимость от температуры, описывается переходной кривой, имеющей три основные точки: минимум, оптимум и максимум.

При обезвоживании меняется не только интенсивность фотосинтеза, но и качественный состав продуктов фотосинтеза: меньше синтезируется малата, сахарозы, органических кислот; больше – глюкозы, фруктозы аланина и других аминокислот.

К тому же установлено, что при нехватке воды в листьях накапливается АБК – ингибитор роста.

Концентрация хлорофилла , как правило, не бывает лимитирующим фактором, однако количество хлорофилла может уменьшаться при различных заболеваниях (мучнистая роса, ржавчина, вирусные болезни), недостатке минеральных веществ и с возрастом (при нормальном старении). Когда листья желтеют, говорят, что они становятся хлоротичными, а само явление называют хлорозом. Хлоротические пятна на листьях часто бывают симптомом заболевания или недостатка минеральных веществ.

Хлороз может быть вызван и недостатком света, так как свет нужен для конечной стадии биосинтеза хлорофилла.

Минеральные элементы. Для синтеза хлорофилла нужны и минеральные элементы: железо, магний и азот (два последних элемента входят в его структуру), потому они особенно важны для фотосинтеза. Важен также калий.

Для обычного функционирования фотосинтетического аппарата растение должно быть обеспечено необходимым количеством (оптимальным) минеральных элементов. Магний, кроме того, что входит в состав хлорофилла, участвует в действии сопрягающих белков при синтезе АТФ, влияет на активность реакций карбоксилирования и восстановление НАДФ + .

Железо в восстановленной форме необходимо для процессов биосинтеза хлорофилла и железосодержащих соединений хлоропластов (цитохромов, ферредоксина). Нехватка железа нарушает циклическое и нециклическое фотофосфорилирование, синтез пигментов, изменение структуры хлоропластов.

Марганец и хлор принимают участие в фотоокислении воды.

Медь входит в состав пластоцианина.

Недостаток азота оказывает влияние не только на формирование пигментных систем и структур хлоропластов, но и на количество и активность РДФ-карбоксилазы.

При недостатке фосфора нарушаются фотохимические и темновые реакции фотосинтеза.

Калий играет полифункциональную роль в ионной регуляции фотосинтеза, при его недостатке в хлоропластах разрушается структура гран, устьица слабо открываются на свету и недостаточно закрываются в темноте, ухудшается водный режим листа, т. е. нарушаются все процессы фотосинтеза.

Возраст растений. Только после создания фитотронов, где можно выращивать растения в контролируемых условиях, удалось получить надежные результаты. Выявлено, что во всех растениях только в самом начале жизненного цикла, когда формируется фотосинтетический аппарат, интенсивность фотосинтеза увеличивается, очень быстро достигает максимума, затем немного уменьшается и дальше меняется очень мало. Например, у злаков фотосинтез достигает максимальной интенсивности в фазу кущения. Это объясняется тем, что максимальная фотосинтетическая активность листа совпадает с окончанием периода его формирования. Затем начинается старение и уменьшение фотосинтеза.

Интенсивность фотосинтеза зависит в первую очередь от структуры хлоропластов. При старении хлоропластов разрушаются тилакоиды. Доказывают это с помощью реакции Хила. Она идет тем хуже, чем больший возраст хлоропластов. Таким образом, показано, что интенсивность определяется не количеством хлорофилла, а структурой хлоропласта.

В оптимальных условиях влажности и азотного питания снижение фотосинтеза с возрастом происходит медленнее, так как в этих условиях хлоропласты медленнее стареют.

Генетические факторы. Процессы фотосинтеза в определенной степени зависят от наследственности растительного организма. Интенсивность фотосинтеза различна у растений разных систематических групп и жизненных форм. У трав интенсивность фотосинтеза выше, чем у древесных растений (табл. 2.5).

Основными внешними факторами , влияющими на интенсивность фотосинтеза, являются освещенность, концентрация диоксида углерода и температура. Если по горизонтальной оси отложить изменение любого из перечисленных факторов, то кривые зависимости интенсивности фотосинтеза от этих факторов будут иметь вид, представленный на рисунке. Сначала при увеличении значения какого-либо из лимитирующих факторов наблюдается линейное увеличение интенсивности фотосинтеза. Затем по мере того, как другой фактор или факторы становятся лимитирующими, происходит замедление интенсивности реакции и ее стабилизация.

В дальнейшем будем предполагать, что меняется лишь один, обсуждаемый, фактор , а остальные имеют оптимальные значения.

Освещенность и фотосинтез

При низкой освещенности интенсивность фотосинтеза возрастает пропорционально увеличению количества падающего света. Постепенно под воздействием других факторов интенсивность фотосинтеза снижается. Освещенность в ясный летний день составляет примерно 100 000 люкс (10 000 фут-кандел), тогда как для нормального процесса фотосинтеза необходима освещенность, равная лишь 10 000 люкс. Поэтому для большинства растений (кроме растений, находящихся в тени) свет не является главным лимитирующим фактором фотосинтеза. Очень высокие значения интенсивности света могут приводить к обесцвечиванию хлорофилла и замедлению реакций фотосинтеза. Вместе с тем растения, постоянно находящиеся в подобных условиях, обычно хорошо к ним адаптированы; например, листья у них покрыты толстой кутикулой или густо опушены.

Концентрация диоксида углерода и фотосинтез

Диоксид углерода используется в темновых реакциях для получения сахара. В нормальных условиях диоксид углерода является основным лимитирующим фактором фотосинтеза. В атмосфере содержится от 0,03 до 0,04% диоксида углерода. Если повысить его содержание в воздухе, то можно добиться увеличения интенсивности фотосинтеза. В течение короткого периода можно поддерживать оптимальную концентрацию, составляющую 0,5%, однако при длительном воздействии такая концентрация становится опасной для растения. Поэтому наиболее благоприятной считается концентрация диоксида углерода, равная примерно 0,1%. Некоторые тепличные культуры, например томаты, выращивают именно в атмосфере, обогащенной диоксидом углерода. В настоящее время большой интерес вызывают растения, способные эффективно удалять диоксид углерода из атмосферы и дающие при этом повышенные урожаи. Такие растения, называемые С4-растения, обсуждаются в соответствующем разделе.

Температура и фотосинтез

Темновые, а в некоторой степени и световые реакции контролируются ферментами , поэтому температура воздуха имеет большое значение. Для растений умеренного климата наиболее благоприятной температурой является температура примерно 25 °С. При повышении температуры на каждые 10 °С скорость реакции удваивается, (вплоть до 35 °С), однако другие данные свидетельствуют о том, что при 25 "С растение развивается лучше.

Концентрация хлорофилла и фотосинтез

Сама по себе концентрация хлорофилла не является фактором, лимитирующим фотосинтез. Важными могут оказаться причины понижения уровня хлорофилла: болезни (мучнистая роса, ржа, вирусные болезни), недостаток микроэлементов, нормальные процессы старения. Когда лист желтеет, говорят, что он стал хлоротичным, а процесс образования желтоватой окраски листьев называется хлорозом. Хлоро-тичные пятна часто являются симптомом болезни или минеральной недостаточности. Некоторые элементы, например железо, магний и азот (последние два непосредственно входят в молекулу хлорофилла), необходимы для образования хлорофилла, поэтому эти элементы особенно важны. Кроме того, растению требуется калий. Еше одной причиной возникновения хлороза является недостаток света, поскольку свет необходим на конечной стадии синтеза хлорофилла.


Специфические ингибиторы и фотосинтез

Если подавить фотосинтез , то растение неминуемо погибнет. На этом была основана разработка различных гербицидов, например ДХММ (дихлорфенилдиметилмочевина). Данный препарат запускает обходной путь нециклического потока электронов в хлоропластах, ингибируя таким образом световые реакции. ДХММ сыграла важную роль в изучении световых реакций фотосинтеза.

Еше два фактора оказывают большое влияние на рост сельскохозяйственных культур и имеют более общее значение для роста растения и процесса фотосинтеза - это наличие воды и загрязнение окружающей среды.

Вода и фотосинтез

Вода представляет собой исходное вещество для фотосинтеза. Однако поскольку вода влияет на огромное число клеточных процессов, оценить ее непосредственное влияние на фотосинтез невозможно. Тем не менее, изучая количество синтезируемого органического вещества у растений, страдающих от недостатка воды, можно видеть, что временное увядание приводит к резкому снижению урожая. Даже если у растений не наблюдается видимых изменений, незначительный дефицит воды приводит к значительному падению урожая. Причины этого сложны и не до конца изучены. Одной из явных причин можно считать закрывание устьиц при увядании, что препятствует поступлению углекислого газа для фотосинтеза. Кроме того, было показано, что при недостатке воды в листьях некоторых растений накапливается абсцизовая кислота, являющаяся ингибитором роста.

Загрязнение окружающей среды и фотосинтез

Некоторые газы промышленного происхождения, например озон и диоксид серы , даже в небольших количествах очень опасны для листьев растений, хотя точные причины этого до сих пор не установлены. Так, зерновые культуры в загрязненных районах теряют до 15% своей массы, особенно во время засушливого лета. Оказалось, что лишайники очень чувствительны к диоксиду серы. Сажа забивает устьица и уменьшает прозрачность эпидермиса листа.

Как происходит преобразование энергии солнечного света в световой и темновой фазах фотосинтеза в энергию химических связей глюкозы? Ответ поясните.

Ответ

В световой фазе фотосинтеза энергия солнечного света преобразуется в энергию возбужденных электронов, а затем энергия возбужденных электронов преобразуется в энергию АТФ и НАДФ-Н2 . В темновой фазе фотосинтеза энергия АТФ и НАДФ-Н2 преобразуется в энергию химических связей глюкозы.

Что происходит в световую фазу фотосинтеза?

Ответ

Электроны хлорофилла, возбужденные энергией света, идут по электроно-транспортным цепям, их энергия запасается в АТФ и НАДФ-Н2 . Происходит фотолиз воды, выделяется кислород.

Какие основные процессы происходят в темновую фазу фотосинтеза?

Ответ

Из углекислого газа, полученного из атмосферы, и водорода, полученного в световой фазе, за счет энергии АТФ, полученной в световой фазе, образуется глюкоза.

Какова функция хлорофилла в растительной клетке?

Ответ

Хлорофилл участвует в процессе фотосинтеза: в световой фазе хлорофилл поглощает свет, электрон хлорофилла получает энергию света, отрывается и идет по электроно-транспортной цепи.

Какую роль играют электроны молекул хлорофилла в фотосинтезе?

Ответ

Электроны хлорофилла, возбужденные солнечным светом, проходят по электронотранспортным цепям и отдают свою энергию на образование АТФ и НАДФ-Н2 .

На каком этапе фотосинтеза образуется свободный кислород?

Ответ

В световой фазе, во время фотолиза воды.

В какую фазу фотосинтеза происходит синтез АТФ?

Ответ

Всветовую фазу.

Какое вещество служит источником кислорода во время фотосинтеза?

Ответ

Вода (кислород выделяется при фотолизе воды).

Скорость фотосинтеза зависит от лимитирующих (ограничивающих) факторов, среди которых выделяют свет, концентрацию углекислого газа, температуру. Почему эти факторы являются лимитирующими для реакций фотосинтеза?

Ответ

Свет необходим для возбуждения хлорофилла, он поставляет энергию для процесса фотосинтеза. Углекислый газ необходим в темновой фазе фотосинтеза, из него синтезируется глюкоза. Изменение температуры ведет к денатурации ферментов, реакции фотосинтеза замедляются.

В каких реакциях обмена у растений углекислый газ является исходным веществом для синтеза углеводов?

Ответ

В реакциях фотосинтеза.

В листьях растений интенсивно протекает процесс фотосинтеза. Происходит ли он в зрелых и незрелых плодах? Ответ поясните.

Ответ

Фотосинтез происходит в зеленых частях растений на свету. Таким образом, фотосинтез происходит в кожице зеленых плодов. Внутри плодов и в кожице спелых (не зеленых) плодов фотосинтез не происходит.

«Скорость распространения звука» - Как отражается на здоровье человека систематическое действие громких звуков? Что называется чистым тоном? Вывод: Наличие среды- необходимое условие распространения звука. Скорость звука. Назовите единицы громкости и уровня громкости звука. Опытное подтверждение. Распространение звука. Скорость звука в воздухе » 330 м/с.

«Скорость чтения» - В 6 классе – падает более сильно. Хоровое чтение. «Речевые зарядки» (На горке у речки уродилась гречка). При чтении будь внимателен к каждому слову. Выбирать Вам, а не ребёнку! «5» - 150 «4» - 120 «3» - 90. Расширение поля зрения. В 3 классе – 60 – 70% хорошистов. Экономический аспект. Старайся понять, о чём читаешь.

«Скорость реакции» - Лабораторная работа. Отчёт групп. Влияние концентрации реагирующих веществ (для гомогенных систем) 3ряд. Что такое энергия активации? Гомогенные системы: Газ + газ Жидкость + жидкость. Катализаторы и катализ. Почему не все столкновения между частицами приводят к осуществлению реакций? Определите тип реагирующих систем.

«Космическая скорость» - Окружность. Эллипс. Приветствие на 58 языках Земли. Гипербола. Звуки: голоса птиц и зверей, шум моря, дождя, ветра. Третья космическая скорость. Траектория движения тел движущихся с малой скоростью. Первый полет человека в космос. Запущен в 1977году. Первая космическая скорость. Изображение мужчины и женщины.

«Фотосинтез и дыхание растений» - Опыт доказывает испарение воды листьями. Какой ученый внес большой вклад в изучение процессов фотосинтеза? Какие приспособления выработали растения, обитающие в условиях недостатка влаги? Для улучшения дыхания корней проводят рыхление почвы. Что используют для дыхания все живые организмы? Чем питаются все живые организмы?

«Скорость звука» - Частое посещение дискотек и чрезмерное увлечение аудио плеерами. Формулы нахождения скорости звука. Высота звука Тембр звука Громкость звука. В вакууме звука нет! В каком диапазоне человеческое ухо способно воспринимать упругие волны? Животные в качестве звука воспринимают волны иных частот. Новый материал.

Интенсивность процесса фотосинтеза может быть выражена в сле­дующих единицах: в миллиграммах СО 2 , ассимилированной 1 дм 2 листа за 1 ч; в миллилитрах О 2 , выделенного 1 дм 2 листа за 1 ч; в миллиграммах сухого вещества, накопленного 1 дм 2 листа за 1 ч.

При интерпретации данных, полученных любым методом, следует иметь в виду, что на свету растения не только фотосинтезируют, но и дышат. В связи с этим все измеренные тем или иным методом по­казатели представляют собой результат двух прямо противоположных процессов, или разность между показателями процессов фотосинтеза и дыхания. Это видимый фотосинтез. Так, например, наблюдаемое изменение содержания СО 2 - это разность между тем его количест­вом, которое поглощено в процессе фотосинтеза, и тем, которое вы­делилось в процессе дыхания. Для того чтобы перейти к истинной величине фотосинтеза, во всех случаях необходимо вносить поправ­ку, учитывающую интенсивность процесса дыхания.

Влияние внешних условий на интенсивность процесса фотосинтеза

В естественной обстановке все факторы взаимодействуют друг с другом, т. е. действие одного фактора зависит от напряженности всех остальных. В общем виде это можно сформулировать так: изменение напряженности одного фактора при неизменности прочих влияет на фотосинтез, начиная от минимального уровня, при котором процесс начинается, и, кончая оптимумом, при достижении которого процесс перестает изменяться (кривая выходит на плато). Во многих случаях увеличение напряженности фактора после определенного уровня при­водит даже к торможению процесса. Однако если начать изменять какой-либо другой фактор, то оптимальное значение напряженности первого фактора меняется в сторону увеличения. Иначе говоря, пла­то достигается при более высоком значении напряженности. Скорость процесса, в частности скорость фотосинтеза, зависит в первую оче­редь от напряженности того фактора, который находится в минимуме (ограничивающий фактор). В качестве примера можно привести взаимодействие таких факторов, как интенсивность света и содер­жание СО 2 . Чем выше содержание углекислоты (в определенных пределах), тем при более высокой освещенности показатели фото­синтеза выходят па плато.

Влияние света

Увеличение интенсивности освещения сказывается на процессе фотосинтеза различие в зависимости от типа растения и напряжен­ности других факторов. Растения в процессе исторического развития приспособились к произрастанию в различных условиях освещен­ности. По этому признаку растения разделяют на группы: светолюбивые, теневыносливые и тенелюбивые. Эти эко­логические группы характеризуются рядом анатомо-физиологических особенностей. Они различаются по содержанию и составу пиг­ментов.

Светолюбивые растения характеризуются более светлой окраской листьев, меньшим общим содержанием хлорофилла по сравнению с теневыносливыми. В листьях теневыносливых растений по сравне­нию со светолюбивыми относительно высокое содержание ксантофилла и хлорофилла b. Эта особенность в составе пигментов позволяет листьям теневыносливых растений использовать «отработанный свет», уже прошедший через листья светолюбивых растений. Свето­любивые растения - это растения открытых местообитаний, которые чаще испытывают недостаток водоснабжения. В связи с этим их ли­стья по сравнению с теневыносливыми обладают более ксероморфиой анатомической структурой, отличаются большей толщиной, более сильно развитой палисадной паренхимой. У некоторых светолюбивых растений палисадная паренхима располагается не только с верхней, но и с нижней стороны листа. Листья светолюбивых растений по сравнению с теневыносливыми характеризуются также более мелки­ми клетками, более мелкими хлоропластами, меньшей величиной устьиц при большем их количестве на единицу поверхности листа, более густой сетью жилок.

Светолюбивые и теневыносливые растения отличаются и по фи­зиологическим признакам. Большое содержание пигментов позволя­ет теневыносливым растениям лучше использовать малые количества света. У светолюбивых растений интенсивность фотосинтеза увеличи­вается при возрастании интенсивности освещения в более широких пределах. Важной особенностью, определяющей возможность расте­ний произрастать при большей или меньшей освещенности, является положение компенсационной точки. Под компенсационной точкой по­нимается та освещенность, при которой процессы фотосинтеза и ды­хания уравновешивают друг друга. Иначе говоря, это та освещен­ность, при которой растение за единицу времени образует в процес­се фотосинтеза столько органического вещества, сколько оно тратит в процессе дыхания. Естественно, что рост зеленого растения может идти только при освещенности выше компенсационной точки. Чем ниже интенсивность дыхания, тем ниже компенсационная точка и тем при меньшей освещенности растения растут. Теневыносливые растения характеризуются более низкой интенсивностью дыхания, что и позволяет им расти при меньшей освещенности. Компенсаци­онная точка заметно растет с повышением температуры, так как по­вышение температуры сильнее увеличивает дыхание по сравнению с фотосинтезом. Именно поэтому при низкой освещенности повыше­ние температуры может снизить темпы роста растений.

Для фотосинтеза, как и для всякого процесса, включающего фо­тохимические реакции, характерно наличие нижнего порога осве­щенности, при котором он только начинается (около одной свечи на расстоянии 1 м). В целом зависимость фотосинтеза от интенсивности освещения может быть выражена логарифмической кривой. Первона­чально увеличение интенсивности освещения приводит к пропорцио­нальному усилению фотосинтеза (зона максимального эффекта). При дальнейшем увеличении интенсивности света фотосинтез про­должает возрастать, но медленнее (зона ослабленного эффекта) и, наконец, интенсивность света растет, а фотосинтез не изменяется (зона отсутствия эффекта - плато). Наклон кривых, выражающих зависимость интенсивности фотосинтеза от освещенности, различен для разных растений. Есть растения, у которых фотосинтез возрас­тает вплоть до освещения их прямыми солнечными лучами. Вместе с тем для многих растений увеличение интенсивности освещения свыше 50% от прямого солнечного света оказывается уже излиш­ним. Это обстоятельство связано с тем, что конечный выход продук­тов фотосинтеза зависит от скорости не столько световых, сколько темповых реакций. Между тем интенсивность освещения влияет на скорость лишь световых реакций. Следовательно, для того чтобы интенсивность света оказывала влияние после достижения определен­ного уровня, необходимо увеличить скорость темновых реакций. В свою очередь, скорость темновых реакций фотосинтеза в большой степени зависит от температуры и содержания углекислоты. С повы­шением температуры или с увеличением содержания углекислоты оп­тимальная освещенность меняется в сторону увеличения.

В естественных условиях из-за взаимного затенения па нижние листья падает лишь небольшая доля солнечной энергии. Так, в густом посеве растений вики в стадии цветения интенсивность света в при­земном слое составляет всего 3% от полного дневного освещения. Часто нижние листья освещаются светом, близким к"компенсацион­ной точке. Таким образом, в посевах общая интенсивность фотосин­теза всех листьев растений может возрастать вплоть до уровня, со­ответствующего полной интенсивности солнечного света.

При очень высокой интенсивности света, прямо попадающего на лист, может наблюдаться депрессия фотосинтеза. На начальных эта­пах депрессии, вызванной высокой интенсивностью света, хлоро-пласты передвигаются к боковым стенкам клетки (фототаксис). При дальнейшем возрастании освещенности интенсивность фотосинтеза может резко сокращаться. Причиной депрессии фотосинтеза ярким светом могут служить перегрев и нарушение водного баланса. Воз­можно, на ярком свету возникает избыток возбужденных молекул хлорофилла, энергия которых тратится на окисление каких-то фер­ментов, необходимых для нормального протекания процесса фото­синтеза.

Коэффициент использования солнечной энергии

В ясный солнечный день на 1 дм 2 листовой поверхности за 1 ч падает около 30 168 кДж. Из этого количества поглощается пример­но 75 %, или 22 626 кДж, 25 % падающей энергии проходят через лист и отражаются от него. Исходя из количества сухого вещества, накапливаемого листом за определенный промежуток времени рассчитали количество запасаемой энергии и сопоставили его с тем количеством, которое лист получает. Согласно полученным данным, КПД фотосинтеза оказался равным 2,6%. Можно еще более просто подойти к расчету интересующей нас величины. Так, одно растение кукуру­зы накапливает за сутки в среднем 18,3 г сухого вещества. Можно принять, что все это вещество - крахмал. Теплота сгорания 1 г крахмала будет 17,6 кДж. Следовательно, суточная прибыль энергии составит (18,3X17,6) 322 кДж. При густоте на 1 га 15 тыс. расте­ний поле в 1 га за сутки накапливает 4830651 кДж, а получает за день 209 500 000 кДж. Таким образом, использование энергии состав­ляет 2,3%.

Следовательно, расчеты показывают, что КПД процесса фотосин­теза в естественных условиях ничтожно мал. Задача повышения КПД использования солнечной энергии является одной из важней­ших в физиологии растений. Эта задача вполне реальна, так как тео­ретически КПД процесса фотосинтеза может достигать значительно большей величины.

Влияние температуры

Влияние температуры па фотосинтез находится в зависимости от интенсивности освещения. При низкой освещенности фотосинтез от температуры не зависит (Q 10 = 1). Это связано с тем, что при низкой освещенности интенсивность фотосинтеза лимитируется скоростью световых фотохимических реакций. Напротив, при высокой осве­щенности скорость фотосинтеза определяется протеканием темновых реакций, и в этом случае влияние температуры проявляется очень отчетливо. Температурный коэффициент Q 10 может быть около двух. Так, для подсолнечника повышение температуры в интервале от 9 до 19°С увеличивает интенсивность фотосинтеза в 2,5 раза. Темпера­турные пределы, в которых возможно осуществление процессов фо­тосинтеза, различны для разных растений. Минимальная температу­ра для фотосинтеза растений средней полосы около 0°С, для тропи­ческих растений 5-10°С. Имеются данные, что полярные растения могут осуществлять фотосинтез и при температуре ниже 0°С. Опти­мальная температура фотосинтеза для большинства растений со­ставляет примерно 30-33°С. При температуре выше 30-33°С ин­тенсивность фотосинтеза резко падает. Это связано с тем, что зави­симость процесса фотосинтеза от температуры представляет собой равнодействующую противоположных процессов. Так, повышение температуры увеличивает скорость темновых реакций фотосинтеза. Одновременно при температуре 25-30°С происходит процесс инак­тивации хлоропластов. Повышение температуры может вызвать так­же закрытие устьичных щелей.

Влияние содержания СО 2 в воздухе

Источником углерода для процесса фотосинтеза является угле­кислый газ. Попытки заменить углекислый газ угарным (СО) не увенчались успехом. В основном в процессе фотосинтеза использует­ся СО 2 атмосферы. Содержание СО 2 в воздухе составляет всего 0,03%. Процесс фото­синтеза осуществляется при содержании СО 2 не менее 0,008%. Повышение содержания СО 2 до 1,5% вызывает прямо пропорциональное возрастание интенсивности фотосинтеза. При повышении содер­жания СО 2 свыше 1,5% фотосинтез продолжает возрастать, но уже значительно медленнее. При увеличении содержания СО 2 до 15-20% процесс фотосинтеза выходит па плато. При содержании СО 2 выше 70% наступает депрессия фотосинтеза. Есть растения, более чувст­вительные к повышению концентрации СО 2 , у которых торможение фотосинтеза начинает проявляться уже при содержании СО 2 , рав­ном 5%. Повышение концентрации СО 2 оказывает ингибирующее влияние в силу разных причин. Прежде всего, увеличение содержа­ния СО 2 вызывает закрытие устьиц. Вместе с тем высокие концентра­ции СО 2 сказываются особенно неблагоприятно при высокой осве­щенности. Последнее заставляет полагать, что СО 2 в определенных концентрациях ингибирует темновые ферментативные реакции.

В естественных условиях содержание СО 2 настолько мало, что может ограничивать возрастание процесса фотосинтеза. Надо еще учесть, что в дневные часы содержание СО 2 в воздухе вокруг расте­ний понижается.

В связи со сказанным увеличение содержания СО 2 в воздухе яв­ляется одним из важных способов повышения интенсивности фото­синтеза и, как следствие, накопления сухого вещества растением. Однако в полевых условиях регулирование содержания СО 2 затруд­нено. Частично это может быть достигнуто с помощью поверхност­ного внесения навоза или других органических удобрений (мульчи­рование). Легче достигается повышение содержания СО 2 в закры­том грунте. В этом случае подкормки СО 2 дают хорошие резуль­таты и должны быть широко используемы. Разные растения неодинаково используют одни и те же концентрации СО 2 . Растения, у которых фотосинтез идет по «С-4» пути (кукуруза), обладают более высокой способностью к связыванию СО 2 благодаря высокой актив­ности фермента фосфоенолпируваткарбоксилазы.

Влияние снабжения водой

Небольшой водный дефицит (5-15%) в клетках листьев оказы­вает благоприятное влияние на интенсивность фотосинтеза. При полной насыщенности водой клеток листа фотосинтез снижается. Частично это может быть связано с тем, что при полном насыщении клеток мезофилла замыкающие устьичные клетки оказываются несколько сдавленными, устьичные щели не могут открыться (гидропассивные движения). Однако дело не толь­ко в этом. Небольшое обезвоживание_листьев сказывается благопри­ятно на процессе фотосинтеза и вне зависимости от степени откры­тия устьиц. Увеличение вод­ного дефицита свыше 15-20% приводит к заметному снижению интенсивности фотосинтеза. Это связано в первую очередь с закры­тием устьиц (гидроактивные движения), что резко уменьшает диф­фузию СО 2 в лист. Кроме того, это вызывает сокращение транспирации, как следствие, температура листьев возрастает. Между тем по­вышение температуры выше 30°С вызывает снижение фотосинтеза. Наконец обезвоживание оказывает влияние на конформацию, а сле­довательно, и активность ферментов, принимающих участие в тем­повой фазе фотосинтеза.

Снабжение кислородом и интенсивность фотосинтеза

Несмотря на то, что кислород является одним из продуктов про­цесса фотосинтеза, в условиях полного анаэробиоза процесс фотосин­теза останавливается. Можно полагать, что влияние анаэробиоза косвенное, связано с торможением процесса дыхания и накоплением продуктов неполного окисления, в частности органических кислот. Это предположение подтверждается тем, что вредное влияние ана­эробиоза сказывается более резко в кислой среде. Повышение кон­центрации кислорода (до 25%) также тормозит фотосинтез (эффект Варбурга).

Тормозящее влияние высоких концентраций кислорода на фото­синтез проявляется особенно резко при повышенной интенсивности света. Эти наблюдения заставили обратить внимание на особенности процесса дыхания в присутствии света (фотодыхание). Химизм это­го процесса отличен от обычного темнового дыхания. Фотодыхание - это поглощение кислорода и выделение СО 2 па свету в использовани­ем в качестве субстрата промежуточных продуктов цикла Кальвина. По-видимому, образующаяся в цикле Кальвина фосфоглицериновая кислота в процессе фотодыхания окисляется и декарбоксилируется до гликолевой кислоты, а гликолевая кислота окисляется до глиоксилевой кислоты. Образование гликолевой кислоты происходит в хлоропластах, однако там не накапливается, а транспортируется в осо­бые органеллы пероксисомы. В пероксисомах происходит превращение гликолевой кислоты в глиоксилевую кислоту. Глиоксилевая кис­лота, в свою очередь, подвергается аминированию, а затем декарбоксилированию, при этом выделяется углекислый газ.

Выделение СО 2 при фотодыхании может достигать 50% от всего СО 2 , усвоенного в процессе фотосинтеза. В связи с этим можно пола­гать, что уменьшение интенсивности фотодыхания должно привести к повышению продуктивности растений. Так, мутантные формы та­бака, не обладающие способностью к образованию гликолевой кис­лоты, отличаются повышенным накоплением сухой массы. Имеются данные, что некоторое уменьшение содержания кислорода в атмос­фере сказывается благоприятно на темпах накопления сухого веще­ства проростками. У кукурузы и других растений, осуществляющих фотосинтез по «С-4» пути фотодыхание не идет. Не исключено, что такой тип обмена способствует большей продуктивности этих рас­тений.

Влияние минерального питания

Влияние калия на фотосинтез многосторонне. При недостатке ка­лия интенсивность фотосинтеза снижается уже через короткие про­межутки времени. Калий может влиять на фотосинтез косвенно, че­рез повышение оводненности цитоплазмы, ускорение оттока ассимилятов из листьев, увеличение степени открытия устьиц. Вместе с тем имеет место и прямое влияние калия, поскольку он активирует про­цессы фосфорилирования.

Очень велико значение фосфора для фотосинтеза. На всех этапах фотосинтеза принимают участие фосфорилированные соединения. Энергия света аккумулируется в фосфорных связях.

В последнее время много внимания уделяется выяснению роли марганца. При изучении фотосинтеза штамма хлореллы, который может расти как в темноте за счет готового органического вещества, так и на свету, было показано, что марганец необходим только в последнем случае. Для тех микроорганизмов, которые осуществляют процесс фоторедукции, марганец не нужен. Вместе с тем отсутствие марганца резко угнетает реакцию Хилла и процесс нециклического фотофосфорилирования. Все это доказывает, что роль марганца оп­ределяется его участием в реакциях фотоокисления воды.

Многие соединения, функционирующие как переносчики, содер­жат железо (цитохромы, ферредоксин) или медь (пластоцианин). Естественно, что при недостатке этих элементов интенсивность фо­тосинтеза понижается.