Расчет потерь теплоты и кпд-брутто котельном агрегате. Тепловой баланс котла

При выработке пара в котле раб.вещ-во (вода) обычно проходит последовательно водонагревательные, испарительные и пароперегревательные поверхности. В отд-х случ. котел м. не иметь экономайзера или пароперегревателя.

Теплота, воспринятая водой в экон-ре, МДж/кг или (МДж/м 3):Q Э =D/B(h² П.В. -h¢ П.В), где h² П.В. , h¢ П.В. -энтальпии пит. воды на вх. и вых. Экон-ра, МДж/кг

Тепловосприятие испарит. поверх-тей, если условно считать пар сухим насыщенным (на испарение воды): Q ИСП. =D/B(h Н.П. -h² П.В),где h Н.П. -энтальпия нас.пара.

Тепловосприятие пароперегревателя (на перегрев пара): Q ПП. =D/B(h П.П. -h Н.П),где h Н.П. -энтальпия пер.пара.

S-ное кол-во теплоты,пошедшей на выработку пара,МДж/кг(МДж/м 3):Q ПОЛ. =Q Э +Q ИСП. +Q ПП. =D/B(h П.П. - h¢ П.В).

С учетом продувки из котла части воды для поддержания определенного ее солесодержания, а также при наличии в кот-ной установке передачи части нас.пара на сторону и при дополнительном пароперегревателе для вторичного перегрева пара полезно затраченная теплота на ед. сжигаемого топлива, МДж/кг(МДж/м 3):Q ПОЛ. = D/B(h П.П. -h¢ П.В)+D ПР /B(h ПР -h¢ П.В)+D НАС.П /B(h Н.П -h¢ П.В)+D ВТ.П /B(h² ВТ.П -h¢ ВТ..П).

Где D ПР, D НАС.П, D ВТ.П -расходы продувочной воды, нас. пара и пара ч/з вторичный пароперегреватель, кг/с; h ПР, h² ВТ.П,h¢ ВТ..П -энтальпии продувочной воды, пара на вх. и вых. вторичного пароперегревателя.

С учетом выработки перегретого и нас.пара, наличия продувки воды и вторичного перегрева пара КПД котла, %,опред.по ф-ле: h К =(Q ПОЛ. /В×Q Р Н)×100% Þ определ-е КПД котла как отношение полезно затраченной теплоты к располагаемой теплоте топлива-это определение его по прямому балансу. Определение КПД котла ч/з нахождение тепловых потерь наз-ся методом обратного баланса:

h К =100-(q У.Г +q Х.Н +q М.Н +q Н.О +q Ф.Ш)=100-Sq ПОТ.

Этот КПД котла не учитывает затрат эл.энергии и теплоты на собственные нужды (приводы насосов, вентиляторов, дымососов, механизмов топливоподачи и пылеприготовления, работы обдувочных аппаратов). Такой КПД котла наз.КПД брутто и обозначают: h БР К или h БР.

Если потребление энергии в ед. времени на указанное вспомогательное оборудование составляет SN с, МДж, а уд. затраты топлива на выработку эл.энергии b, кг/МДж, то КПД котель-й установки с учетом потребления энергии вспомогательным оборудованием наз-ся КПД нетто ,% и опред. по ф-ле:

Коэффициент полезного действия (КПД) котельного агрегата определяют как отношение полезной теплоты, пошедшей на выработку пара (или горячей воды), к располагаемой теплоте (теплоте, поступившей в котельный агрегат). На практике не вся полезная теплота, выбранная котлоагрегатом, направляется потребителям. Часть теплоты расходуется на собственные нужды. В зависимости от этого различают КПД агрегата по теплоте, отпущенной потребителю (КПД нетто).

Разность выработанной и отпущенной теплоты представляет собой расход на собственные нужды котельной. На собственные нужды расходуется не только теплота, но и электрическая энергия (например, на привод дымососа, вентилятора, питательных насосов, механизмов топливоподачи и пылеприготовления и т.д.), поэтому расход на собственные нужды включает в себя расход всех видов энергии, затраченных на производство пара или горячей воды.

КПД брутто котельного агрегата характеризует степень его технического совершенства, а КПД нетто - коммерческую экономичность.

КПД брутто котельного агрегата ŋ бр , %, можно определить по уравнению прямого баланса

ŋ бр = 100(Q пол /Q р р)

или по уравнению обратного баланса

ŋ бр = 100-(q у.г +q х.н +q м.н +q н.о +q ф.ш) ,

где Q пол полезно используемая теплота, затраченная на выработку пара (или горячей воды); Q р р - располагаемая котельным агрегатом теплота; q у.г +q х.н +q м.н +q н.о +q ф.ш - относительные потери теплоты по статьям расхода теплоты.

КПД нетто по уравнению обратного баланса определяется как разность

ŋ нетто = ŋ бр -q с.н,

где q с.н - относительный расход энергии на собственные нужды, %.

КПД по уравнению прямого баланса применяется преимущественно при составлении отчетности за отдельный период (декада, месяц), а КПД по уравнению обратного баланса - при испытании котельных агрегатов. Определение КПД по обратному балансу значительно точнее, так как погрешности при измерении потерь теплоты меньше, чем при определении расхода топлива, особенно при сжигании твердого топлива.

Таким образом, для повышения эффективности котельных агрегатов недостаточно стремиться к снижению тепловых потерь; необходимо также всемерно сокращать расходы тепловой и электрической энергии на собственные нужды. Поэтому сравнение экономичности работы различных котельных агрегатов в конечном счете следует проводить по их КПД нетто.

В целом КПД котельного агрегата изменяется в зависимости от его нагрузки. Для построения этой зависимости нужно от 100% вычесть последовательно все потери котельного агрегата S q пот = q у.г +q х.н +q м.н +q н.о , которые зависят от нагрузки.

Как видно из рисунка 1.14, КПД котельного агрегата при определенной нагрузке имеет максимальное значение, т. е. работа котла на этой нагрузке наиболее экономична.

Рисунок 1.14 - Зависимость КПД котла от его нагрузки: q у.г, q х.н , q м.н, q н.о, S q пот - потери теплоты с уходящими газами, от химической неполноты сгорания, от механической неполноты сгорания, от наружного охлаждения и суммарные потери

Определение к.п.д. брутто по методу прямого баланса основано на измерениях количества подведённого и использованного тепла путём непосредственных замеров расхода топлива, пара и его параметров. КПД брутто по методу прямого баланса вычисляется по формуле:

где Q 1 - полезно использованное тепло, кДж/кг; Q- располагаемая теплота, поступающая в котлоагрегат на 1 кг или на 1 м 3 топлива, кДж/кг; q 1 - полезно использованное тепло, отнесенное к располагаемому теплу топлива и представляющее собой к.п.д. брутто, %; D пе - производительность котлоагрегата, кг/с; В - расход топлива в котле, кг/с (м 3 /с); h пе, h пв - соответственно энтальпии перегретого пара и питательной воды, кг/с.

Если при работе котлоагрегата на электростанции во время испытаний имеет место непрерывная продувка и отбор насыщенного пара из барабана котла на собственные нужды, то

где D пр - расход воды на непрерывную продувку, кг/с; D сн - расход насыщенного пара на собственные нужды, кг/с; ,- соответственно энтальпии кипящей воды и насыщенного пара при давлении в барабане котла, кДж/кг.

Для водогрейного котла к.п.д. определяется по формуле:

, % (3) где D в - расход сетевой воды через котел, кг/с; h пр, h обр - соответственно энтальпии прямой и обратной сетевой воды, кДж/кг.

Располагаемое тепло топлива определяется по формуле:

КДж/кг (кДж/м 3) (4)

где - низшая удельная теплота сгорания рабочей массы твёрдого, жидкого или сухой массы газообразного топлива, кДж/кг или кДж/нм 3 ; Q в. вн - тепло, внесённое в котлоагрегат воздухом, при нагреве в калорифере, кДж/кг; Q тл - физическое тепло топлива, кДж/кг; Q ф - тепло, поступаемое в котлоагрегат с паровым дутьём (форсуночным паром).

Состав топлива и величина должна определяться в химической лаборатории, а для известной марки топлива может быть принята по справочным данным.

Физическое тепло топлива может быть найдено по формуле:

, (5)

где t тл - температура рабочего топлива, о С; С тл - теплоёмкость топлива, кДж/(кг о С).

Теплоёмкость жидкого топлива зависит от температуры и определяется для мазута по приближенной формуле:

С тл =4,187(0,415 + 0,0006 t тл) , (6)

Физическое тепло топлива учитывается в тех случаях, когда оно предварительно нагрето посторонним источником тепла (паровой нагрев мазута и т.д.)

Тепло, затраченное на нагрев воздуха, поступающего в котлоагрегат, кДж/кг или кДж/нм 3 .

, (7)

где - отношение количества воздуха на входе в воздухоподогреватель к теоретически необходимому расходу воздуха
;
- энтальпия теоретически необходимого количества воздуха на выходе из калорифера и на входе в него (холодного воздуха), кДж/кг или кДж/м 3 .

Тепло, вносимое в котёл паровым дутьём, определяется по формуле:

Q ф =G ф (h ф -2510),

где G ф - выход пара, идущего на дутьё или распыливание топлива, кг/кг; h ф - энтальпия этого пара кДж/кг.

КПД брутто котла по методу прямого баланса рассчитывается по формуле (I) или (2).

Для определения энтальпии пара и питательной воды по таблицам перегретого пара и воды необходимо знать их давление и температуру.

Давление пара и питательной воды, замеряется по приборам на щите управления котла. Температура перегретого пара и питательной воды замеряется термопарами, установленными на паропроводе и входном коллекторе водяного экономайзера. Вторичные показывающие или самопишущие приборы расположены на тепловом щите.

КПД котельного агрегата называется отношение полезной теплоты, пошедшей на выработку пара (горячей воды), к располагаемой теплоте (теплоте, поступившей в котельный агрегат). Не вся полезная теплота, выработанная котлом, направляется потребителям, часть ее расходуется на собственные нужды (привод насосов, тягодутьевых устройств, расходы теплоты на подогрев воды вне котла, ее деаэрации и др.). в связи с этим различают КПД агрегата по выработанной теплоте (КПД брутто) и КПД агрегата по теплоте, отпущенной потребителю (КПД нетто).

КПД брутто может быть определен по формуле:

КПД нетто определяется по обратному балансу как:

Современные методы повышения КПД котельной установки.

Увеличить мощность парового котла можно, принимая следующие меры:

§ ограничивая объём воздуха, находящегося в камере горения, установка перегородок;

§ используя системы утилизации тепла отходящих газов;

§ используя конденсационные или традиционные экономайзеры (нагреватели питающей воды);

§ выполнив теплоизоляцию стенок котла;

§ проведя предварительный нагрев нагнетаемого в камеру горения воздуха;

§ регулярно продувая котёл;

§ наладив рекуперацию («улавливание») конденсата.

Методы повышения КПД теплового цикла ТЭС.

Для повышения КПД используется технологическая схема комбинированного производства электроэнергии и тепла, отпускаемого потребителям для производственных нужд или для теплофикации и горячего водоснабжения. С этой целью в турбинах производится отбор пара необходимых параметров после соответствующих ступеней. При этом через конденсатор проходит гораздо меньше пара, что позволяет повысить КПД до 60…65 %.

Повышение КПД может быть достигнуто и за счет подъема параметров острого пара. По оценкам специалистов повышение температуры пара до 600 о С позволит увеличить КПД примерно на 5 %, а подъем давления до 30 МПа – на 3…4%. Правда, для этого потребуется металл с более высокими показателями прочности.

Чем определяется оптимальность режима работы парового котла.

Температура газов в поворотной камере, давление воздуха за воздухоподогревателем, сопротивление воздухоподогревателя, расход воздуха на мельницы.

Влияние режимов работы вспомогательного оборудования на экономичность работы котельной установки.

Для нормальной и бесперебойной работы котельных установок требуется, чтобы топливо к ним подавалось непрерывно. Процесс подачи топлива складывается из двух основных этапов: 1) подача топлива от места его добычи на склады, расположенные вблизи котельной; 2) подача топлива со складов непосредственно в котельные помещения.

Любые нарушения режимов работы вспомогательного оборудования парового котла, такие как системы пылеприготовления, подготовки воды, тягодутьевые машины и т.д. оказывают существенное влияние выработку паровым котлом пара требуемых параметров.

Влияние шлакования поверхностей нагрева на режимы работы котельного агрегата.

Интенсивное загрязнение или шлакование поверхностей нагрева влекут за собой подъем температуры газов на выходе из топки и, как следствие этого, дополнительное загрязнение (шлакование) последующих поверхностей нагрева котла, появление повышенных неравномерностей по температуре и скорости газов в отдельных пакетах и змеевиках, повышение температуры перегретого пара и металла труб пароперегревателя, повышение сопротивления газового тракта котла и снижение его экономических показателей.

Современные технологии сжигания топлива.

Вихревое сжигание топлива, слоевое сжигание.

Кислородное топливо. Основной принцип состоит в том, что из воздуха выделяется кислород, который смешивается с угольной пылью и сжигается. При сжигании угля в чистом кислороде, не происходит образование оксидов азота. После нескольких ступеней очистки в д.г. остается только СО2.

Среди основных технологий сжигания топлива следует выделить низкотемпературную технологию сжигания, технологию с кольцевой топкой, использование водоугольного топлива и ПГУ с внутрицикловой газификацией угля.

За счёт чего в конденсаторе турбин увеличивается КПД ТЭС

Коэффициент полезного действия турбины можно увеличить, повысив температуру и давление пара, поступающего в турбину, или снизив температуру и давление насыщенного пара на выходе из турбины. Последнее достигается путем конденсации выходящего из турбины пара, которая происходит в установленном для этой цели конденсаторе при подаче в него охлаждающей воды.

Существует 2 метода определения КПД:

По прямому балансу;

По обратному балансу.

Определение КПД котла как отношение полезно затраченной теплоты к располагаемой теплоте топлива – это определение его по прямому балансу:

КПД котла можно определить и по обратному балансу – через тепловые потери. Для установившегося теплового состояния получаем

. (4.2)

КПД котла, определяемый по формулам (1) или (2), не учитывает электрической энергии и теплоты на собственные нужды. Такой КПД котла называют КПД брутто и обозначают или .

Если потребление энергии в единицу времени на указанное вспомогательное оборудование составляет , МДж, а удельные затраты топлива на выработку электроэнергии в, кг/МДж, то КПД котельной установки с учетом потребления энергии вспомогательным оборудованием (КПД нетто), %,

. (4.3)

Иногда называют энергетическим КПД котельной установки.

Для котельных установок промышленных предприятий затраты энергии на собственные нужды составляют около 4% вырабатываемой энергии.

Расход топлива определяется:

Определение расхода топлива связано с большой погрешностью, поэтому КПД по прямому балансу характеризуется низкой точностью. Данный метод используется для испытаний существующего котла.

Метод по обратному балансу характеризуется большей точностью, используется при эксплуатации и проектировании котла. При этом Q 3 и Q 4 определяется по рекомендации и из справочников. Q 5 определяется по графику. Q 6 – рассчитывается (редко учитывается), и по существу определение по обратному балансу сводится к определению Q 2 , которое зависит от температуры уходящих газов.

КПД брутто зависит от типа и мощности котла, т.е. производительности, вида сжигаемого топлива, конструкции топки. На КПД влияет также режим работы котла и чистота поверхностей нагрева.

При наличии механического недожога часть топлива не сгорает (q 4), а значит не расходует воздуха, не образует продуктов сгорания и не выделяет теплоты, поэтому при расчете котла пользуются расчетным расходом топлива

. (4.5)

КПД брутто учитывает только тепловые потери.


Рисунок 4.1 - Изменение КПД котла с изменением нагрузки

5 ОПРЕДЕЛЕНИЕ ПОТЕРЬ ТЕПЛОТЫ В КОТЕЛЬНОМ АГРЕГАТЕ.

СПОСОБЫ СНИЖЕНИЯ ПОТЕРЬ ТЕПЛОТЫ

5.1 Потеря теплоты с уходящими газами

Потеря теплоты с уходящими газами Q у.г возникает из-за того, что физическая теплота (энтальпия) газов, покидающих котел, превышает физическую теплоту поступающих в котел воздуха и топлива.

Если пренебречь малым значением энтальпии топлива, а также теплотой золы, содержащейся в уходящих газах, потеря теплоты с уходящими газами, МДж/кг, подсчитывается по формуле:

Q 2 = J ч.г - J в; (5.8)

где – энтальпия холодного воздуха при a=1;

100-q 4 – доля сгоревшего топлива;

a у.г – коэффициент избытка воздуха в уходящих газах.

Если температура окружающей среды равна нулю (t х.в =0), то потеря теплоты с уходящими газами равна энтальпии уходящих газов Q у.г =J у.г.

Потеря теплоты с уходящими газами занимает обычно основное место среди тепловых потерь котла, составляя 5-12 % располагаемой теплоты топлива, и определяется объемом и составом продуктов сгорания, существенно зависящих от балластных составляющих топлива и от температуры уходящих газов:

Отношение , характеризующее качество топлива, показывает относительный выход газообразных продуктов сгорания (при a=1) на единицу теплоты сгорания топлива и зависит от содержания в нем балластных составляющих:

– для твердого и жидкого топлива: влаги W Р и золы А Р;

– для газообразного топлива: N 2 , CO 2 , O 2 .

C увеличением содержания в топливе балластных составляющих и, следовательно, , потеря теплоты с уходящими газами соответственно возрастает.

Одним из возможных направлений снижения потери теплоты с уходящими газами является уменьшение коэффициента избытка воздуха в уходящих газах a у.г, который зависит от коэффициента расхода воздуха в топке a Т и балластного воздуха, присосанного в газоходы котла, находящиеся обычно под разрежением

a у.г = a Т + Da . (5.10)

В котлах, работающих под давлением, присосы воздуха отсутствуют.

С уменьшением a Т потеря теплоты Q у.г снижается, однако при этом в связи с уменьшением количества воздуха, подаваемого в топочную камеру, возможно появление другой потери – от химической неполноты сгорания Q 3 .

Оптимальное значение a Т выбирается с учетом достижения минимального значения q у.г + q 3 .

Уменьшение a Т зависит от рода сжигаемого топлива и типа топочного устройства. При более благоприятных условиях контактирования топлива и воздуха избыток воздуха a Т, необходимый для достижения наиболее полного горения, может быть уменьшен.

Балластный воздух в продуктах сгорания помимо увеличения потери теплоты Q у.г приводит также к дополнительным затратам электроэнергии на дымосос.

Важнейшим фактором, влияющим на Q у.г, является температура уходящих газов t у.г. Её снижение достигается установкой в хвостовой части котла теплоиспользующих элементов (экономайзера, воздухоподогревателя). Чем ниже температура уходящих газов и соответственно меньше температурный напор Dt между газами и нагреваемым рабочим телом, тем большая площадь поверхности Н требуется для такого же охлаждения газа. Повышение t у.г приводит к увеличению потери с Q у.г и к дополнительным затратам топлива DB. В связи с этим оптимальная t у.г определяется на основе технико-экономических расчетов при сопоставлении годовых затрат для теплоиспользующих элементов и топлива для различных значений t х.г.

На рис.4 можно выделить область температур (от до ), в которой расчетные затраты отличаются незначительно. Это дает основание для выбора в качестве наиболее целесообразной температуры , при которой начальные капитальные затраты будут меньше.

Существуют ограничительные факторы при выборе оптимальной :

а) низкотемпературная коррозия хвостовых поверхностей;

б) при 0 C возможна конденсации водяных паров и соединение их с окислами серы;

в) выбор зависит от температуры питательной воды, температуры воздуха на входе в воздушный подогреватель и других факторов;

г) загрязнение поверхности нагрева. Это приводит к снижению коэффициента теплопередачи и к повышению .

При определении потери теплоты с уходящими газами учитывают уменьшение объема газов

. (5.11)

5.2 Потеря теплоты от химической неполноты сгорания

Потеря теплоты от химической неполноты сгорания Q 3 возникает при неполном сгорании топлива в пределах топочной камеры котла и появления в продуктах сгорания горючих газообразных составляющих CO, H 2 , CH 4 , C m H n … Догорание же этих горючих газов за пределами топки практически невозможно из-за относительно низкой их температуры.

Химическая неполнота сгорания топлива может явиться следствием:

– общего недостатка воздуха;

– плохого смесеобразования;

– малых размеров топочной камеры;

– низкой температуры в топочной камере;

– высокой температуры.

При достаточном для полного сгорания топлива качестве воздуха и хорошем смесеобразовании q 3 зависит от объемной плотности тепловыделения в топке

Оптимальное отношение , при котором потеря q 3 имеет минимальное значение, зависит от вида топлива, способа его сжигания и конструкции топки. Для современных топочных устройств потеря теплоты от q 3 составляет 0÷2 % при q v =0,1÷0,3 МВт/м 3 .

Для снижения потери теплоты от q 3 в топочной камере стремятся повысить температурный уровень, применяя, в частности, подогрев воздуха, а также всемерно улучшая перемешивание компонентов горения.