Правильный расчет тепловой мощности системы отопления по площади помещения. Мощность системы отопления

Причина нагревания проводника кроется в том, что энергия движущихся в нем электронов (иными словами, энергия тока) при последовательном столкновении частиц с ионами молекулярной элемента преобразуется в тёплый тип энергии, или Q, так образуется понятие «тепловая мощность».

Работу тока измеряют с помощью международной системы единиц СИ, применяя к ней джоули (Дж), определяют как «ватт» (Вт). Отступая от системы на практике, могут применять в том числе и внесистемные единицы, измеряющие работу тока. Среди них ватт-час (Вт × ч), киловатт-час (сокращённо кВт × ч). Например, 1 Вт × ч обозначает работу тока с удельной мощностью 1 ватт и длительностью времени на один час.

Если электроны движутся по неподвижному проводнику из металла, в этом случае вся полезная работа вырабатываемого тока распределяется на нагревание металлической конструкции, и, исходя из положений закона сохранения энергии, это можно описать формулой Q=A=IUt=I 2 Rt=(U 2 /R)*t. Такие соотношения с точностью выражают известный закон Джоуля-Ленца. Исторически он впервые был определён опытным путём учёным Д. Джоулем в середине 19-го века, и в то же время независимо от него ещё одним учёным - Э.Ленцем. Практическое применение тепловая мощность нашла в техническом исполнении с изобретения в 1873 году русским инженером А. Ладыгиным обыкновенной лампы накаливании.

Тепловая мощность тока задействуется в целом ряде электрических приборов и промышленных установок, а именно, в тепловых нагревательного типа электрических печках, электросварочной и инвенторной аппаратуре, очень распространены бытовые приборы на электрическом нагревательном эффекте - кипятильники, паяльники, чайники, утюги.

Находит себя тепловой эффект и в пищевой промышленности. С высокой долей использования применяется возможность электроконтактного нагрева, что гарантирует тепловая мощность. Он обуславливается тем, что ток и его тепловая мощность, оказывая влияние на пищевой продукт, который обладает определённой степенью сопротивления, вызывает в нем равномерное разогревание. Можно привести в пример то, как производятся колбасные изделия: через специальный дозатор мясной фарш поступает в металлические формы, стенки которых одновременно служат электродами. Здесь обеспечивается постоянная равномерность нагрева по всей площади и объёму продукта, поддерживается заданная температура, сохраняется оптимальная биологическая ценность пищевого продукта, вместе с этими факторами длительность технологических работ и расход энергии остаются наименьшими.

Удельная тепловая тока (ω), иными словами - что выделяется в единице объёма за определённую единицу времени, рассчитывается следующим образом. Элементарный цилиндрический объём проводника (dV), с поперечным проводниковым сечением dS, длиной dl, параллельной и сопротивлением составляют уравнения R=p(dl/dS), dV=dSdl.

Согласно определениям закона Джоуля-Ленца, за отведённое время (dt) во взятом нами объёме выделится уровень теплоты, равный dQ=I 2 Rdt=p(dl/dS)(jdS) 2 dt=pj 2 dVdt. В таком случае ω=(dQ)/(dVdt)=pj 2 и, применяя здесь закон Ома для установления плотности тока j=γE и соотношение p=1/γ, мы сразу получаем выражение ω=jE= γE 2. Оно в дифференциальной форме даёт понятие о законе Джоуля-Ленца.

Начало выполнения подготовки проекта отопления, как жилых загородных домов, так и производственных комплексов, следует с теплотехнического расчёта. В качестве источника тепла предполагается тепловая пушка .

Что представляет собой теплотехнический расчёт?

Расчёт тепловых потерь является основополагающим документом, призванным решать такую задачу, как организация теплоснабжения сооружения. Он определяет суточное и годовое потребление тепла, минимальную потребность жилого либо промышленного объекта в тепловой энергии и тепловые потери для каждого помещения.
Решая такую задачу, как теплотехнический расчёт, следует учитывать комплекс характеристик объекта:

  1. Тип объекта (частный дом, одноэтажное либо многоэтажное здание, административное, производственное или складское).
  2. Количество проживающих в здании либо работающих в одну смену человек, количество точек подачи горячей воды.
  3. Архитектурная часть (габариты крыши, стен, полов, размеры дверных и оконных проёмов).
  4. Специальные данные, например, количество рабочих дней в году (для производств), продолжительность отопительного сезона (для объектов любого типа).
  5. Температурные режимы в каждом из помещений объекта (их определяет CHиП 2.04.05-91).
  6. Функциональное назначение (складское производственное, жилое, административное или бытовое).
  7. Конструкции крыши, наружных стен, полов (тип утепляющих прослоек и применяемых материалов, толщина перекрытий).

Зачем нужен теплотехнический расчёт?

  • Чтобы определить мощность котла.
    Предположим, Вы приняли решение снабдить загородный дом либо предприятие системой автономного отопления. Чтобы определиться с выбором оборудования, в первую очередь потребуется рассчитать мощность отопительной установки, которая понадобится для бесперебойной работы горячего водоснабжения, кондиционирования, систем вентиляции, а также эффективного обогрева здания. Определяется мощность автономной отопительной системы, как общая сумма тепловых затрат на обогрев всех помещений, а также тепловых затрат на прочие технологические нужды. Отопительная система должна обладать определённым запасом мощности, чтобы работа при пиковых нагрузках не сократила срок её службы.
  • Для выполнения согласования на газификацию объекта и получения ТУ.
    Получить разрешение на газификацию объекта необходимо в том случае, если используется природный газ в качестве топлива для котла. Для получения ТУ потребуется предоставить значения годового расхода топлива (природного газа), а также суммарные значения мощности тепловых источников (Гкал/час). Эти показатели определяются в результате проведения теплового расчёта. Согласование проекта на осуществление газификации объекта – это более дорогостоящий и продолжительный метод организации автономного отопления, по отношению к монтажу отопительных систем, функционирующих на отработанных маслах, установка которых не требует согласований и разрешений.
  • Для выбора подходящего оборудования.
    Данные теплового расчёта являются определяющим фактором при выборе приборов для отопления объектов. Следует учитывать множество параметров – ориентацию по сторонам света, габариты дверных и оконных проёмов, размеры помещений и их расположение в здании .

Как происходит теплотехнический расчёт

Можно воспользоваться упрощённой формулой , чтобы определить минимально допустимую мощность тепловых систем:

Q т (кBт/час) =V * ΔT * K /860 , где

Q т – это тепловая нагрузка на определённое помещение;
K – коэффициент теплопотерь здания;
V – объём (в м 3) отапливаемого помещения (ширина комнаты на длину и высоту);
ΔT – разница (обозначена С) между необходимой температурой воздуха внутри и температурой снаружи.

Такой показатель, как коэффициент потерь тепла (К), зависит от изоляции и типа конструкции помещения. Можно использовать упрощённые значения, рассчитанные для объектов разных типов:

  • K = от 0,6-ти до 0,9-ти (повышенная степень теплоизоляции). Небольшое количество окон, снабжённых сдвоенными рамами, стены из кирпича с двойной теплоизоляцией, крыша из высококачественного материала, массивное основание пола;
  • К = от 1-го до 1,9-ти (теплоизоляция средней степени). Двойная кирпичная кладка, крыша с обычной кровлей, небольшое количество окон;
  • K = от 2-х до 2,9 (низкая теплоизоляция). Конструкция сооружения упрощённая, кирпичная кладка одинарная.
  • K = 3-х – 4-х (отсутствие теплоизоляции). Сооружение из металлического или гофрированного листа либо упрощённая деревянная конструкция.

Определяя разницу между требуемой температурой внутри обогреваемого объёма и температурой снаружи (ΔT), следует исходить из степени комфорта, которую Вы желаете получить от тепловой установки, а также из климатических особенностей того региона, в котором находится объект. В качестве параметра по умолчанию принимаются значения, определённые CHиП 2.04.05-91:

  • +18 – общественные здания и производственные цеха;
  • +12 – комплексы высотного складирования, склады;
  • + 5 – гаражи, а также склады без постоянного обслуживания.
Город Город Расчётная наружная температура, °C
Днепропетровск - 25 Каунас - 22
Екатеринбург - 35 Львов - 19
Запорожье - 22 Москва - 28
Калининград - 18 Минск - 25
Краснодар - 19 Новороссийск - 13
Казань - 32 Нижний Новгород - 30
Киев - 22 Одесса - 18
Ростов - 22 Санкт-Петербург - 26
Самара - 30 Севастополь - 11
Харьков - 23 Ялта - 6

Расчёт по упрощённой формуле не позволяет учитывать различия тепловых потерь здания в зависимости от типа ограждающих конструкций, утепления и размещения помещений. Так, например, больше тепла потребуют комнаты с большими окнами, высокими потолками и угловые помещения. В то же время минимальными тепловыми потерями отличаются помещения, которые не имеют внешних ограждений. Желательно использовать следующую формулу при расчёте такого параметра, как минимальная тепловая мощность :

Qт (kВт/час)=(100 Вт/м 2 * S (м 2) * K1 * K2 * K3 * K4 * K5 * K6 * K7)/1000 , где

S – площадь комнаты, м 2 ;
Bт/м 2 – удельная величина потерь тепла (65-80 ватт/м 2). В этот показатель входят утечки тепла через вентиляцию, поглощения стенами, окнами и прочие виды утечек;
К1 – коэффициент утечки тепла через окна:

К2 – коэффициент потерь тепла стен:

  • высокая теплоизоляция (показатель К2 = 0,854);
  • утеплитель толщиной 150 мм либо стены в два кирпича (показатель К2=1,0);
  • низкая теплоизоляция (показатель К2=1,27);

К3 – показатель, определяющий соотношение площадей (S) окон и пола:

  • 50% КЗ=1,2;
  • 40% КЗ=1,1;
  • 30% КЗ=1,0;
  • 20% КЗ=0,9;
  • 10% КЗ=0,8;

К4 – коэффициент температуры вне помещения:

  • -35°C K4=1,5;
  • -25°C K4=1,3;
  • -20°C K4=1,1;
  • -15°C K4=0,9;
  • -10°C K4=0,7;

К5 – количество выходящих наружу стен:

  • четыре стены К5=1,4;
  • три стены К5=1,3;
  • две стены К5=1,2;
  • одна стена К5=1,1;

К6 – тип теплоизоляции помещения, которое располагается над отапливаемым:

  • обогреваемое К6-0,8;
  • теплая мансарда К6=0,9;
  • не отапливаемый чердак К6=1,0;

К7 –высота потолков:

  • 4,5 метра К7=1,2;
  • 4,0 метра K7=1,15;
  • 3,5 метра К7=1,1;
  • 3,0 метра К7=1,05;
  • 2,5 метра K7=1,0.

Приведём в качестве примера расчёт минимальной мощности отопительной автономной установки (по двум формулам) для отдельно стоящего сервисного помещения СТО (высота потолка 4м, площадь 250 м 2 , объём 1000 м3, окна большие с обычным остеклением, теплоизоляция потолка и стен отсутствует, конструкция – упрощённая).

По упрощённому расчёту:

Q т (кВт/час) = V * ΔT * K/860=1000 *30*4/860=139,53 кВт, где

V - объем воздуха в отапливаемом помещении (250 *4), м 3 ;
ΔT - разница показателей между температурой воздуха извне комнаты и требуемой температурой воздуха внутри помещения (30°С);
К - коэффициент теплопотерь строения (для зданий без теплоизоляции К = 4,0);
860 - перевод в кВт/час.

Более точный расчёт:

Q т (кВт/час) = (100 Вт/м 2 * S (м 2) * K1 * K2 * K3 * K4 * K5 * K6 * K7)/1000 = 100*250*1,27*1,27*1,1*1,5*1,4*1*1,15/1000=107,12 кВт/час, где

S – площадь помещения, для которого выполняется расчёт (250 м 2);
K1 – параметр утечки тепла через окна (стандартное остекление, показатель К1 равен 1,27);
К2 – значение утечки тепла через стены (плохая теплоизоляция, показатель К2 соответствует 1,27);
К3 – параметр соотношения габаритов окон к площади пола (40%, показатель К3 равен 1,1);
K4 – значение температуры снаружи (-35 °C, показатель K4 соответствует 1,5);
K5 – количество стен, которые выходят наружу (в данном случае четыре К5 равен 1,4);
К6 – показатель, определяющий тип помещения, расположенного непосредственно над отапливаемым (чердак без утепления К6=1,0);
K7 – показатель, определяющий высоту потолков (4,0 м, параметр К7 соответствует 1,15).

Как можно видеть из произведённого расчёта, вторая формула предпочтительнее для расчёта мощности отопительных установок, поскольку она учитывает гораздо большее количество параметров (особенно если необходимо определить параметры маломощного оборудования , предназначенного для эксплуатации в небольших помещениях). К полученному результату надо приплюсовать небольшой запас по мощности для увеличения срока эксплуатации теплового оборудования.
Выполнив несложные расчёты, Вы сможете без помощи специалистов определить необходимую мощность автономной отопительной системы для оснащения объектов жилого или промышленного назначения.

Купить тепловую пушку и другое обогреватели можно на сайте компании или посетив наш розничный магазин.

Отопительная система в частном доме – это, чаще всего, комплект автономного оборудования, использующего в качестве энерго- и теплоносителя наиболее соответствующие конкретному региону вещества. Поэтому для каждой конкретной схемы отопления требуется индивидуальный расчет тепловой мощности системы отопления, который учитывает множество факторов, таких, как минимальный расход тепловой энергии для дома, расход тепла для помещений – всех и каждого, помогает определить расход энергоносителей в сутки и за время отопительного сезона, и т.д.

Формулы и коэффициенты для теплового расчета

Номинальная тепловая мощность системы отопления для частного объекта определяется по формуле (все результаты выражаются в кВт):

  • Q = Q 1 x b 1 x b 2 + Q 2 – Q 3 ; где:
  • Q 1 – общие потери тепла в здании согласно расчетам, кВт;
  • b 1 — коэффициент дополнительной тепловой энергии от радиаторов сверх того, что показал расчёт. Значения коэффициента отражены в таблице ниже:

  • b 2 — коэффициент дополнительных тепловых потерь радиаторами, установленными у внешних стен без экранирующих кожухов. Показатели коэффициента отражены в таблице ниже:

  • Q 2 – теплопотери в трубопроводах, уложенных в неотапливаемом пространстве;
  • Q 3 – дополнительное тепло от осветительных приборов, бытовых приборов и техники, жильцов, и т.д. Для жилых зданий Q 3 принимается как 0,01 кВт/1 м 2 .

Q a – тепловая энергия, проходящая через ограждения и наружные стены;

Q b — потери тепла при прогреве воздуха вентиляционной системы.

Значение Q a и Q b рассчитывается для каждого отдельно взятого помещения с подключенным отоплением.

Тепловая энергия Q a определяется по формуле:


Необходимость тепловых расчетов для всего дома и отдельных отапливаемых помещений обосновывается экономией энергоносителей и семейного бюджета. В каких случаях проводят подобные вычисления:

  1. Чтобы точно вычислить мощность котельного оборудования для наиболее эффективного обогрева всех подключенных к отоплению помещений. Приобретая котел без предварительных расчетов можно установить совершенно неподходящее по параметрам оборудование, которое не справится со своей задачей, и деньги будут потрачены впустую. Тепловые параметры всей системы отопления определяются, как результат сложения всех расходов тепловой энергии в подключенных и неподключенных к котлу отопления помещениях, если трубопровод проходит по ним. Также необходим запас мощности по расходам тепла, чтобы уменьшить износ отопительного оборудования и минимизировать появление аварийных ситуаций при высоких нагрузках в морозы;
  2. Расчеты тепловых параметров системы отопления необходимы для получения на руки технического удостоверения (ТУ), без которого не получится согласовать проект по газификации частного дома, так как в 80% случаев монтажа автономного отопления устанавливают газовый котел и соответствующее оборудование. Для остальных типов отопительных агрегатов технические условия и документация на подключение не нужны. Для газового оборудования необходимо знать годовой расход газа, и без соответствующих вычислений точную цифру получить не удастся;
  3. Получить тепловые параметры отопительной системы также нужно для покупки правильного оборудования – труб, радиаторов, фитингов, фильтров, и т.д.

Точные расчеты мощности и расхода тепла для жилых помещений

Уровень и качество утепления зависят от качества работ и архитектурных особенностей помещений ми всего дома. Бо́льшая часть тепловых потерь (до 40%) при отоплении здания происходит через поверхность наружных стен, через окна и двери (до 20%), а также через кровлю и пол (до 10%). Оставшиеся 30% тепла могут уходить из дома через вентиляционные отверстия и каналы.

Для получения уточненных результатов применяют следующие справочные коэффициенты:

  1. Q 1 – используется при расчетах для помещений с окнами. Для ПВХ окон с двухкамерными стеклопакетами Q 1 =1, для окон с однокамерным остеклением Q 1 =1,27, для трехкамерного окна Q 1 =0,85;
  2. Q 2 – используется при расчетах коэффициента утепления внутренних стен. Для пенобетона Q 2 = 1, для бетона Q 2 – 1,2, для кирпича Q 2 = 1,5;
  3. Q 3 применяется при расчетах соотношений площадей пола и оконных проемов. Для 20% площади остекления стены коэффициент Q3 = 1, для 50% остекления Q3 принимается, как 1,5;
  4. Значение коэффициента Q 4 варьируется в зависимости от минимальной уличной температуры за весь годовой отопительный период. При наружной температуре -20 0 C Q 4 = 1, далее — для каждых 5 0 C в ту или иную сторону добавляют или отнимают 0,1;
  5. Коэффициент Q 5 применяется при расчетах, учитывающих общее количество стен здания. При одной стене в расчетах Q 5 = 1, при 12-х и 3-х стенах Q 5 = 1,2, для 4-х стен Q 5 = 1,33;
  6. Q 6 используют, если при расчетах потерь тепла учитывается функциональное назначение помещения под той комнатой, для которой делаются вычисления. Если наверху находится жилой этаж, то коэффициент Q 6 = 0,82, если отапливаемый или утепленный чердак, то Q 6 — 0,91, для холодного чердачного помещения Q 6 = 1;
  7. Параметр Q 7 колеблется в зависимости от высоты потолков обследуемого помещения. При высоте потолка ≤ 2,5 м коэффициент Q 7 = 1,0, если потолок выше 3-х м, то Q 7 принимается, как 1,05.

После определения всех необходимых поправок проводят расчет тепловой мощности и тепловых потерь в отопительной системе для каждого отдельно взятого помещения по следующей формуле:

  • Q i = q х Si х Q 1 х Q 2 х Q 3 х Q 4 х Q 5 х Q 6 х Q 7 , где:
  • q =100 Вт/м²;
  • Si – площадь обследуемого помещения.

Результаты параметров будут увеличиваться при применении коэффициентов ≥ 1, и уменьшаться, если Q 1- Q 7 ≤1. После расчетов конкретного значения результатов расчетов для конкретного помещения можно рассчитать общую тепловую мощность частного автономного отопления по следующей формуле:

Q = Σ х Qi, (i = 1…N), где: N – общее количество помещений в здании.

где - расчетные тепловые потери здания, кВт;

- коэффициент учета дополнительного теплового потока устанавливаемых отопительных приборов за счет округления сверх расчетной величины, принимаемый по табл. 1.

Таблица 1

Типоразмерный шаг, кВт

при номинальном тепловом потоке, кВт, минимального типоразмера

- коэффициент учета дополнительных потерь теплоты отопительными приборами, расположенными у наружных ограждений при отсутствии теплозащитных экранов, принимаемый по табл. 2.

Таблица 2

Отопительный прибор

Коэффициент при установке прибора

у наружной стены в зданиях

у остекления светового проема

жилых и общественных

производственных

Радиатор чугунный

Конвектор с кожухом

Конвектор без кожуха

- потери теплоты, кВт, трубопроводами, проходящими в неотапливаемых помещениях;

- тепловой поток, кВт, регулярно поступающий от освещения, оборудования и люден, который следует учитывать в целом на систему отопления здания. Для жатых домов величину следует учитывать из расчета 0.01 кВт на 1 м" обшей площади.

При расчетах тепловой мощности систем отопления производственных зданий следует дополнительно учитывать расход теплоты на нагревание материалов, оборудования и транспортных средств.

2. Расчетные тепловые потери , кВт, должны рассчитываться по формуле:

(2)

где: - тепловой поток, кВт, через ограждающие конструкции;

- потери теплоты, кВт, на нагревание вентиляционного воздуха.

Величины и рассчитываются для каждого отапливаемого помещения.

3. Тепловой поток , кВт, рассчитывается для каждого элемента ограждающей конструкции по формуле:

(3)

где А - расчетная площадь ограждающей конструкции, м 2 ;

R - сопротивление теплопередаче ограждающей конструкции. м 2 °С/Вт, которое должно определяться по СНиП II-3-79** (кроме полов на грунте) с учетом установленных нормативов минимального термического сопротивления ограждений. Для полов на грунте и стен, расположенных ниже уровня земли, сопротивление теплопередаче следует определять по зонам шириной 2 м. параллельным наружным стенам, по формуле:

(4)

где - сопротивление теплопередаче, м 2 °С/Вт, принимаемое равным 2,1 для I зоны, 4,3 - для второй, 8,6 - для третьей зоны и 14,2 для оставшейся площади пола;

- толщина утепляющего слоя, м, учитываемая при коэффициенте теплопроводности утеплителя <1,2Вт/м 2 °С;

- расчетная температура внутреннего воздуха, °С, принимаемая согласно требованиям норм проектирования зданий различного назначения с учетом повышения ее в зависимости от высоты помещения;

- расчетная температура наружного воздуха, °С, принимаемая по данным приложения 8, или температура воздуха смежного помещения, если его температура более чем на 3 °С отличается от температуры помещения, для которого рассчитываются теплопотери;

- коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающей конструкции по отношению к наружному воздуху и определяемый по СНнП П-3-79**

- добавочные потери теплоты в долях от основных потерь, учитываемые:

а) для наружных вертикальных и наклонных ограждений, ориентированных на направления, откуда в январе дует ветер со скоростью, превышающей 4,5 м/с с повторяемостью не менее 15% согласно СНиП 2.01.01-82, в размере 0,05 при скорости ветра до 5 м/с и в размере 0,10 при скорости 5 м/с и более; при типовом проектировании добавочные потерн следует учитывать в размере 0,05 для всех помещений;

б) для наружных вертикальных и наклонных ограждений многоэтажных зданий в размере 0,20 для первого и второго этажей; 0,15 -для третьего; 0,10 -для четвертого этажа здании с числом этажей 16 и более; для 10-15 - этажных здании добавочные потери следует учитывать в размере 0,10 для первого и второго этажей и 0,05 -для третьего этажа.

4. Потери теплоты , кВт, рассчитываются для каждого отапливаемого помещения, имеющего одно или большее количество окон или балконных дверей в наружных стенах, исходя из необходимости обеспечения подогрева отопительными приборами наружного воздуха в объеме однократного воздухообмена в час по формуле:

где - площадь пола помещения, м 2 ;

- высота помещения от пола до потолка, м, но не более 3,5.

Помещения, из которых организована вытяжная вентиляция с объемом вытяжки, превышающим однократный воздухообмен в час должны, как правило, проектироваться с приточной вентиляцией подогретым воздухом. При обосновании допускается обеспечивать подогрев наружного воздуха отопительными приборами в отдельных помещениях при объеме вентиляционного воздуха, не превышающем двух обменов в час.

В помещениях, для которых нормами проектирования зданий установлен объем вытяжки менее однократного воздухообмена в час, величину следует рассчитывать как расход теплоты на нагревание воздуха в объеме нормируемого воздухообмена от температуры до температуры °С.

Потери теплоты кВт, на нагревание наружного воздуха, проникающего во входные вестибюли (холлы) и лестничные клетки через открывающиеся в холодное время года наружные двери при отсутствии воздушно-тепловых завес следует рассчитывать по формуле:

где
- высота здания, м:

Р - количество людей, находящихся в здании;

В – коэффициент, учитывающий количество входных тамбуров. При одном тамбуре (две двери) в - 1,0; при двух тамбурах (три двери) в = 0,6.

Расчет теплоты на нагревание наружного воздуха, проникающего через двери отапливаемых незадымляемых лестничных клеток с поэтажными выходами на лоджии следует вести по формуле (6) при
, принимая для каждого этажа значение
, разное расстоянию, м. от середины двери рассчитываемого этажа до перекрытия лестничной клетки.

При расчете теплопотерь входных вестибюлей, лестничных клеток и цехов с воздушно-тепловыми завесами: помещений, оборудованных действующей постоянно в течение рабочего времени приточной вентиляцией с подпором воздуха, а также при расчете потерь теплоты через летние и запасные наружные двери и ворота величину учитывать не следует.

Потери теплоты , кВт, на нагревание воздуха, врывающегося через наружные ворота, не оборудованные воздушно-тепловыми завесами, следует рассчитывать с учетом скорости ветра, принимаемой по обязательному приложению 8, и времени открытия ворот.

Расчет потери теплеть: на нагревание инфильтрующегося через неплотности ограждающих конструкций воздуха выполнять не требуется.

5. Потери теплоты , кВт, трубопроводами, проходящими в неотапливаемых помещениях, следует определять по формуле:

(7)

где: - длины участков тепле изолированных трубопроводов различных диаметров, прокладываемых в неотапливаемых помещениях;

- нормированная линейная плотность теплового потока теплоизолированного трубопровода, принимаемая по п. 3.23. При этом толщина теплоизоляционного слоя , м трубопроводов должна. рассчитывается по формулам:

(8)

где - наружный размер трубопровода, м;

- теплопроводность теплоизоляционного слоя, Вт/(м °С);

- средняя за отопительный сезон разность температур теплоносителя и окружающего воздуха.

6. Величину расчетного годового теплопотребления системой отопления здания
, ГДж. следует рассчитывать по формуле:

где - количество градусо-суток отопительного периода, принимаемое по приложению 8;

а - коэффициент, равный 0,8. который необходимо учитывать, если система отопления оборудована приборами автоматического уменьшения тепловой мощности в нерабочее время;

- коэффициент, разный 0,9, который необходимо учитывать, если более 75% отопительных приборов оборудованы автоматическими терморегуляторами;

с - коэффициент, разный 0,95, который необходимо учитывать, если на абонентском вводе системы отопления установлены приборы автоматического пофасадного регулирования.

7. Определенные расчетом величины тепловой мощности и максимального годового теплопотребления
, отнесенные к 1 м 2 общей (для жилых домов) или полезной (для общественных здании) площади, не должны превышать нормативных контрольных значений, приведенных в обязательном приложении 25.

8. Расход теплоносителя ,.кг/ч. а системе отопления следует определять по формуле:

(11)

где с - удельная теплоемкость воды, принимаемая равной 4,2 кДж/(кг 0 С);

- разность температур. °С, теплоносителя на входе в систему и на выходе из нее;

- тепловая мощность системы, кВт. определенная по формуле (1) с учетом бытовых тепловыделений .

9. Расчетную тепловую мощность
, кВт, каждого отопительного прибора следует определять по формуле:

где
следует рассчитывать в соответствии с пп. 2-4 настоящего приложения;


- потери теплоты, кВт, через внутренние стены, отделяющие помещение, для которого рассчитывается тепловая мощность отопительного прибора, от смежного помещения, в котором возможно эксплуатационное понижение температуры при регулировании. Величину
следует учитывать только при расчете тепловой мощности отопительных приборов, на подводках к которым проектируются автоматические терморегулятора. При этом для каждого помещения следует рассчитывать теплопотери
только через одну внутреннюю стену при разности температур между внутренними помещениями 8 0 С;

- тепловой поток. кВт, от неизолированных трубопроводов отопления, прокладываемых в помещении;

- тепловой поток, кВт, регулярно поступающий в помещение от электрических приборов, освещения, технологического оборудования, коммуникаций, материалов и других источников. При расчете тепловой мощности отопительных приборов жилых, общественных и административно-бытовых зданий величину
учитывать не следует.

Величина бытовых тепловыделении учитывается для всего здания в целом при расчетах тепловой мощности системы отопления и общего расхода теплоносителя.

2.3. УДЕЛЬНАЯ ТЕПЛОВАЯ ХАРАКТЕРИСТИКА

Общие теплопотери здания Q зд принято относить к 1 м 3 его наружного объема и 1°С расчетной разности температуры. Получаемый показательq 0 , Вт/(м 3 К), называют удельной тепловой характеристикой здания:

(2.11)

где V н - объем отапливаемой части здания по внешнему обмеру, м 3 ;

(t в -t н.5) - расчетная разность температур для основных помещений здания.

Удельную тепловую характеристику, вычисляемую после расчета теплопотерь, используют для теплотехнической оценки конструктивно-планировочных решений здания, сравнивая ее со средними показателями для аналогичных зданий. Для жилых и общественных зданий оценку производят по расходу теплоты, отнесенному I м 2 общей площади.

Величина удельной тепловой характеристики определяется прежде всего размерами световых проемов по отношению к общей площади наружных ограждений, так как коэффициент теплоотдачи заполнения световых проемов значительно выше коэффициента теплопередачи других ограждений. Кроме того, она зависит от объема и формы зданий. Здания малого объема обладают повышенной характеристикой, как и здания узкие, сложной конфигурации с увеличенным периметром.

Уменьшенные теплопотери и, следовательно, тепловую характеристику имеют здания, форма которых близка к кубу. Еще меньше теплопотери шарообразных сооружений того же объема в связи с сокращением площади внешней поверхности.

Удельная тепловая характеристика зависит также от района строительства здания вследствие изменения теплозащитных свойств ограждения. В северных районах при относительном уменьшении коэффициента теплопередачи ограждений этот показатель ниже, чем в южных.

Значения удельных тепловых характеристик приводятся в справочной литературе.

Применяя ее, определяют потери теплоты зданием по укрупненным показателям:

где β t - поправочный коэффициент, учитывающий изменение удельной тепловой характеристики при отклонении фактической расчетной разности температур от 48°:

(2.13)

Подобные расчеты теплопотерь позволяют установить ориентировочную потребность в тепловой энергии при перспективном планировании тепловых сетей и станций.

3.1 КЛАССИФИКАЦИЯ СИСТЕМ ОТОПЛЕНИЯ

Отопительные установки проектируют и монтируют в процессе возведения здания, увязывая их элементы со строительными конструкциями и планировкой помещений. Поэтому отопление считают отраслью строительной техники. Затем отопительные установки действуют в течение всего срока службы сооружения, являясь одним из видов инженерного оборудования зданий. К отопительным установкам предъявляют следующие требования:

1 - санитарно-гигиенические: поддерживание равномерной температуры помещений; ограничение температуры поверхности нагревательных приборов, возможность их очистки.

2 - экономические: невысокие капитальные вложения и эксплуатационные затраты, а также небольшой расход металла.

3 - архитектурно-строительные: соответствие планировке помещений, компактность, увязка со строительными конструкциями, согласование со сроками строительства зданий.

4 - производственно-монтажные: механизация изготовления деталей и узлов, минимальное число элементов, сокращение трудовых затрат и повышение производительности при монтаже.

5 - эксплуатационные: безотказность и долговечность, простота и удобство управления и ремонта, бесшумность и безопасность действия.

Каждое из указанных требований следует учитывать при выборе отопительной установки. Однако основными считаются санитарно-гигиенические и эксплуатационные требования. Установка должна обладать способностью передавать в помещение изменяющиеся в соответствии с теплопотерями количество теплоты.

Система отопления - совокупность конструктивных элементов, предназначенных для получения, переноса и передачи необходимого количества тепловой энергии во все обогреваемые помещения.

Система отопления состоит из следующих основных конструктивных элементов (рис. 3.1).

Рис. 3.1. Принципиальная схема системы отопления

1- теплообменник; 2 и 4 –подающий и обратный теплопроводы; 3- отопительный прибор.

теплообменника 1 для получения тепловой энергии при сжигании топлива или от другого источника; отопительных приборов 3 для теплопередачи в помещение; теплопроводов 2 и 4 - сети труб или каналов для теплопереноса от теплообменника к отопительным приборам. Теплоперенос осуществляется теплоносителем - жидким (вода) или газообразным (пар, воздух, газ).

1.В зависимости от вида системы делятся на:

Водяные;

Паровые;

Воздушные или газовые;

Электрические.

2. В зависимости от расположения источника теплоты и обогреваемого помещения:

Местные;

Центральные;

Централизованные.

3. По способу циркуляции:

С естественной циркуляцией;

С механической циркуляцией.

4. Водяные по параметрам теплоносителя:

Низкотемпературные TI ≤ 105°С;

Высокотемпературные Tl>l05 0 C.

5. Водяные и паровые по направлению движения теплоносителя в магистралях:

Тупиковые;

С попутным движением.

6. Водяные и паровые по схеме соединения нагревательных приборов с трубами:

Однотрубные;

Двухтрубные.

7. Водяные по месту прокладки подающих и обратных магистралей:

С верхней разводкой;

С нижней разводкой;

С опрокинутой циркуляцией.

8. Паровые по давлению пара:

Вакуум-паровые Р а <0.1 МПа;

Низкого давления P a =0.1 - 0.47 МПа;

Высокого давления P a > 0.47 МПа.

3.2. ТЕПЛОНОСИТЕЛИ

Теплоносителем для системы отопления может быть любая среда, обладающая хорошей способностью аккумулировать тепловую энергию и изменять теплотехнические свойства, подвижная, дешевая, не ухудшающая санитарные условия в помещении, позволяющая регулировать отпуск теплоты, в том числе автоматически. Кроме того, теплоноситель должен способствовать выполнению требований, предъявляемых к системам отопления.

Наиболее широко в системах отопления используют воду, водяной пар и воздух, поскольку эти теплоносители в наибольшей степени отвечают перечисленным требованиям. Рассмотрим основные физические свойства каждого из теплоносителей, которые оказывают влияние на конструкцию и действие системы отопления.

Свойства воды : высокая теплоемкость, высокая плотность, несжимаемость, расширение при нагревании с уменьшением плотности, повышение температуры кипения при повышении давления, выделение абсорбируемых газов при повышении температуры и понижении давления.

Свойства пара : малая плотность, высокая подвижность, высокая энтальпия за счет скрытой теплоты фазового превращения (табл. 3.1), повышение температуры и плотности с возрастанием давления.

Свойства воздуха : низкая теплоемкость и плотность, высокая подвижность, уменьшение плотности при нагревании.

Краткая характеристика параметров теплоносителей для системы отопления приведена в табл. 3.1.

Таблица 3.1. Параметры основных теплоносителей.

*Скрытая теплота фазового превращения.

4.1. ОСНОВНЫЕ ВИДЫ, ХАРАКТЕРИСТИКИ И ОБЛАСТЬ ПРИМЕНЕНИЯ СИСТЕМ ОТОПЛЕНИЯ

Водяное отопление благодаря ряду преимуществ перед другими системами получило в настоящее время наиболее широкое распространение. Для уяснения устройства и принципа действия системы водяного отопления рассмотрим схему системы, представленную на рис. 4.1.

Рис.4.1.Схема двухтрубной системы водяного отопления с верхней разводкой и естественной циркуляцией.

Вода, нагретая в теплогенераторе К до температуры Т1 , поступает в теплопровод - главный стояк I в подающие магистральные теплопроводы 2. По подающим магистральным теплопроводам горячая вода поступает в подающие стояки 9. Затем по подающим подводкам 13 горячая вода поступает в отопительные приборы 10 , через стенки которых теплота передается воздуху помещения. Из отопительных приборов охлажденная вода с температурой Т2 по обратным подводкам 14, обратным стоякам II и обратным магистральным теплопроводам 15 возвращается в теплогенератор К, где она снова подогревается до тем­пературы Т1 и далее циркуляция происходит по замкнутому кольцу.

Система водяного отопления гидравлически замкнута и имеет определенную вместимость отопительных приборов, теплопроводов, арматуры, т.е. постоянный объем заполняющей ее воды. При повышении температуры воды она расширяется и в замкнутой, заполненной водой системе отопления внутреннее гидравлическое давление может превысить механическую прочность ее элементов. Чтобы этого не произошло, в системе водяного отопления имеется расширительный бак 4 , предназначенный для вмещения прироста объема воды при ее нагревании, а также для удаления через него воздуха в атмосферу, как при заполнении системы водой, так и в период ее эксплуатации. Для регулирования теплоотдачи отопительных приборов на подводках к ним устанавливают регулировочные краны 12.

Перед пуском в действие каждая система заполняется водой из водопровода 17 через обратную линию до сигнальной трубы 3 в расширительный бак 4 . Когда уровень воды в системе повысится до уровня переливной трубы и вода будет вытекать в раковину, находящуюся в котельной, кран на сигнальной трубе закрывают и прекращают заполнение системы водой.

При недостаточном прогреве приборов вследствие засорения трубопроводов или арматуры, а также в случае появления утечки, вода из отдельных стояков может быть спущена без опорожнения и прекращения работы других участков системы. Для этого закрывают вентили или краны 7 на стояках. Из тройника 8 , установленного в нижней части стояка, вывертывают пробку, и к штуцеру стояка присоединяют гибкий шланг, по которому вода из теплопроводов и приборов стекает в канализацию. Чтобы вода быстрее стекала и стекла полностью, из верхнего тройника 8 вывертывают пробку. Представленные на рис. 4.1-4.3 системы отопления называются системами с естественной циркуляцией. В них движение воды осуществляется под действием разности плотностей охлажденной воды после отопительных приборов, и горячей воды, поступающей в систему отопления.

Вертикальные двухтрубные системы с верхней разводкой применяют в основном при естественной циркуляции воды в системах отопления зданий до 3-х этажей включительно. Эти системы по сравнению с системами при нижней разводке подающей магистрали (рис.4.2) имеют большее естественное циркуляционное давление, в их проще воздухоудаление из системы (через расширительный бак).

Рис. 7.14. Схема двухтрубной системы водяного отопления с нижней разводкой и естественной циркуляцией

К-котел; 1-главный стояк; 2, 3, 5-соединительная, переливная, сигнальная трубы расширительного бака; 4 - расширительный бак; 6-воздушная линия; 7 - воздухосборник; 8 - подающие подводки; 9 - регулировочные краны у отопительных приборов; 10-отопительные приборы; 11-обратные подводки; 12-обратные стояки (охлажденной воды); 13-подающие стояка (горячей воды); 14-тройник с пробкой для спуска воды; 15- краны или вентили на стояках; 16, 17-подающий и обратный магистральные теплопроводы; 18-запорные вентили или задвижки на магистральных теплопроводах для регулирования и отключения отдельных веток; 19 - воздушные краны.

Рис.4.3.Схема однотрубной системы водяного отопления с верхней разводкой и естественной циркуляцией

Двухтрубная система с нижним расположением обеих магистралей и естественной циркуляцией (рис.4.3) перед системой с верхней разводкой имеет преимущество: монтаж и пуск систем может производиться поэтажно по мере возведения здания: удобнее эксплуатация системы, т.к. вентили и краны на подающем и обратном стояках находятся внизу и в одном месте. Двухтрубные вертикальные системы с нижней разводкой применяют в малоэтажных зданиях с кранами двойной регулировки у отопительных приборов, что объясняется большой гидравлической и тепловой устойчивостью в сравнении с системами с верхней разводкой.

Удаление воздуха из этих систем осуществляется воздушными кранами 19 (рис.4.3).

Основное преимущество двухтрубных систем независимо от способа циркуляции теплоносителя - поступление воды с наивысшей температурой TI к каждому отопительному прибору, что обеспечивает максимальную разность температур TI-T2 и, следовательно, минимальную площадь поверхности приборов. Однако в двухтрубной системе, особенно с верхней разводкой, имеет место значительный расход труб и усложняется монтаж.

По сравнению с двухтрубными системами отопления вертикальные однотрубные системы с замыкающими участками (рис. 4.3, левая часть) имеют ряд преимуществ: меньшая первоначальная стоимость, более простой монтаж и меньшая длина теплопроводов, более красивый внешний вид. Если приборы, находящиеся в одном помещении, присоединены по проточной схеме к стояку с двух сторон, то у одного из них (правый стояк на рис. 4.3) устанавливают регулировочный кран. Такие системы применяют в малоэтажных производственных зданиях.

На рис. 4.5 показана схема однотрубных горизонтальных систем отопления. Горячая вода в таких системах поступает в отопительные приборы одного и того же этажа из теплопровода, проложенного горизонтально. Регулировка и включение отдельных приборов в горизонтальных системах с замыкающими участками (рис. 4.5 б) достигается также легко, как и вертикальных системах. В горизонтальных проточных системах (рис. 4.5 а, в) регулировка может быть только поэтажной, что является существенным их недостатком.

Рис. 4.5. Схема однотрубных горизонтальных систем водяного отопления

а, в- проточная; б- с замыкающими участками.

Рис. 4.6 Системы водяного отопления с искусственной циркуляцией

1 - расширительный бак; 2 - воздушная сеть; 3- насос циркуляционный; 4- теплообменник

К основным достоинствам однотрубных горизонтальных систем относятся меньший, чем в вертикальных системах, расход труб, возможность поэтажного включения системы и стандартность узлов. Кроме того, горизонтальные системы не требуют пробивки отверстий в перекрытиях, и монтаж их в сравнении с вертикальными системами гораздо проще. Они довольно широко применяются в производственных и общественных помещениях.

Общими преимуществами систем с естественной циркуляцией воды, предопределяющими в некоторых случаях их выбор, являются относительная простота устройства и эксплуатации; отсутствие насоса и потребности в электроприводе, бесшумность действия; сравнительная долговечность при правильной эксплуатации (до 30-40 лет) и обеспечение равномерной температуры воздуха в помещении в течение отопительного периода. Однако в системах водяного отопления с естественной циркуляцией естественное давление имеет очень большую величину. Поэтому при большой протяженности циркуляционных колец (>30м), а, следовательно, при значительных сопротивлениях движению воды в них, диаметры трубопроводов по расчету получаются очень большими и система отопления называется экономически невыгодной как по первоначальным затратам, так и в процессе эксплуатации.

В связи с изложенным область применения систем с естественной циркуляцией ограничена обособленными гражданскими зданиями, где недопустимы шум и вибрация, квартирным отоплением, верхними (техническими) этажами высоких зданий.

Системы отопления с искусственной циркуляцией (рис. 4.6-4.8) принципиально отличаются от систем водяного отопления с естественной циркуляцией тем, что в них в дополнение к естественному давлению, возникающему в результате охлаждения воды в приборах и трубах, значительно большее давление создается циркуляционным насосом, который устанавливается на обратном магистральном трубопроводе у котла, а расширительный бак присоединен не к подающему, а к обратному теплопроводу около всасывающего патрубка насоса. При таком присоединении расширительного бака воздух из системы через него отводиться не может, поэтому для удаления воздуха из сети теплопроводов и отопительных приборов служат воздушные линии, воздухосборники и воздушные краны.

Рассмотрим схемы вертикальных двухтрубных систем отопления с искусственной циркуляцией (рис.4,6). Слева показана система с верхним расположением подающей магистрали, а справа - система с нижним расположением обеих магистралей. Обе системы отопления относятся к так называемым тупиковым системам, в которых нередко получается большая разница в потере давления в отдельных циркуляционных кольцах, т.к. длины их разные: чем дальше расположен прибор от котла, тем большую протяженность имеет кольцо этого прибора. Поэтому в системах с искусственной циркуляцией, особенно при большой протяженности теплопроводов, целесообразно применять попутное движение воды в подающих и охлаждённых магистралях по схеме, предложенной проф. В. М. Чаплиным. По этой схеме (рис. 4.7) длина всех циркуляционных колец почти одинакова, вследствие чего легко получить равную потерю давления в них и равномерный прогрев всех приборов. СНиП рекомендует такие системы устраивать при числе стояков в ветви более 6. Недостатком этой системы по сравнению с тупиковой является несколько большая общая длина теплопроводов, и, как следствие, большая на 3-5% первоначальная стоимость системы.

Рис.4.7. Схема двухтрубной системы водяного отопления с верхней разводкой и попутным движением воды в подающей и обратной магистралях и искусственной циркуляцией

1 - теплообменник; 2, 3, 4, 5 - циркуляционная, соединительная,сигнальная, переливная трубы расширительного бака; 6 - расширительный бак; 7- подающий магистральный теплопровод; 8 - воздухосборник; 9 - отопительный прибор; 10 - кран двойной регулировки; 11 - обратный теплопровод; 12 –насос.

В последние годы широко применяют однотрубные системы отопления с нижней прокладкой магистралей горячей и охлажденной воды (рис.4.8) с искусственной циркуляцией воды.

Стояки систем по схемам б разделяются на подъемные и опускные. Стояки систем по схемам а ,в иг состоят из подъемного и опускного участков, по верхней части, обычно под полом верхнего этажа, они соединяются горизонтальным участком. Стояки прокладывают на расстоянии 150 мм от края оконного проема. Длина подводок к нагревательным приборам принимается стандартной - 350 мм; отопительные приборы смещены от оси окна в сторону стояка.

Рис 4.8.Разновидности (в, б, в, е) однотрубных систем водяного отопления с нижней разводкой

Для регулирования теплопередачи отопительных приборов устанавливают трехходовые краны типа КРТП, а при смещенных замыкающих участках - шиберные краны пониженного гидравлического сопротивления типа КРПШ.

Однотрубная система с нижней разводкой удобна для зданий с бесчердачным перекрытием, она обладает повышенной гидравлической и тепловой устойчивостью. Преимущества однотрубных систем отопления заключаются в меньшем диаметре труб, благодаря большему давлению, создаваемому насосом; большем радиусе действия; более простом монтаже, и большей возможности унификации деталей теплопроводов, приборных узлов.

К недостаткам систем относится перерасход отопительных приборов по сравнению с двухтрубными системами отопления.

Область применения однотрубных систем отопления разнообразная: жилые и общественные здания с числом этажей более трех, производственные предприятия и т.д.

4.2. ВЫБОР СИСТЕМЫ ОТОПЛЕНИЯ

Систему отопления выбирают в зависимости от назначения и режима эксплуатации здания. Учитывают требования, предъявляемые к системе. Принимают во внимание категории пожаровзрывоопасности помещений.

Главным фактором, определяющим выбор системы отопления, является тепловой режим основных помещений здания.

Учитывая экономические, заготовительно-монтажные и некоторые эксплуатационные преимущества, СНиП 2.04.05-86, п.3.13 рекомендует проектировать, как правило, однотрубные системы водяного отопления из унифицированных узлов и деталей; при обосновании допускается применение двухтрубных систем.

Тепловой режим помещений одних зданий необходимо поддерживать неизменным в течение всего отопительного сезона, других зданий -можно изменять для сокращения трудозатрат с суточной и недельной периодичностью, на время праздников, проведения наладочных, ремонтных и других работ.

Гражданские, производственные и сельскохозяйственные здания с постоянным тепловым режимом можно разделить на 4 группы:

1) здания больниц, родильных домов и тому подобных лечебно-профи-лактических учреждений круглосуточного использования (кроме психиатрических больниц), к помещениям которых предъявляются повышенные санитарно-гигиенические требования;

2) здания детских учреждений, жилые, общежития, гостиницы, дома отдыха, санатории, пансионаты, поликлиники, амбулатории, аптеки, психиатрические больницы, музеи, выставки, библиотеки, бани, книгохранилища;

3) здания плавательных бассейнов, вокзалов, аэропортов;

4) здания производственные и сельскохозяйственные при непрерывном технологическом процессе.

Например, в зданиях второй группы предусматривают водяное отопление с радиаторами и конвекторами (кроме больниц и бань). Предельную температуру теплоносителя воды принимают в двухтрубных.системах равной 95°С, в однотрубных системах зданий (кроме бань, больниц и детских учреждений) -105°С (при конвекторах с кожухом до 130°С). Для отопления лестничных клеток возможно повышение расчетной температуры до 150°С. В зданиях с круглосуточной действующей приточной вентиляцией, в первую очередь в зданиях музеев, картинных галерей, книгохранилищ, архивов (кроме больниц и детских учреждений) устраивают центральное воздушное отопление.

Системы отопления следует проектировать с насосной циркуляцией, нижней разводкой, тупиковые с открытой прокладкой стояков в первую очередь.

Остальные системы принимаются в зависимости от местных условий: архитектурно-планировочного решения, требуемого теплового режима, вида и параметров теплоносителя в наружной тепловой сети и т.д.

Как произвести проектирование, расчет и определить мощность системы отопления для дома, не привлекая специалистов? Этот вопрос интересует многих.

Выбираем тип котла

Определите, какой источник тепла будет для вас наиболее доступен и выгоден по цене. Это могут быть электричество, газ, уголь и жидкое топливо. И сходя из этого, выбирайте тип котла. Это очень важный вопрос, который следует решить в первую очередь.

  1. Электрический котел . Совершенно не пользуется спросом на территории постсоветского пространства, так как использовать электричество для обогрева помещений очень дорого и это требует безупречной работы электросети, что не представляется возможным.
  2. Газовый котел . Это самый оптимальный вариант, экономичный и удобный. Они совершенно безопасны, устанавливать можно и на кухне. У газа самый высокий коэффициент полезного действия, и если у вас есть возможность подключиться к газовым трубам, то устанавливайте такой котел.
  3. Твердотопливный котел . Предполагает постоянное присутствие человека, который будет подсыпать топливо. Теплоотдача таких котлов непостоянна, и температура в помещении будет все время колебаться.
  4. Жидкотопливный котел . Очень большой вред наносит окружающей среде, но если другой альтернативы нет, существует специальное оборудование для отходов работы котла.

Определяем мощность системы отопления: простые шаги

Чтобы произвести нужные нам расчеты, необходимо определить такие параметры:

  • Площадь помещения. Берется в расчет полная площадь всего дома, а не только те комнаты, которые вы планируете отапливать. Обозначают буквой S.
  • Удельная мощность котла в зависимости от климатических условий. Определяется в зависимости от климатической зоны, в которой расположен ваш дом. Например, для юга – 0,7-0,9 кВт, для севера – 1,5-2,0 кВт. А в среднем, для удобства и простоты расчетов, можно брать 1. Обозначаем буквой W.

Так, удельная мощность котла = (S*W) /10.

Этот показатель определяет, будет ли данное устройство поддерживать необходимый температурный режим в вашем доме. Если мощность котла будет меньше той, что необходима вам по расчетам, котел не сможет обогреть помещение, будет прохладно. А если мощность будет превышать необходимую вам, будет иметь место большой перерасход топлива, следовательно, и финансовых затрат. Мощность системы отопления и ее рациональность зависят от этого показателя.

Сколько необходимо радиаторов, чтобы обеспечить полную мощность системы отопления?

Для ответа на этот вопрос можно использовать очень простую формулу: площадь отапливаемой комнаты умножаем на 100 и делим на мощность одной секции батареи.

Разберемся детальней:

  • так как комнаты у нас разной площади, целесообразно будет брать в расчет отдельно каждую;
  • 100 Ватт – средняя величина мощности на один квадрат помещения, которая обеспечивает наиболее подходящую, комфортную температуру;
  • мощность одной секции радиатора отопления – эта величина индивидуальна для разных радиаторов и зависит от материала, из которого они изготовлены. Если у вас нет такой информации, то можно брать среднестатистическое значение мощности одной секции современных радиаторов – 180-200 Ватт.

Материал , из которого изготовлен радиатор, – очень важный момент, ведь от этого зависит его износостойкость и теплоотдача. Стальные и чугунные имеют небольшую мощность секции. Наибольшей мощность отличаются анодированные – мощность их секции 215 Вт, отличная защита от коррозии, гарантия на них до 30 лет, что, конечно, отражается на стоимости таких батарей. Но учитывая все факторы, экономить в данном случае не стоит.