Что такое тепловой пункт. ИТП — индивидуальный тепловой пункт, принцип работы

Правильность функционирования обору­дования теплового пункта определяет эконо­мичность использования и подаваемой потре­бителю теплоты, и самого теплоносителя. Тепловой пункт является юридической грани­цей, что предполагает необходимость его оборудования набором контрольно-измерительных приборов, позволяющих определить взаимную ответственность сторон. Схемы и оборудование тепловых пунктов необходимо определять в соответствии не только с тех­ническими характеристиками местных систем теплопотребления, но и обязательно с харак­теристиками внешней тепловой сети, режимом работы ее и теплоисточника.

В разделе 2 рассмотрены схемы присоеди­нения всех трех основных видов местных систем. Рассматривались они раздельно, т. е. считалось, что они присоединены как бы к общему коллектору, давление теплоносите­ля в котором постоянно и не зависит от расхода. Суммарный расход теплоносителя в коллекторе в этом случае равен сумме расходов в ветвях.

Однако тепловые пункты присоединяют­ся не к коллектору теплоисточника, а к тепловой сети, и в этом случае изменение расхода теплоносителя в одной из систем неизбежно отразится на расходе теплоноси­теля в другой.

Рис.4.35. Графики расхода теплоносителя:

а - при подключении потребителей непосредст­венно к коллектору теплоисточника; б - при под­ключении потребителей к тепловой сети

На рис. 4.35 графически показано изме­нение расходов теплоносителя в обоих слу­чаях: на схеме рис. 4.35, а системы отопле­ния и горячего водоснабжения присоеди­нены к коллекторам теплоисточника раздель­но, на схеме рис. 4.35,б те же системы (и с тем же расчетным расходом тепло­носителя) присоединены к наружной тепловой сети, имеющей значительные потери давления. Если в первом случае суммарный расход теплоносителя растет синхронно с расходом на горячее водоснабжение (режимы I , II, III ), то во втором, хотя и имеет место рост расхода теплоносителя, одновременно авто­матически снижается расход на отопление, в результате чего суммарный расход тепло­носителя (в данном примере) составляет при применении схемы рис. 4.35,б 80% расхода при применении схемы рис. 4.35,а. Степень сокращения расхода воды определяет соотно­шение располагаемых напоров: чем больше соотношение, тем больше снижение суммар­ного расхода.

Магистральные тепловые сети рассчиты­ваются на среднесуточную тепловую нагруз­ку, что существенно снижает их диаметры, а следовательно, затраты средств и металла. При применении в сетях повышенных гра­фиков температур воды возможно и дальней­шее снижение расчетного расхода воды в теп­ловой сети и расчет ее диаметров только на нагрузку отопления и приточной венти­ляции.

Максимум горячего водоснабжения мо­жет быть покрыт с помощью аккумулято­ров горячей воды либо путем использо­вания аккумулирующей способности отапливаемых зданий. Поскольку применение акку­муляторов неизбежно вызывает дополнитель­ные капитальные и эксплуатационные затра­ты, то их применение пока ограничено. Тем не менее в ряде случаев применение крупных аккумуляторов в сетях и при групповых тепловых пунктах (ГТП) может быть эффективно.

При использовании аккумулирующей способности отапливаемых зданий имеют место колебания температуры воздуха в по­мещениях (квартирах). Необходимо, чтобы эти колебания не превышали допустимого предела, в качестве которого можно, напри­мер, принять +0,5°С. Температурный режим помещений определяется рядом факторов и поэтому трудно поддается расчету. Наиболее надежным в данном случае является метод эксперимента. В условиях средней полосы РФ длительная эксплуатация показывает возможность применения этого способа по­крытия максимума для подавляющего боль­шинства эксплуатируемых жилых зданий.

Фактическое использование аккумули­рующей способности отапливаемых (в основ­ном жилых) зданий началось с появления в тепловых сетях первых подогревателей горячего водоснабжения. Так, регулировка теплового пункта при параллельной схеме включения подогревателей горячего водо­снабжения (рис. 4.36) производилась таким образом, что в часы максимума водоразбора некоторая часть сетевой воды недодавалась в систему отопления. По этому же принципу работают тепловые пункты при открытом водоразборе. Как при открытой, так и закрытой системе теплоснабжения наиболь­шее снижение расхода в отопительной системе имеет место при температуре сете­вой воды 70 °С (60 °С) и наименьшее (нуле­вое) - при 150°С.

Рис. 4.36. Схема теплового пункта жилого дома с параллельным включением подогре­вателя горячего водоснабжения:

1 - подогреватель горячего водоснабжения; 2 - эле­ватор; 3 4 - цир­куляционный насос; 5 - регулятор температуры от датчика наружной температуры воздуха

Возможность организованного и заранее рассчитанного использования аккумулирую­щей способности жилых зданий реализо­вана в схеме теплового пункта с так называемым предвключенным подогревате­лем горячего водоснабжения (рис. 4.37).

Рис. 4.37. Схема теплового пункта жилого дома с предвключенным подогревателем го­рячего водоснабжения:

1 - подогреватель; 2 - элеватор; 3 - регулятор температуры воды; 4 - регулятор расхода; 5 - циркуляционный насос

Преимуществом предвключенной схемы является возможность работы теплового пункта жилого дома (при отопительном графике в тепловой сети) на постоянном расходе теплоносителя в течение всего отопи­тельного сезона, что делает гидравлический режим тепловой сети стабильным.

При отсутствии автоматического регули­рования в тепловых пунктах стабильность гидравлического режима явилась убедитель­ным аргументом в пользу применения двухступенчатой последовательной схемы включения подогревателей горячего водо­снабжения. Возможности применения этой схемы (рис. 4.38) по сравнению с предвклю­ченной возрастают из-за покрытия определен­ной доли нагрузки горячего водоснабжения за счет использования теплоты обратной воды. Однако применение данной схемы в основном связано с внедрением в тепловых сетях так называемого повышенного графика температур, с помощью которого и может достигаться примерное постоянство расходов теплоносителя на тепловом (например, для жилого дома) пункте.

Рис. 4.38. Схема теплового пункта жилого дома с двухступенчатым последовательным включением подогревателей горячего водо­снабжения:

1,2 - 3 - элеватор; 4 - регулятор температуры воды; 5 - регулятор расхода; 6 - перемычка для переклю­чения на смешанную схему; 7 - циркуляционный насос; 8 - смесительный насос

Как в схеме с предвключенным подогре­вателем, так и в двухступенчатой схеме с последовательным включением подогрева­телей имеет место тесная связь между отпуском теплоты на отопление и горячее водоснабжение, причем приоритет обычно отдается второму.

Более универсальной в этом отношении является двухступенчатая смешанная схема (рис. 4.39), которая может применяться как при нормальном, так и при повышенном отопительном графике и для всех потреби­телей независимо от соотношения нагрузок горячего водоснабжения и отопления. Обяза­тельным элементом обеих схем являются смесительные насосы.

Рис. 4.39. Схема теплового пункта жилого дома с двухступенчатым смешанным вклю­чением подогревателей горячего водоснабже­ния:

1,2 - подогреватели первой и второй ступеней; 3 - элеватор; 4 - регулятор температуры воды; 5 - циркуляционный насос; 6 - смесительный на­сос; 7 - регулятор температуры

Минимальная температура подаваемой воды в тепловой сети со смешанной тепло­вой нагрузкой составляет около 70 °С, что требует ограничения подачи теплоносителя на отопление в периоды высоких темпе­ратур наружного воздуха. В условиях средней полосы РФ эти периоды достаточно продолжительны (до 1000 ч и более) и пере­расход теплоты на отопление (по отноше­нию к годовому) из-за этого может достигать до 3 % и более. Так как современные системы отопления достаточно чувствитель­ны к изменению температурно-гидравлического режима, то для исключения пере­расхода теплоты и соблюдения нормальных санитарных условий в отапливаемых поме­щениях необходимо дополнение всех упомя­нутых схем тепловых пунктов устройствами для регулирования температуры воды, посту­пающей в системы отопления, путем установки смесительного насоса, что обычно и при­меняется в групповых тепловых пунктах. В местных тепловых пунктах при отсутст­вии бесшумных насосов как промежуточное решение может применяться также элеватор с регулируемым соплом. При этом надо учитывать, что такое решение неприемлемо при двухступенчатой последовательной схеме. Необходимость в установке смесительных насосов отпадает при присоединении систем отопления через подогреватели, так как их роль в этом случае выполняют циркуля­ционные насосы, обеспечивающие постоянст­во расхода воды в отопительной сети.

При проектировании схем тепловых пунк­тов в жилых микрорайонах при закрытой системе теплоснабжения основным вопросом является выбор схемы присоединения по­догревателей горячего водоснабжения. Вы­бранная схема определяет расчетные расходы теплоносителя, режим регулирования и пр.

Выбор схемы присоединения прежде всего определяется принятым температурным режи­мом тепловой сети. При работе тепловой сети по отопительному графику выбор схемы присоединения следует производить на основе технико-экономического расчета - путем сравнения параллельной и смешан­ной схем.

Смешанная схема может обеспечить более низкую температуру обратной воды в целом от теплового пункта по сравне­нию с параллельной, что помимо снижения расчетного расхода воды для тепловой сети обеспечивает более экономичную выработку электроэнергии на ТЭЦ. Исходя из этого в практике проектирования при теплоснаб­жении от ТЭЦ (а также при совместной работе котельных с ТЭЦ), предпочтение при отопительном графике температур от­дается смешанной схеме. При коротких тепло­вых сетях от котельных (и поэтому отно­сительно дешевых) результаты технико-экономического сравнения могут быть и дру­гими, т. е. в пользу применения более простой схемы.

При повышенном графике температур в закрытых системах теплоснабжения схема присоединения может быть смешанной или последовательной двухступенчатой.

Сравнение, выполненное различными ор­ганизациями на примерах автоматизации центральных тепловых пунктов, показывает, что обе схемы в условиях нормальной работы источника теплоснабжения примерно равноэкономичны.

Небольшим преимуществом последова­тельной схемы является возможность работы без смесительного насоса в течение 75 % продолжительности отопительного сезона, что давало прежде некоторые обоснования отказаться от насосов; при смешанной схеме насос должен работать весь сезон.

Преимуществом смешанной схемы яв­ляется возможность полного автоматического выключения систем отопления, что невоз­можно получить в последовательной схеме, так как вода из подогревателя второй сту­пени попадает в систему отопления. Оба указанных обстоятельства не являются ре­шающими. Важным показателем схем являет­ся их работа в критических ситуациях.

Такими ситуациями могут быть снижение температуры воды в ТЭЦ против графика (например, из-за временного недостатка топ­лива) либо повреждение одного из участ­ков магистральной тепловой сети при нали­чии резервирующих перемычек.

В первом случае схемы могут реагиро­вать примерно одинаково, во втором - по-разному. Имеется возможность 100%-го резервирования потребителей до t н = –15 °С без увеличения диаметров тепловых магистралей и перемы­чек между ними. Для этого при сокра­щении подачи теплоносителя на ТЭЦ одно­временно соответственно повышается темпе­ратура подаваемой воды. Автоматизирован­ные смешанные схемы (при обязательном наличии смесительных насосов) на это прореагируют сокращением расхода сетевой воды, что и обеспечит восстановление нор­мального гидравлического режима во всей сети. Такая компенсация одного параметра другим полезна и в других случаях, так как позволяет в определенных пределах проводить, например, ремонтные работы на тепловых магистралях в отопительный сезон, а также локализовать известные несоот­ветствия температуры подаваемой воды по­требителям, расположенным в разном удале­нии от ТЭЦ.

Если автоматизация регулирования схем с последовательным включением подогре­вателей горячего водоснабжения предусмат­ривает постоянство расхода теплоносителя из тепловой сети, возможность компен­сации расхода теплоносителя его темпера­турой в этом случае исключается. Не приходится доказывать всю целесообразность (в проектировании, монтаже и особенно в эксплуатации) применения единообразной схе­мы присоединения. С этой точки зрения несомненное преимущество имеет двухступен­чатая смешанная схема, которая может применяться независимо от графика температур в тепловой сети и соотношения нагрузок горячего водоснабжения и отопления.

Рис. 4.40. Схема теплового пункта жилого дома при открытой системе теплоснабжения:

1 - регулятор (смеситель) температуры воды; 2 - элеватор; 3 - обратный клапан; 4 - дроссельная шайба

Схемы присоединения жилых зданий при открытой системе теплоснабжения значи­тельно проще описанных (рис. 4.40). Эконо­мичная и надежная работа таких пунктов может быть обеспечена лишь при наличии и надежной работе авторегулятора темпера­туры воды, ручное переключение потреби­телей к подающей или обратной линии не обеспечивает необходимой температуры воды. К тому же система горячего водо­снабжения, подключенная к подающей линии и отключенная от обратной, работает под давлением подающего теплопровода. При­веденные соображения о выборе схем тепло­вых пунктов в одинаковой степени относятся как к местным тепловым пунктам (МТП) в зда­ниях, так и к групповым, которые могут обеспечивать теплоснабжение целых микро­районов.

Чем больше мощность теплоисточника и радиус действия тепловых сетей, тем прин­ципиально более сложными должны стано­виться схемы МТП, поскольку вырастают абсолютные давления, усложняется гидравли­ческий режим, начинает сказываться тран­спортное запаздывание. Так, в схемах МТП появляется необходимость применения на­сосов, средств защиты и сложной аппара­туры авторегулирования. Все это не только удорожает сооружение МТП, но и услож­няет их обслуживание. Наиболее рациональ­ным способом упрощения схем МТП является сооружение групповых тепловых пунктов (в виде ГТП), в которых и должно разме­щаться дополнительное сложное оборудова­ние и приборы. Этот способ наиболее применим в жилых микрорайонах, в которых характеристики систем отопления и горячего водоснабжения и, следовательно, схемы МТП однотипны.

Здравствуйте! Тепловой пункт является узлом управления систем теплоснабжения. В нем предусмотрены такие функции, как учет расхода тепла и распределение теплоносителя по отдельным системам отопления, ГВС и вентиляции. С этой точки зрения тепловые пункты подразделяются на индивидуальные тепловые пункты (ИТП) и центральные тепловые пункты (ЦТП). ИТП обслуживает отдельные здания, либо часть здания, если велика тепловая нагрузка на здание. Про устройство ИТП я писал . Центральный же тепловой пункт (ЦТП) обслуживает группу зданий. Располагают ЦТП чаще в отдельно стоящем здании. Тепловая нагрузка жилых зданий и зданий соцкультбыта, подключенных от ЦТП составляет, как правило, от 2-3 Гкал/час и выше.

В здании центрального теплового пункта смонтированы приборы учета тепловой энергии, и приборы контроля (манометры, термометры). Также здесь располагают водоподогреватели, циркуляционно-повысительные насосы отопления. Очень часто в ЦТП спутником отопления проложены сети холодного водоснабжения, и расположены насосы ХВС.

Основными показателями для работы ЦТП являются:

1. Температура tгвс горячего водоснабжения

2. Температура t1сетевой воды на отопление

3. Давление в зданиях во внутренних системах отопления и ГВС

4. Обеспечение температуры обратной сетевой воды t2 в пределах утвержденного температурного графика отпуска тепла (контроль за перегревом по t2)

5. Обеспечение нормальной работы регуляторов давления, расхода, температуры в ЦТП.

Центральные тепловые пункты предъявляют к теплоисточникам (котельным и ТЭЦ) ряд требований, а именно:

а) Обеспечение температуры в подающем трубопроводе t1 согласно утвержденного температурного графика отпуска тепла.

б) Обеспечение необходимого расчетного расхода воды на отопление и ГВС в соответствии с согласованными режимами работы тепловых сетей.

Центральный тепловой пункт служит важным узлом управления, регулирования и контроля внутренних систем теплоснабжения присоединенных к нему зданий. Выше я уже писал, что от правильной работы ЦТП зависит обеспечение необходимой температуры внутренней помещений. Также от нормальной работы ЦТП зависит температура горячего водоснабжения, и возвращение к теплоисточнику обратной сетевой воды с температурой t2 не выше, чем по температурному графику теплоснабжения.

Основными задачами наладки центрального теплового пункта (ЦТП) являются:

1. Настройка регуляторов температуры

2. Настройка регуляторов расхода

3. Проверка производительности и нормальной работы водоподогревателей

4. Регулировка и контроль работы циркуляционно – повысительных насосов

В заключение можно сказать, что ЦТП – это важнейший элемент схемы тепловых сетей, узловая точка подключения систем тепловодоснабжения зданий к распределительным сетям теплоснабжения и часто водопровода и управления системами отопления, вентиляции, холодного и горячего водоснабжения зданий.

Прежде чем описывать устройство и функции ЦТП (центральный тепловой пункт) приведем общее определение тепловых пунктов. Тепловой пункт или сокращенно ТП это комплекс оборудования расположенный в отдельном помещении обеспечивающий отопление и горячее водоснабжение здания или группы зданий. Основное отличие ТП от котельной заключается в том, что в котельной происходит нагрев теплоносителя за счет сгорания топлива, а тепловой пункт работает с нагретым теплоносителем, поступающим из централизованной системы. Нагрев теплоносителя для ТП производят теплогенерирующие предприятия - промышленные котельные и ТЭЦ. ЦТП это тепловой пункт обслуживающий группу зданий , например, микрорайон, поселок городского типа, промышленное предприятие и т.д. Необходимость в ЦТП определяется индивидуально для каждого района на основании технических и экономических расчетов, как правило, возводят один центральный тепловой пункт для группы объектов с расходом теплоты 12-35 МВт.

Для лучшего понимания функций и принципов работы ЦТП дадим краткую характеристику тепловым сетям. Тепловые сети состоят из трубопроводов и обеспечивают транспортировку теплоносителя. Они бывают первичные, соединяющие теплогенерирующие предприятия с тепловыми пунктами и вторичные, соединяющие ЦТП с конечными потребителями. Из этого определения можно сделать вывод, что ЦТП являются посредником между первичными и вторичными тепловыми сетями или теплогенерирующими предприятиями и конечными потребителями. Далее подробно опишем основные функции ЦТП.

Функции центрального теплового пункта (ЦТП)

Как мы уже писали основная функция ЦТП служить посредником между централизованными теплосетями и потребителями, то есть распределение теплоносителя по системам отопления и горячего водоснабжения (ГВС) обслуживаемых зданий, а так же функции обеспечения безопасности, управления и учета.

Подробнее распишем задачи, решаемые центральными тепловыми пунктами:

  • преобразование теплоносителя, например, превращение пара в перегретую воду
  • изменение различных параметров теплоносителя, таких как давление, температура и т. д.
  • управление расходом теплоносителя
  • распределение теплоносителя по системам отопления и горячего водоснабжения
  • водоподготовка для ГВС
  • защита вторичных тепловых сетей от повышения параметров теплоносителя
  • обеспечение отключения отопления или горячего водоснабжения в случае необходимости
  • контроль расхода теплоносителя и других параметров системы, автоматизация и управление

Итак, мы перечислили основные функции ЦТП. Далее постараемся описать устройство тепловых пунктов и установленное в них оборудование.

Устройство ЦТП

Как правило, центральный тепловой пункт - это отдельно стоящее одноэтажное здание с расположенным в нем оборудованием и коммуникациями.

Перечислим основные узлы ЦТП:

  • теплообменник, в ЦТП является аналогом отопительного котла в котельной, т.е. работает в качестве теплогенератора. В теплообменнике происходит нагрев теплоносителя для отопления и ГВС, но не посредством сжигания топлива, а за счёт передачи тепла от теплоносителя в первичной тепловой сети.
  • насосное оборудование, выполняющее различные функции представлено циркуляционными, повысительными, подпиточными и смесительными насосами.
  • клапаны регуляторы давления и температуры
  • грязевые фильтры на вводе и выходе трубопровода из ЦТП
  • запорная арматура (краны для перекрытия различных трубопроводов в случае необходимости)
  • системы контроля и учета расхода теплоты
  • системы электроснабжения
  • системы автоматизации и диспетчеризации

Подводя итог, скажем, что основная причина, по которой возникает необходимость в строительстве ЦТП, является несоответствие параметров теплоносителя поступающего от теплогенерирующих предприятий параметрам теплоносителя в системах потребителей тепла. Температура и давление теплоносителя в магистральном трубопроводе значительно выше, чем должна быть в системах отопления и горячего водоснабжения зданий. Можно сказать, теплоноситель с заданными параметрами является основным продуктом работы ЦТП.

При централизованном теплоснабжении тепловой пункт может бытьместным - индивидуальным (ИТП) для теплопотребляющих систем конкретного здания игрупповым - центральным (ЦТП) для систем группы зданий. ИТП размещается в специальном помещении здания, ЦТП чаще всего представляет собой отдельно стоящее одноэтажное строение. Проектирование тепловых пунктов ведётся в соответствии с нормативными правилами.
Роль теплогенератора при независимой схеме присоединения теплопотребляющих систем к наружной тепловой сети выполняет водяной теплообменник.
В настоящее время применяют так называемые скоростные теплообменники различных типов. Кожухотрубный водяной теплообменник состоит из стандартных секций длиной до 4 м. Каждая секция представляет собой стальную трубу диаметром до 300 мм, внутрь которой помещены несколько латунных трубок. В независимой схеме системы отопления или вентиляции греющая вода из наружного теплопровода пропускается по латунным трубкам, нагреваемая - противотоком в межтрубном пространстве, в системе горячего водоснабжения нагреваемая водопроводная вода пропускается по трубкам, а греющая вода из тепловой сети - в межтрубном пространстве. Более совершенный и значительно более компактный, пластинчатый теплообменник, набирается из определённого количества стальных профилированных пластин. Греющая и нагреваемая вода протекает между пластинами противотоком или перекрёстно. Длину и число секций кожухотрубного теплообменника или размеры и число пластин в пластинчатом теплообменнике определяют в результате специального теплового расчета.
Для нагревания воды в системах горячего водоснабжения, особенно в индивидуальном жилом доме, больше подходит не скоростной, а емкостной водонагреватель. Его объём определяется исходя из расчётного количества одновременно работающих точек водоразбора и предполагаемых индивидуальных особенностей водопотребления в доме.
Общим для всех схем, является применение насоса для искусственного побуждения движения воды в теплопотребляющих системах. В зависимых схемах насос помещают на тепловой станции, и он создаёт давление, необходимое для циркуляции воды, как в наружных теплопроводах, так и в местных теплопотребляющих системах.
Насос, действующий в замкнутых кольцах систем, заполненных водой, не поднимает, а только перемещает воду, создавая циркуляцию, и поэтому называется циркуляционным. В отличие от циркуляционного насоса насос в системе водоснабжения перемещает воду, поднимая её к точкам разбора. При таком использовании насос называют повысительным.
В процессах заполнения и возмещения потери (утечки) воды в системе отопления циркуляционный насос не участвует. Заполнение происходит под воздействием давления в наружных теплопроводах, в водопроводе или, если этого давления недостаточно, с помощью специального подпиточного насоса.
До последнего времени циркуляционный насос включался, как правило, в обратную магистраль системы отопления для увеличения срока службы деталей, взаимодействующих с горячей водой. Вообще же для создания циркуляции воды в замкнутых кольцах местоположение циркуляционного насоса безразлично. При необходимости несколько понизить гидравлическое давление в теплообменнике или котле насос может быть включён и в подающую магистраль системы отопления, если его конструкция рассчитана на перемещение более горячей воды. Все современные насосы обладают этим свойством и устанавливаются чаще всего после теплогенератора (теплообменника). Электрическая мощность циркуляционного насоса определяется количеством перемещаемой воды и развиваемым при этом давлением.
В инженерных системах, как правило, применяют специальные бесфундаментные циркуляционные насосы, перемещающие значительное количество воды и развивающие сравнительно небольшое давление. Это бесшумные насосы, соединённые в единый блок с электродвигателями и закрепляемые непосредственно на трубах. В систему включают два одинаковых насоса, действующих попеременно: при работе одного из них второй находится в резерве. Запорная арматура (задвижки или краны) до и после обоих насосов (действующего и бездействующего) постоянно открыты, особенно, если предусмотрено автоматическое их переключение. Обратный клапан в схеме препятствует циркуляции воды через бездействующий насос. Легко монтируемые бесфундаментные насосы иногда устанавливают в системах по одному. При этом резервный насос хранят на складе.
Понижение температуры воды в зависимой схеме со смешением до допустимой происходит при смешении высокотемпературной воды с обратной (охлаждённой до заданной температуры) водой местной системы. Снижение температуры теплоносителя осуществляется путем смешения обратной воды от инженерных систем при помощи смесительного аппарата - насоса или водоструйного элеватора. Насосная смесительная установка имеет преимущество перед элеваторной. Ее КПД выше, в случае аварийного повреждения наружных теплопроводов возможно, как и при независимой схеме присоединения, сохранение циркуляции воды в системах. Смесительный насос можно применять в системах со значительным гидравлическим сопротивлением, тогда как при использовании элеватора потери давления в теплопотребляющей системе должны быть сравнительно небольшими. Водоструйные элеваторы получили широкое распространение благодаря безотказному и бесшумному действию.
Внутреннее пространство всех элементов теплопотребляющих систем (труб, отопительных приборов, арматуры, оборудования и т. д.) заполнено водой. Объём воды в процессе эксплуатации систем претерпевает изменения: при повышении температуры воды он увеличивается, при понижении температуры - уменьшается. Соответственно изменяется внутреннее гидростатическое давление. Эти изменения не должны отражаться на работоспособности систем и, прежде всего, не должны приводить к превышению предела прочности любых их элементов. Поэтому в систему вводится дополнительный элемент - расширительный бак.
Расширительный бак может бытьоткрытым, сообщающимся с атмосферой, и закрытым, находящимся под переменным, но строго ограниченным избыточным давлением. Основное назначение расширительного бака - приём прироста объёма воды в системе, образующегося при её нагревании. При этом в системе поддерживается определённое гидравлическое давление. Кроме того, бак предназначен для восполнения убыли объёма воды в системе при небольшой утечке и при понижении её температуры, для сигнализации об уровне воды в системе и управления действием подпиточных устройств. Через открытый бак удаляется вода в водосток при переполнении системы. В отдельных случаях открытый бак может служить воздухоотводчиком из системы.
Открытый расширительный бак размещают над верхней точкой системы (на расстоянии не менее 1 м) в чердачном помещении или в лестничной клетке и покрывают тепловой изоляцией. Иногда (например, при отсутствии чердака) устанавливают неизолированный бак в специальном утепленном боксе (будке) на крыше здания.
Современная конструкция закрытого расширительного бака представляет собой стальной цилиндрический сосуд, разделённый на две части резиновой мембраной. Одна часть предназначена для воды системы, вторая заполнена в заводских условиях инертным газом (обычно азотом) под давлением. Бак может быть установлен непосредственно на пол котельной или теплового пункта, а также закреплён на стене (например, при стеснённых условиях в помещении).
В крупных теплопотребляющих системах группы зданий расширительные баки не устанавливаются, а гидравлическое давление регулируется при помощи постоянно действующих подпиточных насосов. Эти насосы также возмещают обычно имеющие место потери воды через неплотные соединения труб, в арматуре, приборах и других местах систем.
Помимо рассмотренного выше оборудования в котельной или тепловом пункте размещаются устройства автоматического регулирования, запорно-регулирующая арматура и контрольно-измерительные приборы, с помощью которых обеспечивается текущая эксплуатация системы теплоснабжения. Используемая при этом арматура, а также материал и способы прокладки теплопроводов рассмотрены в разделе "Отопление зданий".

Тепловым пунктом называется сооружение, которое служит для присоединения местных систем теплопотребления к тепловым сетям. Тепловые пункты подразделяются на центральные (ЦТП) и индивидуальные (ИТП). ЦТП служат для теплоснабжения двух и более зданий, ИТП - для теплоснабжения одного здания. При наличии ЦТП в каждом отдельном здании обязательно устройство ИТП, который выполняет только те функции, которые не предусмотрены в ЦТП и необходимы для системы теплопотребления данного здания. При наличии собственного источника теплоты (котельной) тепловой пункт, как правило, располагается в помещении котельной.

В тепловых пунктах размещается оборудование, трубопроводы, арматура, приборы контроля, управления и автоматизации, посредством которых осуществляются:

Преобразование параметров теплоносителя, например, для снижения температуры сетевой воды в расчетном режиме со 150 до 95 0 С;

Контроль параметров теплоносителя (температуры и давления);

Регулирование расхода теплоносителя и распределение его по системам потребления теплоты;

Отключение систем потребления теплоты;

Защита местных систем от аварийного повышения параметров теплоносителя (давления и температуры);

Заполнение и подпитка систем потребления теплоты;

Учет тепловых потоков и расходов теплоносителя и др.

На рис. 8 приведена одна из возможных принципиальных схем индивидуального теплового пункта с элеватором для отопления здания. Через элеватор система отопления присоединяется в том случае, если надо снижать температуру воды для системы отопления, например, со 150 до 95 0 С (в расчетном режиме). При этом располагаемый напор перед элеватором, достаточный для его работы, должен быть не менее 12-20 м вод. ст., а потеря напора не превышает 1,5 м вод. ст. Как правило, к одному элеватору присоединяется одна система или несколько мелких систем с близкими гидравлическими характеристиками и с суммарной нагрузкой не более 0,3 Гкал/ч. При больших необходимых напорах и теплопотреблении применяются смесительные насосы, которые также используются и при автоматическом регулировании работы системы теплопотребления.

Подключение ИТП к тепловой сети производится задвижкой 1. Вода очищается от взвешенных частиц в грязевике 2 и поступает в элеватор. Из элеватора вода с расчетной температурой 95 0 С направляется в систему отопления 5. Охлажденная в отопительных приборах вода возвращается в ИТП с расчетной температурой 70 0 С. Часть обратной воды используется в элеваторе, а остальная вода очищается в грязевике 2 и поступает в обратный трубопровод теплосети.

Постоянный расход горячей сетевой воды обеспечивает автоматический регулятор расхода РР. Регулятор РР получает импульс на регулирование от датчиков давления, установленных на подающем и обратном трубопроводах ИТП, т.е. он реагирует на разность давлений (напор) воды в указанных трубопроводах. Напор воды может меняться по причине увеличения или уменьшения давления воды в теплосети, что обычно связано в открытых сетях с изменение расхода воды на нужды ГВС.


Например , если напор воды возрастает, то расход воды в системе увеличивается. Во избежание перегрева воздух в помещениях регулятор уменьшит свое проходное сечение, чем восстановит прежний расход воды.

Постоянство давления воды в обратном трубопроводе системы отопления автоматически обеспечивает регулятор давления РД. Падение давления может быть следствием утечек воды в системе. В этом случае регулятор уменьшит проходное сечение, расход воды снизится на величину утечки и давление восстановится.

Расход воды (теплоты) измеряется водомером (теплосчетчиком) 7. Давление и температура воды контролируются, соответственно, манометрами и термометрами. Задвижки 1, 4, 6 и 8 используются для включения или отключения теплового пункта и системы отопления.

В зависимости от гидравлических особенностей тепловой сети и местной системы отопления в тепловом пункте могут также устанавливаться:

Подкачивающий насос на обратном трубопроводе ИТП, если располагаемый напор в тепловой сети недостаточен для преодоления гидравлического сопротивления трубопроводов, оборудования ИТП и систем теплопотребления. Если при этом давление в обратном трубопроводе будет ниже статического давления в этих системах, то подкачивающий насос устанавливается на подающем трубопроводе ИТП;

Подкачивающий насос на подающем трубопроводе ИТП, если давление сетевой воды недостаточно для предотвращения вскипания воды в верхних точках систем потребления теплоты;

Отсекающий клапан на подающем трубопроводе на вводе и подкачивающий насос с предохранительным клапаном на обратном трубопроводе на выходе, если давление в обратном трубопроводе ИТП может превысить допускаемое давление для системы теплопотребления;

Отсекающий клапан на подающем трубопроводе на входе в ИТП, а также предохранительный и обратный клапаны на обратном трубопроводе на выходе из ИТП, если статическое давление в тепловой сети превышает допускаемое давление для системы теплопотребления и др.

Рис 8. Схема индивидуального теплового пункта с элеватором для отопления здания:

1, 4, 6, 8 - задвижки; Т - термометры; М - манометры; 2 - грязевик; 3 - элеватор; 5 -радиаторы системы отопления; 7 - водомер (теплосчетчик); РР - регулятор расхода; РД - регулятор давления

Как было показано на рис. 5 и 6, системы ГВС подсоединяются в ИТП к подающему и обратному трубопроводам через водоподогреватели или непосредственно, через регулятор температуры смешения типа ТРЖ.

При непосредственном водоразборе вода на ТРЖ подается из подающего или из обратного или из обоих трубопроводов вместе в зависимости от температуры обратной воды (рис.9). Например , летом, когда сетевая вода имеет 70 0 С, а отопление отключено, в систему ГВС поступает только вода из подающего трубопровода. Обратный клапан служит для предотвращения перетекания воды из подающего трубопровода в обратный при отсутствии водоразбора.

Рис. 9. Схема узла присоединения системы ГВС при непосредственном водоразборе:

1, 2, 3, 4, 5, 6 - задвижки; 7 - обратный клапан; 8 - регулятор температуры смешения; 9 - датчик температуры смеси воды; 15 - водоразборные краны; 18 - грязевик; 19 - водомер; 20 - воздухоотводчик; Ш - штуцер; Т - термометр; РД - регулятор давления (напора)

Рис. 10. Двухступенчатая схема последовательного присоединения водоподогревателей ГВС:

1,2, 3, 5, 7, 9, 10, 11, 12, 13, 14 - задвижки; 8 - обратный клапан; 16 - циркуляционный насос; 17 - устройство для отбора импульса давления; 18 - грязевик; 19 - водомер; 20 - воздухоотводчик; Т - термометр; М - манометр; РТ - регулятор температуры с датчиком

Для жилых и общественных зданий также широко применяется схема двухступенчатого последовательного присоединения водоподогревателей ГВС (рис.10). В данной схеме водопроводная вода вначале подогревается в подогревателе I-ой ступени, а затем в подогревателе II-ой ступени. При этом водопроводная вода проходит через трубки подогревателей. В подогревателе I-ой ступени водопроводная вода греется обратной сетевой водой, которая после охлаждения идет в обратный трубопровод. В подогревателе II-ой ступени водопроводная вода греется горячей сетевой водой из подающего трубопровода. Охлажденная сетевая вода поступает в систему отопления. В летний период эта вода подается в обратный трубопровод по перемычке (в обвод системы отопления).

Расход горячей сетевой воды на подогреватель II-ой ступени регулирует регулятор температуры (клапан термореле) в зависимости от температуры воды за подогревателем II-ой ступени.