Точки возможного экстремума функции. Возрастание, убывание и экстремумы функции

Точка х 0 называетсяточкой максимума (минимума ) функцииf(х), если в некоторой окрестности точки х 0 выполняется неравенствоf(х) ≤f(х 0) (f(х) ≥f(х 0)).

Значение функции в этой точке называется соответственно максимумом илиминимумом функции. Максимум и минимум функции объединяются общим названиемэкстремума функции.

Экстремум функции в этом смысле часто называют локальным экстремумом , подчеркивая тот факт, что это понятие связано лишь с достаточно малой окрестностью точки х 0 . На одном и том же промежутке функция может иметь несколько локальных максимумов и минимумов, которые не обязательно совпадают сглобальным максимумом илиминимумом (т.е. наибольшим или наименьшим значением функции на всем промежутке).

Необходимое условие экстремума . Для того, чтобы функция имела экстремум в точке, необходимо, чтобы ее производная в этой точке равнялась нулю или не существовала.

Для дифференцируемых функций это условие вытекает из теоремы Ферма. Кроме того, оно предусматривает и случай, когда функция имеет экстремум в точке, в которой она не дифференцируема.

Точки, в которых выполнено необходимое условие экстремума, называются критическими (илистационарными для дифференцируемой функции). Эти точки должны входить в область определения функции.

Таким образом, если в какой-либо точке имеется экстремум, то эта точка критическая (необходимость условия). Заметим, что обратное утверждение неверно. Критическая точка вовсе не обязательно является точкой экстремума, т.е. сформулированное условие не является достаточным.

Первое достаточное условие экстремума . Если при переходе через некоторую точку производная дифференцируемой функции меняет свой знак с плюса на минус, то это точка максимума функции, а если с минуса на плюс, - то точка минимума.

Доказательство этого условия вытекает из достаточного условия монотонности (при изменении знака производной происходит переход либо от возрастания функции к убыванию, либо от убывания к возрастанию).

Второе достаточное условие экстремума . Если первая производная дважды дифференцируемой функции в некоторой точке равна нулю, а вторая производная в этой точке положительна, то это точка минимума функции; а если вторая производная отрицательна, то это точка максимума.

Доказательство этого условия также основано на достаточном условии монотонности. В самом деле, если вторая производная положительна, то первая производная является возрастающей функцией. Поскольку в рассматриваемой точке она равна нулю, следовательно, при переходе через нее она меняет знак с минуса на плюс, что возвращает нас к первому достаточному условию локального минимума. Аналогично если вторая производная отрицательна, то первая убывает и меняет знак с плюса на минус, что является достаточным условием локального максимума.

Исследование функции на экстремум в соответствии со сформулированными теоремами включает следующие этапы:

1. Найти первую производную функции f`(x).

2. Проверить выполнение необходимого условия экстремума, т.е. найти критические точки функции f(x), в которых производнаяf`(x) = 0 или не существует.

3. Проверить выполнение достаточного условия экстремума, т.е. либо исследовать знак производной слева и справа от каждой критической точки, либо найти вторую производную f``(x) и определить ее знак в каждой критической точке. Сделать вывод о наличии экстремумов функции.

4. Найти экстремумы (экстремальные значения) функции.

Нахождение глобального максимума и минимума функции на некотором промежутке также имеет большое прикладное значение. Решение этой задачи на отрезке основано на теореме Вейерштрасса, в соответствии с которой непрерывная функция принимает на отрезке свои наибольшее и наименьшее значения. Они могут достигаться как в точках экстремума, так и на концах отрезка. Поэтому решение включает следующие этапы:

1. Найти производную функции f`(x).

2. Найти критические точки функции f(x), в которых производнаяf`(x) = 0 или не существует.

3. Найти значения функции в критических точках и на концах отрезка и выбрать из них наибольшее и наименьшее.

Это довольно-таки занятный раздел математики, с которым сталкиваются абсолютно все ученики выпускных классов и студенты. Тем не менее далеко не каждому нравится матан. Некоторые не могут понять даже элементарных вещей наподобие, казалось бы, стандартного исследования функции. Данная статья призвана исправить подобную оплошность. Хотите поподробнее узнать об анализе функции? Желаете узнать, что такое точки экстремума и как их найти? Тогда данная статья для вас.

Исследование графика функции

Для начала стоит понять, зачем вообще необходимо анализировать график. Существуют простые функции, начертить которые не составит труда. Ярким примером подобной функции может служить парабола. Начертить ее график не составит труда. Все что необходимо, так это с помощью простого преобразования найти числа, при которых функция принимает значение 0. И в принципе это все что знать для того, чтобы начертить график параболы.

Но что делать, если функция, график которой нам нужно начертить, намного сложнее? Поскольку свойства сложных функций довольно-таки неочевидны, необходимо проводить целый анализ. Только после этого можно изобразить функцию графически. Как же это сделать? Ответ на этот вопрос вы сможете найти в данной статье.

План анализа функции

Первое, что необходимо сделать, так это провести поверхностное исследование функции, в ходе которого мы найдем область определения. Итак, начнем по порядку. Область определения - это совокупность тех значений, которыми функция задается. Проще говоря, это те числа, которые можно использовать в функции вместо х. Для того чтобы определить область определения, необходимо просто взглянуть на запись. К примеру, очевидно, что у функции у (х) = х 3 + х 2 - х + 43 область определения - множество действительных чисел. Ну а с функцией наподобие (х 2 - 2х)/х все немного иначе. Поскольку число в знаменателе не должно равняться 0, то областью определения данной функции будут все действительные числа, помимо нуля.

Далее необходимо найти так называемые нули функции. Это те значения аргумента, при которых вся функция принимает значения ноль. Для этого необходимо приравнять функцию к нулю, подробно ее рассмотреть и совершить некоторые преобразования. Возьмём уже знакомую нам функцию у(х) = (х 2 - 2х)/х. Из школьного курса мы знаем, что дробь равна 0 тогда, когда числитель равен нулю. Поэтому знаменатель мы отбрасываем и начинаем работать с числителем, приравнивая его к нулю. Получаем х 2 - 2х = 0 и выносим х за скобочки. Отсюда х (х - 2) = 0. В итоге получаем, что наша функция равна нулю тогда, когда х равняется 0 или же 2.

Во время исследования графика функции многие сталкиваются с проблемой в виде точек экстремума. И это странно. Ведь экстремумы - это довольно-таки простая тема. Не верите? Убедитесь сами, прочитав данную часть статьи, в которой мы поговорим о точках минимума и максимума.

Для начала стоит разобраться в том, что собой представляет экстремум. Экстремум - это предельное значений, которое достигает функция на графике. Отсюда получается, что существует два крайних значения - максимум и минимум. Для наглядности можно посмотреть на картинку, что расположена выше. На исследованной области точка -1 является максимумом функции у (х) = х 5 - 5х, а точка 1, соответственно, минимумом.

Также не стоит путать между собой понятия. Точки экстремума функции - это те аргументы, при которых заданная функция приобретает крайние значения. В свою очередь, экстремумом называют значение минимумов и максимумов функции. К примеру, вновь рассмотрим рисунок выше. -1 и 1 - это точки экстремума функции, а 4 и -4 - это сами экстремумы.

Нахождение точек экстремума

Но как все-таки найти точки экстремума функции? Все довольно-таки просто. Первое, что необходимо сделать - найти производную уравнения. Допустим, мы получили задание: "Найдите точки экстремума функции y (x), x - аргумент. Для наглядности возьмем функцию у (х) = х 3 + 2х 2 + х + 54. Проведем дифференцирование и получим следующее уравнение: 3х 2 + 4х + 1. В итоге мы получили стандартное квадратное уравнение. Все, что необходимо сделать дальше - приравнять его к нулю и найти корни. Поскольку дискриминант больше нуля (D = 16 - 12 = 4), данное уравнение определяется двумя корнями. Находим их и получаем два значения: 1/3 и -1. Это и будут точки экстремума функции. Однако как все-таки определить, кто есть кто? Какая точка является максимумом, а какая минимумом? Для этого нужно взять соседнюю точку и узнать ее значение. К примеру, возьмем число -2, которое находится слева по координатной прямой от -1. Подставляем это значение в наше уравнение у(-2) = 12 - 8 + 1 = 5. В итоге мы получили положительное число. Это значит, что на промежутке от 1/3 до -1 функция возрастает. Это, в свою очередь, обозначает, что на промежутках от минус бесконечности до 1/3 и от -1 до плюс бесконечности функция убывает. Таким образом, можно сделать вывод, что число 1/3 - точка минимума функции на исследованном промежутке, а -1 - точка максимума.

Также стоит отметить, что на ЕГЭ требуют не просто найти точки экстремума, Но и провести с ними какую-то операцию (прибавить, умножить и т.д.). Именно по этой причине стоит обратить особое внимание на условия задачи. Ведь из-за невнимательности можно потерять баллы.

Рассмотрим график непрерывной функции y=f(x) , изображенной на рисунке.

Значение функции в точке x 1 будет больше значений функции во всех соседних точках как слева, так и справа от x 1 . В этом случае говорят, что функция имеет в точке x 1 максимум. В точке x 3 функция, очевидно, также имеет максимум. Если рассмотреть точку x 2 , то в ней значение функции меньше всех соседних значений. В этом случае говорят, что функция имеет в точке x 2 минимум. Аналогично для точки x 4 .

Функция y=f(x) в точке x 0 имеет максимум , если значение функции в этой точке больше, чем ее значения во всех точках некоторого интервала, содержащего точку x 0 , т.е. если существует такая окрестность точки x 0 , что для всех x x 0 , принадлежащих этой окрестности, имеет место неравенство f(x) <f(x 0 ) .

Функция y=f(x) имеет минимум в точке x 0 , если существует такая окрестность точки x 0 , что для всех x x 0 , принадлежащих этой окрестности, имеет место неравенство f(x) >f(x 0 .

Точки, в которых функция достигает максимума и минимума, называются точками экстремума, а значения функции в этих точках экстремумами функции.

Обратим внимание на то, что функция, определенная на отрезке, может достигать максимума и минимума только в точках, заключенных внутри рассматриваемого отрезка.

Отмети, что если функция имеет в точке максимум, то это не означает, что в этой точке функция имеет наибольшее значение во всей области определения. На рисунке, рассмотренном выше, функция в точке x 1 имеет максимум, хотя есть точки, в которых значения функции больше, чем в точке x 1 . В частности, f (x 1) < f (x 4) т.е. минимум функции больше максимума. Из определения максимума следует только, что это самое большое значение функции в точках, достаточно близкихк точке максимума.

Теорема 1. (Необходимое условие существования экстремума.) Если дифференцируемая функция y=f(x) имеет в точке x= x 0 экстремум, то ее производная в этой точке обращается в нуль.

Доказательство . Пусть для определенности в точке x 0 функция имеет максимум. Тогда при достаточно малых приращениях Δx имеем f(x 0 + Δx) 0 ) , т.е. Но тогда

Переходя в этих неравенствах к пределу при Δx → 0 и учитывая, что производная f "(x 0) существует, а следовательно предел, стоящий слева, не зависит от того как Δx → 0, получаем: при Δx → 0 – 0 f" (x 0) ≥ 0 а при Δx → 0 + 0 f" (x 0) ≤ 0. Так как f " (x 0) определяет число, то эти два неравенства совместны только в том случае, когда f " (x 0) = 0.

Доказанная теорема утверждает, что точки максимума и минимума могут находиться только среди тех значений аргумента, при которых производная обращается в нуль.

Мы рассмотрели случай, когда функция во всех точках некоторого отрезка имеет производную. Как же обстоит дело в тех случаях, когда производная не существует? Рассмотрим примеры.

Примеры .

  1. y =|x |.

    Функция не имеет производной в точке x =0 (в этой точке график функции не имеет определенной касательной), но в этой точке функция имеет минимум, так как y (0)=0, а при всех x ≠ 0y > 0.

  2. Функция не имеет производной при x =0, так как обращается в бесконечность приx =0. Но в этой точке функция имеет максимум.

    Функция не имеет производной при x =0, так как при x →0. В этой точке функция не имеет ни максимума, ни минимума. Действительно, f(x) =0 и при x <0f(x) <0, а при x >0f(x) >0.

    Таким образом, из приведенных примеров и сформулированной теоремы видно, что функция может иметь экстремум лишь в двух случаях: 1) в точках, где производная существует и равна нулю; 2) в точке, где производная не существует.

    Однако, если в некоторой точке x 0 мы знаем, что f "(x 0 ) =0, то отсюда нельзя делать вывод, что в точке x 0 функция имеет экстремум.

    Например . .

    Но точка x =0 не является точкой экстремума, поскольку слева от этой точки значения функции расположены ниже оси Ox , а справа выше.

    Значения аргумента из области определения функции, при которых производная функции обращается в нуль или не существует, называются критическими точками .


    Из всего вышесказанного следует, что точки экстремума функции находятся среди критических точек, и, однако, не всякая критическая точка является точкой экстремума. Поэтому, чтобы найти экстремум функции, нужно найти все критические точки функции, а затем каждую из этих точек исследовать отдельно на максимум и минимум. Для этого служит следующая теорема.

    Теорема 2. (Достаточное условие существования экстремума.) Пусть функция непрерывна на некотором интервале, содержащем критическую точку x 0 , и дифференцируема во всех точках этого интервала (кроме, быть может, самой точки x 0). Если при переходе слева направо через эту точку производная меняет знак с плюса на минус, то в точке x = x 0 функция имеет максимум. Если же при переходе через x 0 слева направо производная меняет знак с минуса на плюс, то функция имеет в этой точке минимум.

    Таким образом, если

    Доказательство . Предположим сначала, что при переходе через x 0 производная меняет знак с плюса на минус, т.е. при всех x , близких к точке x 0 f "(x)> 0 для x< x 0 , f "(x)< 0 для x> x 0 . Применим теорему Лагранжа к разности f(x) - f(x 0 ) = f "(c)(x- x 0), где c лежит между x и x 0 .

    1. Пусть x < x 0 . Тогда c< x 0 и f "(c)> 0. Поэтомуf "(c)(x- x 0)< 0и, следовательно,

      f(x) - f(x 0 )< 0,т.е. f(x)< f(x 0 ).

    2. Пусть x > x 0 . Тогда c> x 0 и f "(c)< 0. Значитf "(c)(x- x 0)< 0. Поэтому f(x) - f(x 0 ) <0,т.е.f(x) < f(x 0 ) .

    Таким образом, для всех значений x достаточно близких к x 0 f(x) < f(x 0 ) . А это значит, что в точке x 0 функция имеет максимум.

    Аналогично доказывается вторая часть теоремы о минимуме.

    Проиллюстрируем смысл этой теоремы на рисунке. Пусть f "(x 1 ) =0 и для любых x, достаточно близких к x 1 , выполняются неравенства

    f "(x)< 0 при x< x 1 , f "(x)> 0 при x> x 1 .

    Тогда слева от точки x 1 функция возрастает, а справа убывает, следовательно, при x = x 1 функция переходит от возрастания к убыванию, то есть имеет максимум.

    Аналогично можно рассматривать точки x 2 и x 3 .


    Схематически все вышесказанное можно изобразить на картинке:

    Правило исследования функции y=f(x) на экстремум

    1. Найти область определения функции f(x).
    2. Найти первую производную функции f "(x) .
    3. Определить критические точки, для этого:
      1. найти действительные корни уравнения f "(x) =0;
      2. найти все значения x при которых производная f "(x) не существует.
    4. Определить знак производной слева и справа от критической точки. Так как знак производной остается постоянным между двумя критическими точками, то достаточно определить знак производной в какой-либо одной точке слева и в одной точке справа от критической точки.
    5. Вычислить значение функции в точках экстремума.

    Примеры . Исследовать функции на минимум и максимум.


    НАИБОЛЬШЕЕ И НАИМЕНЬШЕЕ ЗНАЧЕНИЯ ФУНКЦИИ НА ОТРЕЗКЕ

    Наибольшим значением функции на отрезке называется самое большое из всех ее значений на этом отрезке, а наименьшим – самое маленькое из всех ее значений.

    Рассмотрим функцию y=f(x) непрерывную на отрезке [a, b ]. Как известно, такая функция достигает своего наибольшего и наименьшего значений, либо на границе отрезка, либо внутри него. Если наибольшее или наименьшее значение функции достигается во внутренней точке отрезка, то это значение является максимумом или минимумом функции, то есть достигается в критических точках.

    Таким образом, получаем следующее правило нахождения наибольшего и наименьшего значений функции на отрезке[a, b ] :

    1. Найти все критические точки функции в интервале (a, b ) и вычислить значения функции в этих точках.
    2. Вычислить значения функции на концах отрезка при x = a, x = b .
    3. Из всех полученных значений выбрать наибольшее и наименьшее.

Что такое экстремум функции и каково необходимое условие экстремума?

Экстремумом функции называется максимум и минимум функции.

Необходимое условие максимума и минимума (экстремума) функции следующее: если функция f(x) имеет экстремум в точке х = а, то в этой точке производная либо равна нулю, либо бесконечна, либо не существует.

Это условие необходимое, но не достаточное. Производная в точке х = а может обращаться в нуль, в бесконечность или не существовать без того, чтобы функция имела экстремум в этой точке.

Каково достаточное условие экстремума функции (максимума или минимума)?

Первое условие:

Если в достаточной близости от точки х = а производная f?(x) положительна слева от а и отрицательна справа от а, то в самой точке х = а функция f(x) имеет максимум

Если в достаточной близости от точки х = а производная f?(x) отрицательна слева от а и положительна справа от а, то в самой точке х = а функция f(x) имеет минимум при условии, что функция f(x) здесь непрерывна.

Вместо этого можно воспользоваться вторым достаточным условием экстремума функции:

Пусть в точке х = а первая производная f?(x) обращается в нуль; если при этом вторая производная f??(а) отрицательна, то функция f(x) имеет в точке x = a максимум, если положительна - то минимум.

Что такое критическая точка функции и как её найти?

Это значение аргумента функции, при котором функция имеет экстремум (т.е. максимум или минимум). Чтобы его найти, нужно найти производную функции f?(x) и, приравняв её к нулю, решить уравнение f?(x) = 0. Корни этого уравнения, а также те точки, в которых не существует производная данной функции, являются критическими точками, т. е. значениями аргумента, при которых может быть экстремум. Их можно легко определить, взглянув на график производной : нас интересуют те значения аргумента, при которых график функции пересекает ось абсцисс (ось Ох) и те, при которых график терпит разрывы.

Для примера найдём экстремум параболы .

Функция y(x) = 3x2 + 2x - 50.

Производная функции: y?(x) = 6x + 2

Решаем уравнение: y?(x) = 0

6х + 2 = 0, 6х = -2, х=-2/6 = -1/3

В данном случае критическая точка - это х0=-1/3. Именно при этом значении аргумента функция имеет экстремум . Чтобы его найти , подставляем в выражение для функции вместо «х» найдённое число:

y0 = 3*(-1/3)2 + 2*(-1/3) - 50 = 3*1/9 - 2/3 - 50 = 1/3 - 2/3 - 50 = -1/3 - 50 = -50,333.

Как определить максимум и минимум функции, т.е. её наибольшее и наименьшее значения?

Если знак производной при переходе через критическую точку х0 меняется с «плюса» на «минус», то х0 есть точка максимума ; если же знак производной меняется с минуса на плюс, то х0 есть точка минимума ; если знак не меняется, то в точке х0 ни максимума, ни минимума нет.

Для рассмотренного примера:

Берём произвольное значение аргумента слева от критической точки: х = -1

При х = -1 значение производной будет у?(-1) = 6*(-1) + 2 = -6 + 2 = -4 (т.е. знак - «минус»).

Теперь берём произвольное значение аргумента справа от критической точки: х = 1

При х = 1 значение производной будет у(1) = 6*1 + 2 = 6 + 2 = 8 (т.е. знак - «плюс»).

Как видим, производная при переходе через критическую точку поменяла знак с минуса на плюс. Значит, при критическом значении х0 мы имеем точку минимума.

Наибольшее и наименьшее значение функции на интервале (на отрезке) находят по такой же процедуре, только с учетом того, что, возможно, не все критические точки будут лежать внутри указанного интервала. Те критические точки, которые находятся за пределом интервала, нужно исключить из рассмотрения. Если внутри интервала находится только одна критическая точка - в ней будет либо максимум, либо минимум. В этом случае для определения наибольшего и наименьшего значений функции учитываем также значения функции на концах интервала.

Например, найдём наибольшее и наименьшее значения функции

y(x) = 3sin(x) — 0,5х

на интервалах:

Итак, производная функции —

y?(x) = 3cos(x) — 0,5

Решаем уравнение 3cos(x) — 0,5 = 0

cos(x) = 0,5/3 = 0,16667

х = ±arccos(0,16667) + 2πk.

Находим критические точки на интервале [-9; 9]:

х = arccos(0,16667) — 2π*2 = -11,163 (не входит в интервал)

х = -arccos(0,16667) — 2π*1 = -7,687

х = arccos(0,16667) — 2π*1 = -4,88

х = -arccos(0,16667) + 2π*0 = -1,403

х = arccos(0,16667) + 2π*0 = 1,403

х = -arccos(0,16667) + 2π*1 = 4,88

х = arccos(0,16667) + 2π*1 = 7,687

х = -arccos(0,16667) + 2π*2 = 11,163 (не входит в интервал)

Находим значения функции при критических значениях аргумента:

y(-7,687) = 3cos(-7,687) — 0,5 = 0,885

y(-4,88) = 3cos(-4,88) — 0,5 = 5,398

y(-1,403) = 3cos(-1,403) — 0,5 = -2,256

y(1,403) = 3cos(1,403) — 0,5 = 2,256

y(4,88) = 3cos(4,88) — 0,5 = -5,398

y(7,687) = 3cos(7,687) — 0,5 = -0,885

Видно, что на интервале [-9; 9] наибольшее значение функция имеет при x = -4,88:

x = -4,88, у = 5,398,

а наименьшее - при х = 4,88:

x = 4,88, у = -5,398.

На интервале [-6; -3] мы имеем только одну критическую точку: х = -4,88. Значение функции при х = -4,88 равно у = 5,398.

Находим значение функции на концах интервала:

y(-6) = 3cos(-6) — 0,5 = 3,838

y(-3) = 3cos(-3) — 0,5 = 1,077

На интервале [-6; -3] имеем наибольшее значение функции

у = 5,398 при x = -4,88

наименьшее значение —

у = 1,077 при x = -3

Как найти точки перегиба графика функции и определить стороны выпуклости и вогнутости?

Чтобы найти все точки перегиба линии y = f(x), надо найти вторую производную, приравнять её к нулю (решить уравнение) и испытать все те значения х, для которых вторая производная равна нулю, бесконечна или не существует. Если при переходе через одно из этих значений вторая производная меняет знак, то график функции имеет в этой точке перегиб. Если же не меняет, то перегиба нет.

Корни уравнения f ? (x) = 0, а также возможные точки разрыва функции и второй производной разбивают область определения функции на ряд интервалов. Выпуклость на каждом их интервалов определяется знаком второй производной. Если вторая производная в точке на исследуемом интервале положительна, то линия y = f(x) обращена здесь вогнутостью кверху, а если отрицательна - то книзу.

Как найти экстремумы функции двух переменных?

Чтобы найти экстремумы функции f(x,y), дифференцируемой в области её задания, нужно:

1) найти критические точки, а для этого — решить систему уравнений

fх? (x,y) = 0, fу? (x,y) = 0

2) для каждой критической точки Р0(a;b) исследовать, остается ли неизменным знак разности

для всех точек (х;у), достаточно близких к Р0. Если разность сохраняет положительный знак, то в точке Р0 имеем минимум, если отрицательный - то максимум. Если разность не сохраняет знака, то в точке Р0 экстремума нет.

Аналогично определяют экстремумы функции при большем числе аргументов.



В чем состоят особенности схемы построения деятельности бизнес-инкубатора
Бизнес-инкубаторы рассматриваются, прежде всего, как часть инфраструктуры поддержки малого предпринимательства, но одновременно они являются инструментом экономической, социальной, структурной и инновационной политики. Технологические инкубаторы - это один из инструментов политики для формирования адаптивной, динамичной, конкурентоспособной национальной инновационной


Дракула (англ. Dracula) — персонаж литературных произведений и кинофильмов, вампир.Был придуман ирландским писателем Брэмом Стокером для романа «Дракула» (1897). По распространённому мнению, прототипом для этого персонажа послужила реальная историческая личность — Влад III Цепеш (Драку

Где найти информацию о телефоне Sony Ericsson K790
Информацию о телефоне Sony Ericsson K790 можно найти на следующих сайтах:www.mobiset.ru - информация о телефоне Sony Ericsson K790 на mobiset.ru ;www.mobidrive.ru - информация о телефоне Sony Ericsson K790 на mobid

Кто входит в состав группы "Мельница"
www.melnitsa.net — официальный сайт группы Мельница «Мельница» — российская фолк-рок группа из Москвы. Основана 15 октября 1999 года.Группа «Мельница» играет акустическую и электроакустическую музыку. Инструменты: виолончель, флей

Что такое лютня
Лютня — струнный щипковый музыкальный инструмент. В своей классической форме она имеет изящный корпус в форме половинки груши, шейку с ладами, колковую коробку, отогнутую назад под углом к шейке, звуковое отверстие в виде розетки и 11 струн (пять пар и одинарная дискантовая струна). Слово «лютня» употребляется также в самом общем смысле

Что такое томат (помидор)
Томат (помидор) — растение рода паслён, семейства Паслёновые, одно или многолетняя трава. Возделывается как овощная культура. Плоды томата известны под названием помидоры. Вид плода — ягода. ИсторияРодина — Южная Америка, где до сих пор встречаются дикие и полукультурные формы томата. В середине XVI века томат попал в Испанию, По

Где найти образец склонения субстантивированных существительных
Склонение имён существительных Склонение — это изменение имён существительных (и других именных частей речи) по падежам и числам. В русском языке два числа: единственное (окно, парта) и множественное (окна, парты); шесть падежей (по школьной программе). Падеж Вопросы падежей Именительный кто? что? Родительный кого? чего? Датель

Какие актрисы исполнили главные роли в сериале "Краткий курс счастливой жизни" на Первом канале
В российском телевизионном сериале «Краткий курс счастливой жизни», снятом в 2011 году режиссером Валерией Гай Германикой для Первого канала, главные роли исполнили 4 актрисы: Алиса Хазанова исполнила роль Любы; Светлана Ходченкова исполнила роль Саши; Анна Слю исполнила роль Ани; Ксения Громова исполнила роль Кати. Во второстепе

Чему равен синус 90 градусов
Синус — одна из тригонометрических функций, обозначется sin. В прямоугольном треугольнике синус острого угла равен отношению катета, лежащего напротив этого угла (противолежащего катета), к гипотенузе.Значения синусов для часто встречающихся углов (π — число пи, √ — корень квадра

Где в интернете есть платные аудиокурсы английского языка
Платные аудиокурсы английского языка можно найти под приведенными ниже ссылками: shop.iddk.ru — аудиокурсы английского языка на диске; london.ru — аудиокурсы на дисках, а так же книги; volxv.ru — аудио-видео курсы английского языка; ozon.ru — аудиокурсы на дисках


Информационно-рекрутинговые порталы Superjob.ru - рекрутинговый портал Superjob.ru работает на российском рынке онлайн-рекрутмента с 2000 года и является лидером среди ресурсов, предлагающих поиск работы и персонала. Ежедневно в базу данных сайта добавляется более 80 000 резюме специалистов и более 10 000 вакансий.

Из данной статьи читатель узнает о том, что такое экстремум функционального значения, а также об особенностях его использования в практической деятельности. Изучение такого концепта крайне важно для понимания основ высшей математики. Эта тема является основополагающей для более глубокого изучения курса.

Вконтакте

Что такое экстремум?

В школьном курсе дается множество определений понятия «экстремум». Данная статья призвана дать самое глубокое и четкое представление о термине для несведущих в вопросе лиц. Итак, под термином понимают, насколько функциональный промежуток приобретает минимальное либо максимальное значение на том или ином множестве.

Экстремум – это и минимальное значение функции, и максимальное одновременно. Различают точку минимума и точку максимума, то есть крайние значения аргумента на графике. Основные науки, в которых используют данный концепт:

  • статистика;
  • машинное управление;
  • эконометрика.

Точки экстремума играют важную роль в определении последовательности заданной функции. Система координат на графике в лучшем виде показывает изменение экстремального положения в зависимости от изменения функциональности.

Экстремумы производной функции

Имеет также место такое явление, как «производная». Она необходима для определения точки экстремума. Важно не путать точки минимума либо максимума с наибольшим и наименьшим значением. Это разные понятия, хотя могут показаться похожими.

Значение функции является основным фактором для определения того, как найти точку максимума. Производная не образуется от значений, а исключительно от крайнего ее положения в том или ином его порядке.

Сама же по себе производная определяется на основе данных точек экстремума, а не наибольшего или наименьшего значения. В российских школах недостаточно четко проводят грань между этими двумя концептами, что влияет на понимание данной темы вообще.

Давайте теперь рассмотрим такое понятие как «острый экстремум». На сегодняшний день выделяют острый минимум значения и острый максимум значения. Определение дано в соответствии с российской классификацией критических точек функции. Концепт точки экстремума лежит в основе нахождения критических точек на графике.

Для определения такого понятия прибегают к использованию теоремы Ферма. Она является важнейшей в ходе изучения крайних точек и дает четкое представление об их существовании в том или ином их виде. Для обеспечения экстремальности важно создать определенные условия для убывания либо возрастания на графике.

Для точного ответить на вопрос «как найти точку максимума», необходимо следовать таким положениям:

  1. Нахождение точной области определения на графике.
  2. Поиск производной функции и точки экстремума.
  3. Решать стандартные неравенства на область нахождения аргумента.
  4. Уметь доказывать, в каких функциях точка на графике определена и непрерывна.

Внимание! Поиск критической точки функции возможен только в случае существования производной не менее второго порядка, что обеспечивается высокой долей наличия точки экстремума.

Необходимое условие экстремума функции

Для того чтобы существовал экстремум, важно, чтобы были как точки минимума, так и точки максимума. В случае если это правило соблюдено лишь частично, то условие существование экстремума нарушается.

Каждая функция в любом положении должна быть продифференцирована с целью выявления ее новых значений. Важно понимать, что случай обращения точки в ноль не является основным принципом нахождения дифференцируемой точки.

Острый экстремум, также как и минимум функции – это крайне важный аспект решения математической задачи с использованием экстремальных значений. Для того чтобы лучше понимать данную составляющую, важно обратиться к табличным значениям по заданию функционала.

Полное исследование значения Построение графика значения
1. Определение точек возрастания и убывания значений.

2. Нахождение точек разрыва, экстремума и пересечение с координатными осями.

3. Процесс определения изменений положения на графике.

4. Определение показателя и направления выпуклости и выгнутости с учетом наличия асимптот.

5. Создание сводной таблицы исследования с точки зрения определения ее координат.

6. Нахождение промежутков возрастания и убывания крайних и острых точек.

7. Определение выпуклости и вогнутости кривой.

8. Построение графика с учетом исследования позволяет найти минимум либо максимум.

Основным элементом при необходимости работы с экстремумами является точное построение его графика.

Школьные учителя не часто уделяют столь важному аспекту максимум внимания, что является грубейшим нарушением учебного процесса.

Построение графика происходит только по итогам исследования функциональных данных, определения острых экстремумов, а также точек на графике.

Острые экстремумы производной функции отображаются на графике точных значений, с использованием стандартной процедуры определения асимптот.