Солнечная духовка своими руками. Изготовление солнечной печи своими руками: варианты и особенности

Уже наступило лето и совсем скоро яркое солнце будет жарить вовсю! Самое время вспомнить науку и использовать солнечную энергию себе на благо. Одно из таких применений - это солнечная кухня.

Многие развивающиеся страны, уже не одну сотню лет варят каши без огня: первая известная солнечная печь была сделана швейцарцем по имени Хорас де Соссьюр еще в 1767 году (около 250 лет назад)! [на картинке не она]

То есть м ожно приготовить пищу не сжигая топливо и без электрической энергии, а используя только солнечное излучение.

Для этого нужно сконцентрировать лучи солнца, т.е. собрать их все вместе в одну точку, усилив тем самым их действие во много раз. Эту задачу выполняют так называемые оптические концентраторы, которые представляют из себя вогнутую зеркальную поверхность.

В этой статье мы расскажем о двух конструкциях солнечной печки из легкодоступных материалов, а именно из картона и алюминиевой пищевой фольги.

В основном, в мире, при использовании подобных конструкций, основной упор делается на приготовлении пищи, либо обеззараживания воды без использования огня. Сейчас солнечные кухни используются от жарких пустынь Африки до лесов Канады. В Республике Беларусь такие кухни могут реально работать примерно 5-6 месяцев в году (пока ярко светит солнце).

Модель 1. Солнечная кухня «Параболическая тарелка»

Эта конструкция представляет собой обычное вогнутое зеркало, собирающее лучи в своём фокусе. Совсем необязательно добиваться идеальной геометрии такого зеркала, т.к. в фокусе обычно расположена весьма большая по площади кастрюля.

Особенность таких кухонь является большая температура нагрева "цели". Т.е. её удобно использовать, когда нужно быстро, как на обычной плите, приготовить относительно небольшое количество пищи.

Недостатками такой конструкции являются: необходимость следить за солнцем (приходится поворачивать зеркало примерно раз в полчаса), и возможность получения ожогов глаз и рук при неосторожном обращении.

Несмотря на кажущуюся сложность изготовления отражателя, он также весьма прост и может быть изготовлен из картона и фольги. Пример и последовательность сборки одного из вариантов, показаны на рисунках ниже.


Рисунок 1. Общий вид параболического зеркала печки.


Рисунок 2. Раскройка одного из лепестков. Всего 12 шт.


1) Лепестки из картона вначале соединяют по длинной стороне.
2) Затем соединяют внутреннюю часть полученной тарелки-концентратора в кольцо и обклеивают фольгой изнутри.

3) Стягивают проволокой или веревкой основание.

4) Вот, что получается в результате (вид снаружи и изнутри).

Для этого проделываем 4 отверстия в нижней части нашей печки. В эти отверстия насквозь вставляем палочки 35 см в длину.

Затем наклеиваем сверху вставленных палочек кусочки картона для дополнительной жесткости. Также неплохо бы закрутить на концах палочек резинку или проволоку, чтобы палочки не выскочили.

Затем прикручиваем еще две палочки изнутри поперек при помощи проволоки. Получилась подставка для кастрюли.

Наша солнечная кухня готова! Можно приступать к тестированию.

Модель 2. Панельная модель солнечной кухни

Вот такую солнечную печку продают в магазине за 86 $.


Мы же расскажем как сделать такую печку самому затратив не более 2 $.

Панельная схема солнечной печи является наиболее простой по конструкции, и представляет собой зеркало-концентратор, состоящее из нескольких плоских зеркал-панелей и кастрюли, которая теплоизолирована от окружающего воздуха обычным полиэтиленовым пакетом.

Ниже дана выкройка одной из реальных отработанных конструкций подобных печей. Напомню, в качестве зеркала используется обычный картон с наклеенной на одну его сторону алюминиевой фольгой.


Выкройка зеркала для панельной солнечной печи.


Особенностью данной конструкции, является возможность её складывания в компактный блок размерами, примерно, 33х33 см.

Схема складывания.


А вот как печка выглядит в готовом виде.

Бонус: Подробная видео-инструкция создания солнечной печи

Успешное использование солнечных печей (плит) отмечалось в Европе и Индии уже в 18-м веке. Солнечные плиты и духовые шкафы поглощают солнечную энергию, превращая ее в тепло, которое накапливается внутри замкнутого пространства. Поглощенное тепло используется для варки, жарки и выпечки. Температура в солнечной печи может достигать 200 градусов Цельсия.

Солнечные печи бывают разных форм и размеров. Приведем несколько примеров: духовой шкаф, печь-концентратор, рефлектор, солнечный пароварочный аппарат и т.д. При всем разнообразии моделей, все печи улавливают тепло и удерживают его в теплоизолированной камере. В большинстве моделей солнечный свет непосредственно воздействует на пищу.

Ящичные солнечные печи

Ящичные солнечные печи состоят из хорошо изолированной коробки, окрашенной внутри в черный цвет, в которую помещают черные кастрюли с едой. Коробка накрывается двухслойным "окном", которое пропускает солнечное излучение в ящик и удерживает тепло внутри. Вдобавок к нему крепится крышка с зеркалом на внутренней стороне, которая, будучи откинутой, усиливает падающее излучение, а в закрытом виде улучшает теплоизоляцию печи.

Основные преимущества ящичных солнечных печей:

  • используют как прямое, так и рассеянное солнечное излучение,
  • в них можно нагревать одновременно несколько кастрюль,
  • они легки, портативны и просты в обращении,
  • им не нужно поворачиваться вслед за Солнцем,
  • умеренные температуры делают помешивание не обязательным,
  • еда остается теплой целый день,
  • их легко изготовить и отремонтировать, используя местные материалы.

Они относительно недороги (по сравнению с другими типами солнечных печей).

Присущи им, конечно, и некоторые недостатки:

  • с их помощью можно готовить только в дневное время,
  • из-за умеренной температуры на приготовление пищи требуется продолжительное время,
  • стеклянная крышка приводит к значительным потерям тепла,
  • такие печи "не умеют" жарить.

Благодаря своим преимуществам, солнечные печи-ящики являются наиболее распространенным видом солнечных печей. Они бывают разных видов: промышленного производства, кустарные и самодельные; формой могут напоминать плоский чемоданчик или широкий низкий ящик. Бывают и стационарные печи, сделанные из глины, с горизонтально расположенной крышкой (в тропических и субтропических районах) или наклонной (в умеренном климате). Для семьи из пяти человек рекомендуются стандартные модели с площадью апертуры (входной площади) около 0,25 м2. В продаже встречаются и более крупные варианты печей - 1 м2 и более.

Так как тепло, поглощенное внутренней поверхностью коробки, должно передаваться кастрюлям, лучший материал для коробки - алюминий, обладающий высокой теплопроводностью. К тому же, алюминий не подвержен коррозии. Например, стальной ящик, даже с гальваническим покрытием, не может долго противостоять горячей и влажной среде внутри печи в процессе приготовления пищи. Листовая же медь слишком дорога.

Снаружи коробки нельзя прикреплять металлические детали, которые могут создать тепловые мостики. Теплоизоляционным материалом может служить стекло, синтетическая вата или какой-нибудь природный материал (шелуха арахиса, кокосовых орехов, риса, кукурузы и т. д.). Какой бы материал ни использовался, он должен оставаться сухим.

Крышка печи может состоять из одного или двух стекол с воздушной прослойкой. Расстояние между двумя слоями стекла обычно составляет 10-20 мм. Исследования показали, что использование прозрачного материала с ячеистой структурой, который делит внутреннее пространство на маленькие вертикальные ячейки, может существенно уменьшить теплопотери печи, таким образом увеличивая ее эффективность. Внутреннее стекло подвергается термическому воздействию, поэтому часто используется закаленное стекло; или же оба слоя могут состоять из обычного стекла толщиной около 3 мм.

Внешняя крышка солнечной печи является отражателем, который усиливает падающее излучение. Отражающей поверхностью может служить обычное стеклянное зеркало, пластмассовый лист с отражающим покрытием или небьющееся металлическое зеркало. В крайнем случае, можно использовать фольгу от сигаретных пачек.

Внешняя коробка солнечной печи может быть изготовлена из дерева, стеклопластика или металла. Стеклопластик легок, недорог и водостоек, но не очень долговечен в условиях непрерывного использования. Древесина прочнее, но тяжелее и более подвержена порче из-за влажности. Алюминиевые листы в сочетании с деревянными креплениями образуют наиболее качественную поверхность, устойчивую к механическим воздействиям, перепадам температуры и влажности. Армированная алюминием деревянная коробка наиболее прочная, но она стоит дороже и достаточно тяжелая, к тому же ее изготовление требует времени.

Производительность стандартной солнечной печи с площадью апертуры 0,25 м2 достигает около 4 кг пищи в день, т.е. достаточна для семьи из пяти человек.

Пиковая температура внутри солнечной печи может достигать более 150° C в солнечный день в тропиках; это примерно на 120° C выше температуры окружающего воздуха. Так как вода, содержащаяся в продуктах питания, не нагревается выше 100° C, то температура внутри наполненной печи всегда будет соответственно ниже.

Температура в солнечной печи резко понижается, когда в нее помещают посуду с пищей. Важно и то, что температура остается значительно ниже 100° C большую часть времени приготовления. Но температура кипения 100° C не нужна для приготовления большинства овощей и каш.

Среднее время приготовления пищи в солнечной печи составляет 1-3 часа в хороших солнечных условиях и умеренной загрузки. Использование тонкостенных алюминиевых кастрюль значительно сокращает время приготовления по сравнению с посудой из нержавеющей стали. Кроме того, влияют и такие факторы:

  • время приготовления сокращается в условиях большой освещенности, и наоборот,
  • высокая температура окружающего воздуха сокращает время приготовления, и наоборот,
  • небольшой объем пищи за одно приготовление снижает время готовки - и наоборот.

Зеркальные печи с отражателем

Простейшая зеркальная печь представляет собой параболический рефлектор и подставку для кастрюли, расположенную в фокусе печи. Если печь выставлена на Солнце, то солнечный свет отражается от всех рефлекторов в центральную точку (фокус), нагревая кастрюлю. Рефлектор может представлять собой параболоид, изготовленный, например, из листовой стали или отражающей фольги.

Отражающая поверхность обычно изготовлена из полированного алюминия, зеркального металла или пластика, но может состоять также из множества маленьких плоских зеркал, прикрепленных к внутренней поверхности параболоида. В зависимости от нужного фокусного расстояния, рефлектор может иметь форму глубокой миски, в которую полностью погружается кастрюля с едой (короткое фокусное расстояние, посуда защищена от ветра) или мелкой тарелки, если кастрюля устанавливается в фокусной точке на определенном расстоянии от рефлектора.

Все печи-отражатели используют только прямое солнечное излучение, и поэтому должны постоянно поворачиваться за Солнцем. Это усложняет их эксплуатацию, так как ставит пользователя в зависимость от погоды и регулирующего устройства.

Преимущества зеркальных печей:

  • способность достигать высоких температур и, соответственно, быстрое приготовление пищи.
  • относительно недорогие модели.
  • некоторые из них могут служить также для выпечки.

Перечисленным достоинствам сопутствуют и некоторые недостатки:

  • в зависимости от фокусного расстояния, печь должна поворачиваться за Солнцем примерно каждые 15 минут,
  • используется только прямое излучение, а рассеянный солнечный свет теряется,
  • даже при небольшой облачности возможны большие потери тепла,
  • обращение с такой печью требует определенного навыка и понимания принципов ее действия,
  • отраженное рефлектором излучение очень ярко, слепит глаза, и может привести к получению ожога при контакте с фокальным пятном,
  • приготовление пищи ограничивается дневными часами,
  • повару приходится работать на жарком солнце (за исключением печей с фиксированной фокусировкой),
  • эффективность печи в большой степени зависит от изменяющейся силы и направления ветра,
  • блюдо, приготовленное днем, к вечеру остывает.

Сложность обращения с этими печами в сочетании с тем фактом, что повар вынужден стоять на Солнце, является главной причиной их невысокой популярности. Но в Китае, где приготовление еды традиционно требует высокой температуры и мощности, они широко распространены.

Тепловая мощность солнечных печей

Тепловая мощность солнечной печи определяется количеством солнечной радиации, рабочей поглощающей поверхностью печи (обычно между 0,25 м2 и 2 м2) и ее термическим КПД (обычно 20-50%). В таблице сравниваются типичные значения площади, эффективности и мощности для ящичной печи и печи-отражателя.

Стандартные значения площади, эффективности и производительности ящичной печи и печи-отражателя

Как правило, печи-рефлекторы имеют гораздо большую рабочую поверхность, чем ящичные. Следовательно, они намного мощнее, на них можно кипятить больше воды, готовить больше еды, или обрабатывать сопоставимые количества за меньший промежуток времени. С другой стороны, их тепловая эффективность ниже, потому что посуда остывает под воздействием атмосферы.

В тропических и субтропических странах можно рассчитывать на ясную погоду и нормальную ежедневную освещенность почти круглый год. Около полудня, когда суммарная солнечная освещенность достигает 1000 Вт/м2, вполне реально рассчитывать на тепловую мощность в 50-350 Вт, в зависимости от типа и размера плиты. Количество излучения утром и в дневные часы, естественно, ниже и не может полностью компенсироваться системой слежения за Солнцем.

Для сравнения: сжигание 1 кг сухой древесины производит приблизительно 5000 Вт, помноженные на термический КПД плиты (15% для примитивного очага и 25-30% для улучшенной кухонной плиты, используемой в развивающихся странах). Тепловая мощность, фактически достигающая посуды, составляет, таким образом, 750-1500 Вт.

Количество солнечной радиации резко снижается при облачности и в сезон дождей. В условиях нехватки прямого излучения солнечная печь непригодна ни для чего, кроме

хранения готовой еды в теплом виде. Слабым местом солнечных печей (независимо от их типа) является то, что в облачные и дождливые дни (2-4 месяца в год для большинства развивающихся стран) пищу приходится готовить при помощи обычных средств: на дровах, газовой или керосиновой горелке.

Солнечное излучение и печи

Главной предпосылкой успешного использования солнечной печи является адекватная освещенность с небольшим числом облачных дней в течение года. Продолжительность и интенсивность солнечного излучения должны позволять использование солнечной печи в течение длительных периодов. В то время как в Центральной Европе приготовление пищи с использованием солнечной энергии возможно в солнечный летний день, для солнечной печи желательно минимальное количество солнечной энергии 1500 кВт·ч/м2 в год (что соответствует средней ежедневной инсоляции 4 кВт·ч/м2). Но среднегодовые показатели могут иногда вводить в заблуждение. Существенное условие для пригодности солнечной печи - это стабильная летняя погода, то есть регулярные, предсказуемые периоды безоблачных дней.

Ресурсы солнечной энергии в разных странах существенно отличаются даже в пределах тропического пояса в странах третьего мира. К примеру, солнечное излучение в большинстве регионов Индии считается очень хорошим с точки зрения использования солнечной энергии. Среднее количество солнечной энергии составляет от 5 до 7 кВт·ч/м2 в день в зависимости от региона. На большей части территории страны освещенность достигает минимума в течение сезона дождей и почти так же мала в течение декабря и января.

Климат и солнечный потенциал Кении благоприятны для использования солнечных печей. Кения расположена близко к экватору и поэтому имеет тропический климат. В столице страны Найроби количество солнечной энергии составляет от 3,5 кВт·ч/м2 в день в июле до 6,5 кВт·ч/м2 в день в феврале, а в других областях остается практически неизменной (6,0 - 6,5 кВт·ч/м2 в день в провинции Лодвар). Солнечная радиация в Найроби позволяет готовить пищу с помощью солнечной энергии девять месяцев в году (кроме июня-августа). С другой стороны, в облачные или туманные дни приходится полагаться на традиционные виды топлива. Однако, в провинции Лодвар солнечными печами можно пользоваться круглый год.

Солнечные печи для развивающихся стран

Цель использования солнечных печей, несомненно, заключается в экономии энергии в условиях двойного энергетического кризиса: кризис бедных слоев населения, заключающийся в возрастающей нехватке дров, и кризис национальной энергетики - возрастающее давление на ее платежный баланс.

По сравнению с другими странами, развивающиеся страны потребляют очень мало энергии. К примеру, норма потребления энергии на душу населения в Индии в 1982 году - 7325 ГДж - была одной из наименьших в мире. Но уровень потребления энергии этой страны растет почти в два раза быстрее, чем ее валовой национальный продукт. То же самое происходит и в других развивающихся странах.

Большинство жителей развивающихся стран получает основную часть потребляемой ими энергии из некоммерческих источников: из традиционных местных ресурсов энергии, за счет своего физического труда. Они просто не могут позволить себе купить нужное количество коммерчески производимой энергии.

Логическое следствие этого - относительная нехватка топлива для бедных слоев населения, чей уровень жизни в результате еще далее ухудшается. Солнечные печи - это шаг на пути к улучшению условий их жизни.

Из всего "бедного большинства" жителей стран третьего мира, солнечные печи должны в первую очередь использоваться сельским населением.

Сколько нужно энергии для приготовления пищи

Ежедневная потребность в топливе зависит от того, какая пища готовится и от ее количества. Житель развивающейся страны сжигает, в среднем, 1 тонну дров в год. Типичной индийской семье нужны 3-7 кг дров в день; в более прохладных регионах ежедневное количество дров для одной семьи составляет почти 20 кг зимой и 14 кг летом. На юге Мали среднестатистическая семья (состоящая из 15 человек) сжигает около 15 кг дров в день. Исследование, проведенное в лагере афганских беженцев в Пакистане, показало, что ежедневная потребность в дровах там составляет до 19 кг на семью. Более половины дров в типичном домашнем хозяйстве уходит на выпечку хлеба, остальные - на приготовление другой пищи. Зимой, естественно, дров требуется больше.

Несмотря на то, что количество энергии, необходимое для приготовления пищи, является разным, солнечные печи дают значительную экономию энергии. Первоочередная задача солнечных печей - снижение потребности в дровах, которые до сих пор являются важнейшим топливом для приготовления пищи. Проблема заключается в том, что древесина недорога по сравнению с керосином, баллонным газом и электричеством. Возрастающая неконтролируемая вырубка деревьев для собственных нужд и на продажу является основной причиной исчезновения лесов, расширения пустынь, эрозии почвы, снижения уровня подземных вод, и оказывает долгосрочное неблагоприятное воздействие на экологический баланс. Скудные остатки лесов в Пакистане и безудержная вырубка лесов в Кении служат доказательством того, что страхи по этому поводу не преувеличены. Если вырубка лесов в Судане не замедлится, к 2005 году от них ничего не останется.

В целом, солнечные печи вряд ли могут внести большой вклад в национальную энергетику. Однако они могут весьма существенно улучшить условия жизни бедняков, помочь им преодолеть личный энергетический кризис.

Экология потребления.Наука и техника:Успешное использование солнечных печей (плит) отмечалось в Европе и Индии уже в 18-м веке. Солнечные плиты и духовые шкафы поглощают солнечную энергию, превращая ее в тепло, которое накапливается внутри замкнутого пространства.

Успешное использование солнечных печей (плит) отмечалось в Европе и Индии уже в 18-м веке. Солнечные плиты и духовые шкафы поглощают солнечную энергию, превращая ее в тепло, которое накапливается внутри замкнутого пространства. Поглощенное тепло используется для варки, жарки и выпечки. Температура в солнечной печи может достигать 200 градусов Цельсия.

Ящичные солнечные печи

Ящичные солнечные печи состоят из хорошо изолированной коробки, окрашенной внутри в черный цвет, в которую помещают черные кастрюли с едой. Коробка накрывается двухслойным "окном", которое пропускает солнечное излучение в ящик и удерживает тепло внутри. Вдобавок к нему крепится крышка с зеркалом на внутренней стороне, которая, будучи откинутой, усиливает падающее излучение, а в закрытом виде улучшает теплоизоляцию печи.

Основные преимущества ящичных солнечных печей:

  • Используют как прямое, так и рассеянное солнечное излучение.
  • В них можно нагревать одновременно несколько кастрюль.
  • Они легки, портативны и просты в обращении.
  • Им не нужно поворачиваться вслед за Солнцем.
  • Умеренные температуры делают помешивание не обязательным.
  • Еда остается теплой целый день.
  • Их легко изготовить и отремонтировать, используя местные материалы.
  • Они относительно недороги (по сравнению с другими типами солнечных печей).

Присущи им, конечно, и некоторые недостатки:

  • С их помощью можно готовить только в дневное время.
  • Из-за умеренной температуры на приготовление пищи требуется продолжительное время.
  • Стеклянная крышка приводит к значительным потерям тепла.
  • Такие печи "не умеют" жарить.

Благодаря своим преимуществам, солнечные печи-ящики являются наиболее распространенным видом солнечных печей. Они бывают разных видов: промышленного производства, кустарные и самодельные; формой могут напоминать плоский чемоданчик или широкий низкий ящик. Бывают и стационарные печи, сделанные из глины, с горизонтально расположенной крышкой (в тропических и субтропических районах) или наклонной (в умеренном климате). Для семьи из пяти человек рекомендуются стандартные модели с площадью апертуры (входной площади) около 0,25 м2. В продаже встречаются и более крупные варианты печей -- 1 м2 и более.

Так как тепло, поглощенное внутренней поверхностью коробки, должно передаваться кастрюлям, лучший материал для коробки - алюминий, обладающий высокой теплопроводностью. К тому же, алюминий не подвержен коррозии. Например, стальной ящик, даже с гальваническим покрытием, не может долго противостоять горячей и влажной среде внутри печи в процессе приготовления пищи. Листовая же медь слишком дорога.

Снаружи коробки нельзя прикреплять металлические детали, которые могут создать тепловые мостики. Теплоизоляционным материалом может служить стекло, синтетическая вата или какой-нибудь природный материал (шелуха арахиса, кокосовых орехов, риса, кукурузы и т. д.). Какой бы материал ни использовался, он должен оставаться сухим.

Крышка печи может состоять из одного или двух стекол с воздушной прослойкой. Расстояние между двумя слоями стекла обычно составляет 10-20 мм. Исследования показали, что использование прозрачного материала с ячеистой структурой, который делит внутреннее пространство на маленькие вертикальные ячейки, может существенно уменьшить теплопотери печи, таким образом увеличивая ее эффективность. Внутреннее стекло подвергается термическому воздействию, поэтому часто используется закаленное стекло; или же оба слоя могут состоять из обычного стекла толщиной около 3 мм.

Внешняя крышка солнечной печи является отражателем, который усиливает падающее излучение. Отражающей поверхностью может служить обычное стеклянное зеркало, пластмассовый лист с отражающим покрытием или небьющееся металлическое зеркало. В крайнем случае, можно использовать фольгу от сигаретных пачек.

Внешняя коробка солнечной печи может быть изготовлена из дерева, стеклопластика или металла. Стеклопластик легок, недорог и водостоек, но не очень долговечен в условиях непрерывного использования. Древесина прочнее, но тяжелее и более подвержена порче из-за влажности. Алюминиевые листы в сочетании с деревянными креплениями образуют наиболее качественную поверхность, устойчивую к механическим воздействиям, перепадам температуры и влажности. Армированная алюминием деревянная коробка наиболее прочная, но она стоит дороже и достаточно тяжелая, к тому же ее изготовление требует времени.

Производительность стандартной солнечной печи с площадью апертуры 0.25 м2 достигает около 4 кг пищи в день, т.е. достаточна для семьи из пяти человек.

Пиковая температура внутри солнечной печи может достигать более 150 оC в солнечный день в тропиках; это примерно на 120 оC выше температуры окружающего воздуха. Так как вода, содержащаяся в продуктах питания, не нагревается выше 100 оC, то температура внутри наполненной печи всегда будет соответственно ниже.

Температура в солнечной печи резко понижается, когда в нее помещают посуду с пищей. Важно и то, что температура остается значительно ниже 100 оC большую часть времени приготовления. Но температура кипения 100 оC не нужна для приготовления большинства овощей и каш.

Среднее время приготовления пищи в солнечной печи составляет 1-3 часа в хороших солнечных условиях и умеренной загрузки. Использование тонкостенных алюминиевых кастрюль значительно сокращает время приготовления по сравнению с посудой из нержавеющей стали. Кроме того, влияют и такие факторы:

  • Время приготовления сокращается в условиях большой освещенности, и наоборот.
  • Высокая температура окружающего воздуха сокращает время приготовления, и наоборот.
  • Небольшой объем пищи за одно приготовление снижает время готовки - и наоборот.

Зеркальные печи (с отражтелем)

Простейшая зеркальная печь представляет собой параболический рефлектор и подставку для кастрюли, расположенную в фокусе печи. Если печь выставлена на Солнце, то солнечный свет отражается от всех рефлекторов в центральную точку (фокус), нагревая кастрюлю. Рефлектор может представлять собой параболоид, изготовленный, например, из листовой стали или отражающей фольги. Отражающая поверхность обычно изготовлена из полированного алюминия, зеркального металла или пластика, но может состоять также из множества маленьких плоских зеркал, прикрепленных к внутренней поверхности параболоида. В зависимости от нужного фокусного расстояния, рефлектор может иметь форму глубокой миски, в которую полностью погружается кастрюля с едой (короткое фокусное расстояние, посуда защищена от ветра) или мелкой тарелки, если кастрюля устанавливается в фокусной точке на определенном расстоянии от рефлектора.

Все печи-отражатели используют только прямое солнечное излучение, и поэтому должны постоянно поворачиваться за Солнцем. Это усложняет их эксплуатацию, так как ставит пользователя в зависимость от погоды и регулирующего устройства.

Преимущества зеркальных печей:

  • Способность достигать высоких температур и, соответственно, быстрое приготовление пищи.
  • Относительно недорогие модели.
  • Некоторые из них могут служить также для выпечки.

Перечисленным достоинствам сопутствуют и некоторые недостатки:

  • В зависимости от фокусного расстояния, печь должна поворачиваться за Солнцем примерно каждые 15 минут.
  • Используется только прямое излучение, а рассеянный солнечный свет теряется.
  • Даже при небольшой облачности возможны большие потери тепла.
  • Обращение с такой печью требует определенного навыка и понимания принципов ее действия.
  • Отраженное рефлектором излучение очень ярко, слепит глаза, и может привести к получению ожога при контакте с фокальным пятном.
  • Приготовление пищи ограничивается дневными часами.
  • Повару приходится работать на жарком солнце (за исключением печей с фиксированной фокусировкой).
  • Эффективность печи в большой степени зависит от изменяющейся силы и направления ветра.
  • Блюдо, приготовленное днем, к вечеру остывает.

Сложность обращения с этими печами в сочетании с тем фактом, что повар вынужден стоять на Солнце, является главной причиной их невысокой популярности. Но в Китае, где приготовление еды традиционно требует высокой температуры и мощности, они широко распространены.

Тепловая мощность

Тепловая мощность солнечной печи определяется количеством солнечной радиации, рабочей поглощающей поверхностью печи (обычно между 0,25 м2 и 2 м2) и ее термическим КПД (обычно 20-50%). В таблице сравниваются типичные значения площади, эффективности и мощности для ящичной печи и печи-отражателя.

Стандартные значения площади, эффективности и производительности ящичной печи и печи-отражателя

Как правило, печи-рефлекторы имеют гораздо большую рабочую поверхность, чем ящичные. Следовательно, они намного мощнее, на них можно кипятить больше воды, готовить больше еды, или обрабатывать сопоставимые количества за меньший промежуток времени. С другой стороны, их тепловая эффективность ниже, потому что посуда остывает под воздействием атмосферы.

В тропических и субтропических странах можно рассчитывать на ясную погоду и нормальную ежедневную освещенность почти круглый год. Около полудня, когда суммарная солнечная освещенность достигает 1000 Вт/м2, вполне реально рассчитывать на тепловую мощность в 50-350 Вт, в зависимости от типа и размера плиты. Количество излучения утром и в дневные часы, естественно, ниже и не может полностью компенсироваться системой слежения за Солнцем.

Для сравнения: сжигание 1 кг сухой древесины производит приблизительно 5000 Вт, помноженные на термический КПД плиты (15 % для примитивного очага и 25-30 % для улучшенной кухонной плиты, используемой в развивающихся странах). Тепловая мощность, фактически достигающая посуды, составляет, таким образом, 750-1500 Вт.

Количество солнечной радиации резко снижается при облачности и в сезон дождей. В условиях нехватки прямого излучения солнечная печь непригодна ни для чего, кроме хранения готовой еды в теплом виде. Слабым местом солнечных печей (независимо от их типа) является то, что в облачные и дождливые дни (2-4 месяца в год для большинства развивающихся стран) пищу приходится готовить при помощи обычных средств: на дровах, газовой или керосиновой горелке.

Солнечное излучение и печи

Главной предпосылкой успешного использования солнечной печи является адекватная освещенность с небольшим числом облачных дней в течение года. Продолжительность и интенсивность солнечного излучения должны позволять использование солнечной печи в течение длительных периодов. В то время как в Центральной Европе приготовление пищи с использованием солнечной энергии возможно в солнечный летний день, для солнечной печи желательно минимальное количество солнечной энергии 1500 кВт·ч/м2 в год (что соответствует средней ежедневной инсоляции 4 кВт·ч/м2). Но среднегодовые показатели могут иногда вводить в заблуждение. Существенное условие для пригодности солнечной печи - это стабильная летняя погода, то есть регулярные, предсказуемые периоды безоблачных дней.

Ресурсы солнечной энергии в разных странах существенно отличаются даже в пределах тропического пояса в странах третьего мира. К примеру, солнечное излучение в большинстве регионов Индии считается очень хорошим с точки зрения использования солнечной энергии. Среднее количество солнечной энергии составляет от 5 до 7 кВт·ч/м2 в день в зависимости от региона. На большей части территории страны освещенность достигает минимума в течение сезона дождей и почти так же мала в течение декабря и января.

Климат и солнечный потенциал Кении благоприятны для использования солнечных печей. Кения расположена близко к экватору и поэтому имеет тропический климат. В столице страны Найроби количество солнечной энергии составляет от 3,5 кВт·ч/м2 в день в июле до 6,5 кВт·ч/м2 в день в феврале, а в других областях остается практически неизменной (6,0 - 6,5 кВт·ч/м2 в день в провинции Лодвар). Солнечная радиация в Найроби позволяет готовить пищу с помощью солнечной энергии девять месяцев в году (кроме июня-августа). С другой стороны, в облачные или туманные дни приходится полагаться на традиционные виды топлива. Однако, в провинции Лодвар солнечными печами можно пользоваться круглый год.

Солнечные печи для развивающихся стран

Цель использования солнечных печей, несомненно, заключается в экономии энергии в условиях двойного энергетического кризиса: кризис бедных слоев населения, заключающийся в возрастающей нехватке дров, и кризис национальной энергетики - возрастающее давление на ее платежный баланс.

По сравнению с другими странами, развивающиеся страны потребляют очень мало энергии. К примеру, норма потребления энергии на душу населения в Индии в 1982 году - 7325 ГДж - была одной из наименьших в мире. Но уровень потребления энергии этой страны растет почти в два раза быстрее, чем ее валовой национальный продукт. То же самое происходит и в других развивающихся странах.

Большинство жителей развивающихся стран получает основную часть потребляемой ими энергии из некоммерческих источников: из традиционных местных ресурсов энергии, за счет своего физического труда. Они просто не могут позволить себе купить нужное количество коммерчески производимой энергии.

Логическое следствие этого - относительная нехватка топлива для бедных слоев населения, чей уровень жизни в результате еще далее ухудшается. Солнечные печи - это шаг на пути к улучшению условий их жизни.

Из всего "бедного большинства" жителей стран третьего мира, солнечные печи должны в первую очередь использоваться сельским населением.

Сколько нужно энергии для приготовления пищи

Ежедневная потребность в топливе зависит от того, какая пища готовится и от ее количества. Житель развивающейся страны сжигает, в среднем, 1 тонну дров в год. Типичной индийской семье нужны 3-7 кг дров в день; в более прохладных регионах ежедневное количество дров для одной семьи составляет почти 20 кг зимой и 14 кг летом. На юге Мали среднестатистическая семья (состоящая из 15 человек) сжигает около 15 кг дров в день. Исследование, проведенное в лагере афганских беженцев в Пакистане, показало, что ежедневная потребность в дровах там составляет до 19 кг на семью. Более половины дров в типичном домашнем хозяйстве уходит на выпечку хлеба, остальные - на приготовление другой пищи. Зимой, естественно, дров требуется больше.

Несмотря на то, что количество энергии, необходимое для приготовления пищи, является разным, солнечные печи дают значительную экономию энергии. Первоочередная задача солнечных печей - снижение потребности в дровах, которые до сих пор являются важнейшим топливом для приготовления пищи. Проблема заключается в том, что древесина недорога по сравнению с керосином, баллонным газом и электричеством. Возрастающая неконтролируемая вырубка деревьев для собственных нужд и на продажу является основной причиной исчезновения лесов, расширения пустынь, эрозии почвы, снижения уровня подземных вод, и оказывает долгосрочное неблагоприятное воздействие на экологический баланс. Скудные остатки лесов в Пакистане и безудержная вырубка лесов в Кении служат доказательством того, что страхи по этому поводу не преувеличены.

В целом, солнечные печи вряд ли могут внести большой вклад в национальную энергетику. Однако они могут весьма существенно улучшить условия жизни бедняков, помочь им преодолеть личный энергетический кризис.

Солнечные печи бывают разных форм и размеров. Приведем несколько примеров: духовой шкаф, печь-концентратор, рефлектор, солнечный пароварочный аппарат и т.д. При всем разнообразии моделей, все печи улавливают тепло и удерживают его в теплоизолированной камере. В большинстве моделей солнечный свет непосредственно воздействует на пищу.

July 10th, 2017

Подобных сооружений на самом деле в мире насчитывается несколько. Давайте мы начнем с Solar Furnace in France, т.е с Франции.

Солнечная Печь во Франции предназначена для выработки и концентрации высоких температур, необходимых для различных процессов.

Это осуществляется посредством улавливания солнечных лучей и концентрирования их энергии в одном месте. Сооружение покрыто изогнутыми зеркалами, их сияние настолько велико, что смотреть на них бывает невозможно, до боли в глазах. В 1970 году было воздвигнуто это сооружение, в качестве самого подходящего места были выбраны Восточные Пиренеи. И до сегодняшнего дня Печь остается крупнейшей во всем мире.




На массив зеркал возложены функции параболического отражателя, а высокий температурный режим в самом фокусе может доходить до 3500 градусов. Причем и регулировать температуру можно с помощью изменения углов наклона зеркал.

Солнечная Печь, используя такой природный ресурс как солнечный свет, считается незаменимым способом для получения высоких температур. А они, в свою очередь, используются для разнообразных процессов. Так, производство водорода требует температуры в 1400 градусов. Тестовые режимы материалов, проводящиеся в высокотемпературных условиях, предусматривают температуру 2500 градусов. Так тестируются космические аппараты и атомные реакторы.


Так что Солнечная Печь - не просто удивительное здание, но и жизненно необходимое и эффективное, при этом оно считается экологичным и относительно дешёвым способом получить высокие температуры.

Массив зеркал действует в качестве параболического отражателя. Свет фокусируется в одном центре. И температура там может достигать температур, при которых можно плавить сталь.

Но температуру можно регулировать, устанавливая зеркала под разными углами.

Например, температура около 1400 градусов используется для производства водорода. Температура 2500 градусов - для тестирования материалов в экстремальных условиях. Например, так проверяют атомные реакторы и космические аппараты. А вот температура до 3500 градусов применяется для изготовления наноматериалов.

Солнечная Печь - недорогой, эффективный и экологичный способ получения высоких температур.

На юго-западе Франции замечательно приживается виноград и вызревают всевозможные фрукты — жарко! Кроме прочего, солнце здесь светит чуть не 300 дней в году, а по количеству ясных дней эти места уступают, пожалуй, только Лазурному берегу. Если же охарактеризовать долину около Одейо с точки зрения физики, то мощность светового излучения здесь составляет 800 ватт на 1 квадратный метр. Восемь мощных лампочек накаливания. Немного? Достаточно, чтобы кусочек базальта растекся лужицей!

— Солнечная печь в Одейо обладает мощностью 1 мегаватт, и для этого необходимо почти 3 тысячи метров зеркальной поверхности, — рассказывает Серж Шовин, смотритель местного музея солнечной энергии. — Причем собрать свет с такой большой поверхности нужно в фокусную точку диаметром со столовую тарелку.

Напротив параболического зеркала установлены гелиостаты — специальные зеркальные плиты. Их 63 штуки со 180 секциями. У каждого гелиостата своя «точка ответственности» — сектор параболы, на который отражается собранный свет. Уже на вогнутом зеркале лучи солнца собираются в точку фокуса — ту самую печь. В зависимости от интенсивности излучения (читай — ясности неба, времени суток и поры года) температуры можно достичь самые разные. В теории — до 3800 градусов по Цельсию, в реальности выходило до 3600.

— Вместе с движением солнца по небу двигаются и гелиостаты, — начинает свою экскурсию Серж Шовин. — Сзади у каждого установлен двигатель, а все вместе они управляются централизованно. Необязательно устанавливать их в идеальную позицию — в зависимости от задач лаборатории градус в точке фокуса можно варьировать.

Солнечную печь в Одейо начали строить в начале 60-х, а в строй ввели уже в 70-х. Долгое время она оставалась единственной в своем роде на планете, однако в 1987-м копию возвели неподалеку от Ташкента. Серж Шовин улыбается: «Да-да, именно копию».

Советская печь, к слову, тоже остается действующей. На ней, правда, проводят не только опыты, но и выполняют некоторые практические задачи. Правда, расположение печи не позволяет достичь таких же высоких температур, как во Франции — в точке фокуса узбекским ученым удается получить менее 3000 градусов.

Параболическое зеркало состоит из 9000 пластинок — фацетов. Каждая из них отполирована, имеет алюминиевое напыление и чуть вогнута для лучшей фокусировки. После постройки здания печи все фацеты были установлены и откалиброваны вручную — на это ушло три года!


Серж Шовин ведет нас на площадку неподалеку от здания печи. Вместе с нами — группа туристов, прибывших в Одейо на автобусе — поток любителей научной экзотики не иссякает. Музейный смотритель собрался наглядно продемонстрировать скрытый потенциал солнечной энергии.

— Мадам и месье, ваше внимание! — Серж хоть и выглядит скорее как ученый, больше похож на актера. — Свет, излучаемый нашей звездой, позволяет мгновенно нагревать материалы, воспламенять и плавить их.

Сотрудник солнечной печи поднимает обычную ветку и размещает ее в большом чане с зеркальной внутренней поверхностью. У Сержа Шовина уходит несколько секунд на поиск точки фокусировки, и палка моментально вспыхивает. Чудеса!

Пока французские бабушки и дедушки ахают и охают, музейщик переходит к отдельно стоящему гелиостату и двигает его ровно так, чтобы отраженные лучи попали в уменьшенную копию параболического зеркала, установленного тут же. Это еще один наглядный эксперимент, показывающий возможности солнца.


— Мадам и месье, сейчас мы будем плавить металл!

Серж Шовин устанавливает в держатель кусочек железа, двигает тисками в поиске точки фокуса и, найдя ее, отходит на небольшое расстояние.

Солнце быстро делает свое дело.

Кусочек железа моментально нагревается, начинает дымить и даже искрить, поддаваясь жарким лучам. Буквально за 10—15 секунд в нем прожигается дырочка размером с монету в 10 евроцентов.


— Вуаля! — ликует Серж.


Пока мы возвращаемся в здание музея, а французские туристы рассаживаются в кинозале для просмотра научного фильма о работе солнечной печи и лаборатории, смотритель рассказывает нам любопытные вещи.

— Чаще всего люди спрашивают, зачем все это нужно, — разводит руками Серж Шовин. — С точки зрения науки возможности солнечной энергии изучены, применены где это возможно в быту. Но существуют задачи, которые по своему масштабу и сложности исполнения требуют установок, подобных этой. Например, как нам смоделировать воздействие солнца на обшивку космического корабля? Или нагрев спускаемой капсулы, возвращающейся с орбиты на Землю?

В специальной тугоплавкой емкости, установленной в точке фокуса солнечной печи, можно воссоздать такие, без преувеличения, неземные условия. Подсчитано, например, что элемент обшивки должен выдерживать температуру в 2500 градусов по Цельсию — и опытным путем это можно проверить здесь, в Одейо.

Смотритель ведет нас по музею, где установлены различные экспонаты — участники многочисленных экспериментов, проведенных в печи. Наше внимание привлекает тормозной карбоновый диск…

— О, эта штука от колеса болида Формулы-1, — кивает Серж. — Ее нагрев в некоторых условиях сопоставим с тем, что мы можем воспроизвести в лаборатории.

Как уже говорилось выше, температурой в точке фокуса можно управлять при помощи гелиостатов. В зависимости от проводимых опытов она варьируется от 1400 до 3500 градусов. Нижний предел необходим для производства водорода в лаборатории, диапазон от 2200 до 3000 — для тестирования различных материалов в условиях экстремального нагрева. Наконец, выше 3000 — область работы с наноматериалами, керамикой и созданием новых материалов.

— Печь в Одейо не выполняет практических задач, — продолжает Серж Шовин. — В отличие от узбекских коллег, мы не зависим от собственной хозяйственной деятельности и занимаемся исключительно наукой. Среди наших заказчиков не только ученые, но и самые разные ведомства, например оборонное.

Мы как раз останавливаемся у керамической капсулы, которая оказывается корпусом корабля-беспилотника.

— Военное министерство построило солнечную печь меньшего диаметра для собственных практических нужд здесь же, в долине у Одейо, — говорит Серж. — Ее можно увидеть с некоторых участков горной дороги. Но за научными экспериментами они все равно обращаются к нам.

Смотритель объясняет, в чем преимущество солнечной энергии перед любой другой в ходе выполнения научных задач.

— Во-первых, солнце светит бесплатно, — загибает он пальцы. — Во-вторых, горный воздух способствует проведению опытов в «чистом» виде — без примесей. В-третьих, солнечный свет позволяет нагревать материалы значительно быстрее, чем любые другие установки, — для некоторых экспериментов это крайне важно.

Любопытно, что печь может работать практически круглый год. По словам Сержа Шовина, оптимальным месяцем для проведения экспериментов является апрель.


— Но если нужно, кусочек металла для туристов солнце расплавит хоть в январе, — улыбается смотритель. — Главное, чтобы небо было ясным и безоблачным.

Одним из неоспоримых преимуществ самого существования этой уникальной лаборатории является полная ее открытость для туристов. Ежегодно сюда приезжает до 80 тысяч человек, и это делает для популяризации науки среди взрослых и детей намного больше, чем школа или университет.

Фон-Ромё-Одейо — типичный пасторальный французский городок. Его главное отличие от тысяч таких же — сосуществование таинства бытовой жизни и науки. На фоне 54-метровой зеркальной параболы — горные молочные коровы. И постоянное жаркое солнце.




Теперь перейдем у другому сооружению.

В сорока пяти километрах от Ташкента, в Паркентском районе, в предгорьях Тянь-Шаня на высоте 1050 метров над уровнем моря находится уникальное сооружение — так называемая Большая Солнечная Печь (БСП) мощностью в тысячу киловатт. Она расположена на территории Института материаловедения НПО «Физика-Солнце» Академии наук Республики Узбекистан. Таких печей в мире всего две, вторая находится во Франции.

БСП была запущена в эксплуатацию еще при Союзе в 1987 году, — рассказывает ученый секретарь Института материаловедения НПО «Физика-Солнце» кандидат технических наук Мирзасултан Маматкасымов. — Для сохранения этого уникального объекта из госбюджета выделяются достаточные средства. Две лаборатории института расположены у нас, четыре — в Ташкенте, где находится основная научная база, на которой осуществляется изучение химических и физических свойств новых материалов. У нас же производится процесс их синтеза. Мы экспериментируем с этими материалами, наблюдая за процессом плавки при различных температурах.

БСП представляет собой сложный оптико-механический комплекс с автоматическими системами управления. Комплекс состоит из гелиостатного поля, расположенного на склоне горы и направляющего солнечные лучи в параболоидный концентратор, который представляет собой гигантское вогнутое зеркало. В фокусе этого зеркала создается высочайшая температура — 3000 градусов по Цельсию!

Гелиостатное поле состоит из шестидесяти двух гелиостатов, расположенных в шахматном порядке. Они обеспечивают зеркальную поверхность концентратора световым потоком в режиме непрерывного слежения за Солнцем в течение всего дня. Каждый гелиостат размером семь с половиной на шесть с половиной метров состоит из 195 плоских зеркальных элементов, называемых «фацетами». Отражающая площадь гелиостатного поля равна 3022 квадратных метров.

Концентратор, на который гелиостаты направляют солнечные лучи, представляет собой циклопическое сооружение высотой сорок пять метров и шириной пятьдесят четыре метра.

Следует отметить, что преимущество солнечных печей, по сравнению с печами других типов, состоит в мгновенном достижении высокой температуры, позволяющей получать чистые материалы без примесей (благодаря также чистоте горного воздуха). Используются они для нефтегазовой, текстильной и ряда других промышленностей.

Зеркала имеют определенный срок эксплуатации и рано или поздно выходят из строя. В наших цехах мы изготавливаем новые зеркала, которые устанавливаем взамен старых. Их только в концентраторе 10700, а в гелиостатах 12090 штук. Процесс изготовления зеркал происходит в вакуумных установках, где на поверхность отработанных зеркал напыляется алюминий.


Фергана.Ру: - Как вы решаете проблему поиска специалистов, ведь после развала Союза происходил их отток за рубеж?

Мирзасултан Маматкасымов: - В момент запуска установки в 1987 году здесь работали специалисты из России, Украины, которые обучали наших. Благодаря нашему опыту теперь мы имеем возможность готовить специалистов в этой области самостоятельно. Молодежь приходит к нам с физического факультета Национального университета Узбекистана. Сам я после окончания университета работаю здесь с 1991 года.

Фергана.Ру: - Когда взираешь на это грандиозное сооружение, на ажурные металлические конструкции, как бы парящие в воздухе и при этом поддерживающие «броню» концентратора, в памяти всплывают кадры научно-фантастических фильмов…

Мирзасултан Маматкасымов: - Ну, на моем веку снимать научную фантастику, используя эти уникальные «декорации», здесь пока никто не пытался. Правда, приезжали звезды узбекской эстрады, чтобы снимать свои клипы.

Мирзасултан Маматкасымов: - Сегодня мы будем плавить брикеты, спрессованные из порошкообразного оксида алюминия, температура плавления которого составляет 2500 градусов по Цельсию. В процессе плавки материал стекает с наклонной плоскости и капает в специальный поддон, где образуются гранулы. Их отправляют в керамический цех, расположенный неподалеку от БСП, где измельчают и применяют для изготовления различных керамических изделий, начиная от мелких нитеводителей для текстильной промышленности и заканчивая полыми керамическими шарами, внешне напоминающими бильярдные. Шары используются в нефтегазовой промышленности в качестве поплавков. При этом с поверхности нефтепродуктов, хранящихся в больших емкостях на нефтебазах, испарение уменьшается на 15-20 процентов. За последние годы мы изготовили около шестисот тысяч таких поплавков.



Для электротехнической промышленности мы изготавливаем изоляторы и другие изделия. Они отличаются повышенной износостойкостью и прочностью. Кроме оксида алюминия мы также используем более тугоплавкий материал — оксид циркония с температурой плавления 2700 градусов по Цельсию.

Контроль за процессом плавки осуществляется так называемой «системой технического зрения», которая оснащена двумя специальными телекамерами. Одна из них непосредственно передает изображение на отдельный монитор, другая — на компьютер. Система позволяет как наблюдать за процессом плавки, так и проводить различные измерения.


Следует добавить, что БСП используют и как универсальный астрофизический инструмент, открывающий возможности проведения исследований звездного неба в ночное время.

Кроме вышеперечисленных работ в институте большое внимание уделяется изготовлению медицинского оборудования на базе функциональной керамики (стерилизаторы), абразивных инструментов, сушилок и многого другого. Такое оборудование успешно внедрено в медицинские учреждения нашей республики, а также в аналогичные учреждения Малайзии, Германии, Грузии и России.

Параллельно в институте были разработаны солнечные установки малой мощности. Так, например, учеными института созданы солнечные печи мощностью полтора киловатт, которые были установлены на территории Таббинского института металлургии (Египет) и в Международном металлургическом центре в Хайдарабаде (Индия).