Цифровой регулятор громкости. Электронный регулятор громкости на KA2250

Для меня стало неожиданностью, что наиболее горячие споры при обсуждении моей предыдущей статьи касались в первую очередь возможности применения цифровых сопротивлений в качестве регулятора громкости аудиосигнала в HiFi аппаратуре. Для того чтобы внести в этот вопрос ясность я решил посвятить отдельную статью детальному разбору схемотехники высококачественного регулятора громкости с цепями подавления импульсных помех переключения на основе VDAC AD9252. Кроме схемотехники вы также сможете под катом познакомиться с достигнутыми характеристиками.

Тем, кто не читал мою вчерашнюю статью, в которой разбирались общие вопросы, касающихся цифровых сопротивлений настоятельно рекомендую . Во первых, лучше поймёте о чём собственно идёт речь ниже, а во вторых если вас заинтересовала сегодняшняя тема, то и в ней найдёте интересный для себя материал.

Для того чтобы привести обещанные примеры реальных схем программно управляемых преобразователей величин, перестраиваемых фильтров и других электронных узлов параметры которых можно менять с помощью цифрового сопротивления придётся писать третью статью. Постараюсь сделать это в ближайшем будущем, а пока предлагаю исследовать тянет ли регулятор громкости собранный на основе топового прибора от ADI на применения в HiFi аппаратуре ну хотя бы низшего ценового сегмента.

Представляю попытку создать регулятор громкости на основе одной их топовых микросхем цифровых регуляторов производства ADI, претендующий на звание Hi-Fi.

Для начала приведу общие характеристики, которые удалось выжать. Низкие гармонические искажения. Нормализованная передаточная характеристка. Динамический диапазон регулировки уровня громкости составляет 46 dB. Кроме этого, существует возможность функции MUTE с ослаблением сигнала на 130 dB. В данный режим регулятор входит после перехода регулятора AD5292 в shutdown режим, путём подачи специальной команды. Ну и конечно имеется специальная схема для уменьшения влияния эффекта возникновения режущих слух импульсных помех в момент переключения уровня громкости. Данный эффект наибольшим образом даёт о себе знать именно в логарифмических усилителях потому, что их громкость может меняться скачком в очень широком диапазоне. Для сведения помехи при переключении уровня громкости к минимуму, это переключение необходимо производить при переходе сигнала через ноль.

Регулятор может работать с входным сигналом уровнем вплоть до ±14 вольт (10 V RMS), что обеспечивает хорошие шумовые характеристики. Максимальный ток нагрузки по выходу 20 мА. Управление по SPI интерфейсу. Интерфейс подсоединения микросхемы к управляющему микроконтроллеру не показан, так как является стандартным.

Схема и принцип её работы


Сигнал с входного повторителя поступает на регулятор уровня AD5292 c логарифмической характеристикой. Часть сигнала ответвляется от основного с помощью делителя напряжения на резисторах R4 и R5, нагруженного на ОУ AD8541, который выступает в роли динамической нагрузки формирующей искусственную землю на уровне 1.81 В. Далее сигнал поступает на компараторы U3 и U4, которые формируют “окно” шириной всего в 13 милливольт в районе перехода сигнала через ноль. В момент прохода сигнала через ноль логическим элементом U5A формируется низкий уровень.

Для того, чтобы переключить уровень громкости необходимо записать новые данные в буферный регистр и подать отрицательный фронт на вход SYNC U6. Когда после записи кода мы подаём низкий уровень на нижний вход U5B, он транслируется в уровень переключения значения цифрового сопротивления только в момент прохождения аудиосигнала через “окно ” компараторов. Обратите внимание, что для повышения точности работы вся схема работает только по постоянному току.

Для получения максимально комфортной для уха характеристики регулировки громкости средний вывод цифрового сопротивления шунтируется резистором R8. В результате получаем нормализованную характеристику передачи сигнала, изображённую на рисунке ниже.

Иллюстрация работы схемы уменьшения импульсных помех

Давайте для начала посмотрим что происходит при переключении уровня сопротивления в отключенной схемой подавления импульсных помех.

Вот так выглядит переходной процесс в момент включения звука, который произошёл во время, помеченное нулём.

Для случая переключения звука с одного значения на другое всё может выглядеть ещё хуже.

На следующей картинке изображён результат работы нашей помехогасящей схемы при переходе от большей громкости к меньшей.

Характеристики регулятора

Теперь давайте посмотрим на другие характеристики, которых удалось достичь в нашем регуляторе.

Как справедливо указал уважаемый в комментариях к моей предыдущей статье качество звука достаточно сильно зависит от уровня нечётных гармоник сигнала в усилительном тракте. Для того чтобы показать как на них влияет наш цифровой регулятор давайте рассмотрим результат FFT преобразований сигнала частотой 1 КГц проходящего через схему при “движке потенциометра” установленным в крайнее вернее положение - т. е. коэффициент передачи равен единице.

На мой взгляд характеристики весьма достойные, уровень третьей гармоники ушёл ниже-100 дб, пятой вообще не видно невооружённым глазом. Интересно что скажут наши эксперты по звуку.

Следующий график я привожу специально для хаброюзера извиняюсь за выражение проевшего мне мозг в комментариях к прошлой статье. Надеюсь теперь мы согласитесь со мной, уважаемый, что сопротивление не только 10, но даже 20 килоомного резистора не изменяется на величины порядка десяти процентов на частотах от нуля до 20 КГц при любом выставленном сопротивлении! Фаза сигнала меняется, но на мой взгляд весьма незначительно.

На частоте 1 КГц наша схема обеспечивает общий уровень искажения сигнала на уровне -93 дБ. Зависимость собственного уровня шумов схемы и нелинейных искажений от частоты сигнала при коэффициенте передачи усилителя равном единице изображена на графике ниже.

Вариант схемы для любителей компромиссов.

На этом закончим исследование нашей схемы, а в качестве бонуса предлагаю её упрощённый вариант, с несколько худшими характеристиками, зато с более доступной элементной базой.

А вот осциллограмма процесса переключения уровня громкости на весьма высокой частоте. Как видите без нелинейных искажений в момент переключения не обошлось, но никаких режущих ухо выбросов нет и в помине!

Спасибо дочитавшим до конца. Попробую испытать Ваше терпение чуть дольше. Поскольку я не являюсь специалистом в области «чистого прозрачного звука» и мне трудно оценить качество описанного дивайса, прошу высказать своё мнение в виде ответа на вопрос или в комментариях.

Применение в радиоаппаратуре электронного регулятор громкости может изменить характеристики и эксплуатационные ее свойства к лучшему. Так к достоинствам электронных регуляторов можно отнести отсутствие помех и шумов возникающих при регулировке (скрипы, щелчки). Электронный регулятор может комплектно использован в радиоаппаратуре с устройствами дистанционного управления. Вместо кнопок регулировки, возможно установить реле, управляемые посредством ик - излучения или радиосигналом.

Характеристики стереорегулятора громкости на микросхеме КА2250

Диапазон пропускаемых частот 20-20000 Гц;
Напряжение питания от 6 до 16 вольт;
Максимальное входное напряжение не более 2,5 в;
Регулировка громкости от 0 до 64 дБ;
Шаг регулировки 2 дБ.

Принципиальная схема и плата для монтажа электронного регулятора громкости

Далее приведена схема и ее описание для сборки стереофонического электронного регулятора громкости. Стеререгулятор собран на базе микросхемы КА2250, управляется двумя кнопками без фиксации. К регулятору можно подключить стрелочный индикатор через резистор R7 (смотрите электрическую схему). Выключателем ВК1 через резистор R5 индикатор может быть заблокирован, отключен. Провода подающие звуковую частоту и снимающие ее с регулятора громкости, должны быть экранированы. Регулятор громкости при условии правильной сборки и использования исправных радиодеталей в настройке не нуждается.

Рис. 1 Принципиальная электрическая схема регулятора громкости на микросхеме КА2250 (Toshiba)

Рис.2 Размещение радиоэлементов на монтажной плате электронного стереорегулятора громкости

Рис. 3 Внешний вид платы (размер 40 мм ширина * 38 мм высота)

Радиоэлементы применяемые для сборки электронного стереорегулятора громкости на базе микросхемы КА2250

Резисторы:

R1 - 51 ом - 1 шт.;
R2 - 22 к - 1 шт.;
R3 - 22 к - 1 шт.;
R4 - 100 к - 1 шт.;
R5 - 1 к - 1 шт.;
R6 - 51 к - 1 шт.;
R7 - 1 к - 1 шт.;
R8 - 33 к - 1 шт.
Мощность резисторов - 0,25 Вт

Конденсаторы:

С1 - 22 мкФ/16 вольт - 1 шт.;
С2 - С8 - 4,7 мкФ/16 вольт - 7 шт.;
С9 - 47 мкФ/16 вольт - 1 шт.

Другие радиоэлементы используемые в схеме:

Диод D1, D3, D4 - RL522 - 3 шт.;
Стабилитрон D2 - Д814Д - 1 шт.;
Микросхема КА 2250

Электронный регулятор может быть успешно использован с усилителем НЧ, описанным в статье "

В этой статье мы рассмотрим схему электронного регулятора громкости звука с возможностью дистанционного управления и цифровой индикацией уровня.

Рис.1. Передняя сторона устройства


Рис.2. Задняя сторона устройства

Увеличение громкости осуществляется кнопкой или дистанционно с пульта ДУ (инфракрасное управление). Подходит практически любой домашний пульт управления.

Схема устройства представлена на рисунке 3.

Рис.3. Схема электрическая принципиальная

Переключения уровней звука основаны на десятичном счетчике CD4017 (DD1). Данная микросхема имеет 10 выходов Q0-Q9. После подачи питания на схему, на выходе Q0 сразу присутствует логическая единица, светодиод HL1 светится, указывая на нулевой уровень звука. К остальным выходам Q1-Q9 подключены резисторы R4-R12, которые имеют разное сопротивление.
Напомню, что микросхема в один и тот же момент времени выдает сигнал высокого уровня только на одном из своих выходов, а последовательное переключение между ними происходит при подаче короткого импульса на вход (вывод 14).
Исходя из этого, сопротивления в группе резисторов R4-R12 подобраны в порядке убывания (сверху-вниз по схеме), чтобы при каждом переключении микросхемы на базу транзистора VT2 поступало все больше и больше тока, постепенно открывая транзистор.
На коллектор этого транзистора подается сигнал от внешнего УНЧ или источника звука.
Итак, переключая микросхему счетчик, мы, по сути, изменяем сопротивление коллектор-эмиттер и тем самым изменяем громкость звука поступающего на динамик.
Сопротивления резисторов зависят от коэффициента усиления транзистора (h21э). Например, при использовании 2N3904 сопротивление резистора R4 может быть около 3 кОм, чтобы чуть чуть "приоткрыть" транзистор, звук при этом будет на самом тихом уровне. А сопротивление R12 должно быть наименьшим из всей группы (около 50 Ом), чтобы обеспечить режим насыщения и максимальную пропускную способность коллектор-эмиттер, соответственно максимальную громкость данного регулятора.
Мне трудно указать конкретные номиналы R4-R12, так как это еще очень сильно зависит от мощности звукового сигнала, поданного на транзистор, а также от питания. Лучше всего использовать многооборотные подстроечные резисторы и настроить ступени "на слух".

В нижней части схемы представлен узел индикации, основанный на дешифраторе К176ИД2 (DD2). Он предназначен для управления семисегментным индикатором.
На входы дешифратора подается двоичный код, поэтому на диодах VD1-VD15 построен шифратор, который преобразует десятичный сигнал от CD4017 в двоичный код, понятный для К176ИД2. Такая схема на диодах может показаться странной и архаичной, но вполне работоспособна. Диоды следует выбирать с малым падением напряжения, например диоды Шоттки. Но в моем случае использованы обычные кремниевые 1N4001, их видно на рисунке 2.
Итак, сигнал с выхода счетчика поступает не только на базу транзистора, но и на диодный преобразователь, превращаясь в двоичный код. Далее DD2 примет двоичный код и на семисегментном индикаторе отобразится нужная цифра, показывающая уровень звука.
Микросхема К176ИД2 удобна тем, что позволяет использовать индикаторы и с общим катодом, и с общим анодом. В схеме использован второй тип. Резистор R17 ограничивает ток сегментов.
Резисторы R13-R16 стягивают входы дешифратора на минус для стабильной работы.

Теперь рассмотрим верхнюю левую часть схемы. Двухпозиционным переключателем SA1 устанавливается режим управления громкостью. В верхнем (по схеме) положении ключа SA1 громкость изменяется вручную, путем нажатия на тактовую кнопку SB1. Конденсатор C3 устраняет дребезг контактов. Резистор R2 стягивает вход CLK на минус, предотвращая ложные срабатывания.
После подачи питания светится светодиод HL1, а индикатор показывает ноль - это режим без звука (Рисунок 4, сверху).


Рис.4. Отображение уровней на индикаторе

Нажимая на тактовую кнопку, маленькими скачками происходит увеличение громкости динамика от 1-го до 9-го уровня, следующее нажатие снова активирует беззвучный режим.

Если установить переключатель в нижнее (по схеме) положение, то вход DD1 подключается к схеме инфракрасного дистанционного управления, основанной на TSOP приемнике. При поступлении внешнего ИК сигнала на TSOP приемник, на его выходе появляется отрицательное напряжение, отпирающее транзистор VT1. Данный транзистор - любой маломощный, структуры PNP, например КТ361 или 2N3906.
ИК приемник (IF1) рекомендую выбрать с рабочей частотой 36 кГц, так как именно на этой частоте работает большинство пультов (от телевизора, DVD и т.д.). При нажатии на любую кнопку пульта, будет происходить управление громкостью.

В схеме присутствует кнопка с фиксацией SB2. Пока она нажата, вывод сброса RST подключен к минусу питания и счетчик будет переключаться. С помощью этой кнопки можно осуществить сброс счетчика и уровня громкости до нуля, а если оставить ее в отключенном положении, вывод сброса окажется не стянутым на минус и счетчик не будет принимать сигналы с пульта ДУ, и не будет реагировать на нажатия кнопки SB1.


Рис.5. Переключатели, тактовая кнопка и TSOP приемник с обвязкой выведены на отдельную плату

Аудиосигнал на транзистор регулятора я подаю с усилителя на микросхеме PAM8403. Коллектор VT2 подключен к положительному выходу одного из каналов усилителя (R), а его эмиттер к положительному контакту колонки (красный провод на фото). Отрицательный контакт колонки (черно-красный) подключен к минусу используемого канала. Источник звука в моем случае мини mp3 плеер.


Рис.6. Подключение устройства

Почему использованы подстроечные резисторы?
Хочу обратить ваше внимание на фото задней стороны устройства (рис.2). Там видно, что присутствуют три подстроечных резистора R4, R5, R6 на 100 кОм. Я реализовал только лишь три уровня громкости, потому что остальные резисторы (R7-R12) не поместились на плате. Подстроечные резисторы позволяют настроить уровни громкости для разных источников звука, т.к. они отличаются по мощности аудиосигнала.

Недостатки устройства.
1) Регулирование громкости происходит только вверх по уровню, т.е. только громче. Убавлять сразу не получится, придется дойти до 9-го уровня и затем снова вернуться к начальному уровню.
2) Немного ухудшается качество звука. Наибольшие искажения присутствуют на тихих уровнях.
3) Не осуществляет управление стерео сигналом. Введение второго транзистора для еще одного канала не решают проблему, т.к. эмиттеры обоих транзисторов объединяются на минус питания, что приводит к "моно" звуку.

Усовершенствование схемы.
Можно использовать вместо транзистора резисторную оптопару. Фрагмент схемы представлен на рисунке 7.


Рис.7. Фрагмент этой же схемы с оптопарой

Резисторная оптопара состоит из излучателя и приёмника света, соединенных оптической связью. Они имеют гальваническую развязку, а значит управляющая схема не должна вносить помехи в звуковой сигнал, проходящий по фоторезистору. Фоторезистор под действием света излучателя (светодиода или т.п.) будет изменять свое сопротивление и громкость будет изменяться. Элементы оптопары гальванически изолированы, а значит можно управлять двумя или более каналами аудиосигнала (рис.8).


Рис.8. Управление двумя каналами с помощью резисторных оптопар

Резисторы R4-R12 подбираются индивидуально.

Питание устройства можно осуществлять от USB 5 Вольт. При повышении напряжения следует увеличить сопротивление токоограничивающего резистора R17, чтобы не вышел из строя семисегментный индикатор HG1, а также следует увеличить сопротивление R1, чтобы защитить TSOP приемник. Но не рекомендую превышать питающее напряжение выше 7 Вольт.

К данной статье имеется видео, в котором изложен принцип работы, показана собранная на плате конструкция и проведен тест данного устройства.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Компоненты для схемы (рис.1)
DD1 Специальная логика

CD4017B

1 Десятичный счетчик В блокнот
DD2 Микросхема. Дешифратор К176ИД2 1 В блокнот
VT1 Биполярный транзистор

2N3906

1 Любой маломощный PNP В блокнот
VT2 Биполярный транзистор

2N3904

1 Можно КТ3102 В блокнот
VD1-VD15 Диод Шоттки

1N5817

15 В блокнот
С1 47 - 100 мкФ 1 В блокнот
C2 Конденсатор керамический 0.1 мкФ 1 В блокнот
С3 Конденсатор электролитический 1 - 10 мкФ 1 В блокнот
R1 Резистор

100 Ом

1 В блокнот
R2 Резистор 20 - 100 кОм 1 В блокнот
R3 Резистор 100 - 300 Ом 1 В блокнот
R4-R12 Резистор Подобрать 9 Подобрать

В большинстве регуляторов громкости низкочастотного сигнала используют аналоговые плавные регуляторы на базе операционных усилителей или транзисторных схем. В ряде регуляторов применяют прин­цип дискретного управления величиной выходного сигнала, причем дискретность установки уровня выбирается, как правило, равной 3 дБ. Это обусловливается тем, что такой дискрет уровня удобен для про­слушивания музыкальных программ. Однако для качественной пере­записи фонограмм требуется изменение уровня сигнала в меньшем диапазоне. Один из возможных путей преодоления этих труднос­тей - применение преобразователей код-напряжение, коммутируемых электронными переключателями. Но в этом случае неоправданно воз­растают габаритные и стоимостные показатели такого узла. Немало­важное значение имеют и показатели надежности и трудоемкости нала­дочных работ изготовляемого узла. Более простой путь решения этого вопроса - использование микроэлектронных цифроаналоговых преобра­зователей, например, серии 572. Эта серия обладает низкой потреб­ляемой мощностью, совместимостью со стандартными ТТЛ и К.МОП уровнями, возможностью работы от одного источника питания.

В предлагаемом регуляторе громкости изменение уров­ня сигнала осуществляется посредством схемы управле­ния, построенной с использованием устройства управле­ния реверсивным цифровым счетчиком. Изменяемый цифровой код подается на входы цифроаналогового преобразователя со схемой коррекции. Для контроля за изменением цифрового кода, а следовательно, и уровнем выходного сигнала служит схема индикации, построенная на реверсивном счетчике и дешифраторе двоичного кода в семисегментный код светодиодных матриц.

Рис. 1. Принципиальная схема регулятора

Принципиальная схема регулятора изображена на рис. 1. Регулятор позволяет изменять уровень выходного сигнала и в ых в интервале частот от 20 Гц до 150 кГц с коэффициентом гармоник не более 0,01 % при входном сигнале 1 В. Шаг изменения уровня сигнала соответ­ствует значению 50 мВ. Выходное напряжение изменяется от 0 до 5 В. Неравномерность АЧХ устройства в полосе частот от 20 Гц до 150 кГц не более ±0,5 дБ. Величина выходного напряжения индицируется цифровым кодом на табло двух семисегментных индикаторов типа АЛС 333 Б. Изменение уровня сигнала осуществляется с помощью двух кнопок «Pf» и «F|». Собственно преобразователь уровня сигнала собран на 10-разрядном умножающем ЦАП К572ПА1А, который является универсальным струк­турным звеном ЦАП и управляется цифровым кодом. Все элементы ЦАП выполнены в одном кристалле, разме­щенном в 16-выводном металлокерамическом корпусе. В состав кристалла входят: прецизионная резистивная матрица R-2R, токовые ключи на МОП транзисторах и входные инверторы, обеспечивающие управление клю­чами от стандартных уровней цифрового сигнала. Микро­схема работает с прямым параллельным двойным кодом. Для ее функционирования необходимы: внешний источ­ник опорного напряжения, роль которого выполняет входной сигнал звуковой частоты (вывод 15 - вход) и вы­ходной операционный усилитель DA1, который подключа­ется инвертирующим входом к выводу 1 DD10 и тем самым обеспечивается отрицательная обратная связь, и двоичный закон распределения токов в ветвях резистивной матри­цы при равенстве потенциалов выводов 1 и 2 DD10. Неин­вертирующий вход ОУ соединен с выводом 2 и 3 на «землю» (аналоговую). Отличительная особенность схемы данного ОУ заключается в возможности поддержания с высокой точностью большого значения коэффициента усиления при замкнутой цепи отрицательной обратной связи. Малые температурные дрейфы обеспечиваются внутренним включением входных транзисторов дифферен­циального каскада ОУ. Балансировка симметричности работы усилителя осуществляется за счет резистора R26, который позволяет получить симметричную характерис­тику усиления и снизить коэффициент нелинейных искаже­ний.

Отличительной особенностью ЦАП К572ПА1А являет­ся возможность его работы в режиме независимости сопротивления открытых МОП транзисторов от амплитуды и направления протекающего тока, что позволяет изме­нять входное напряжение по амплитуде в широких пределах без нарушения линейности преобразования. Максимальное значение амплитуды переменного напря­жения 5 В.

Управление токовыми ключами осуществляется реверсивными счетчиками DD8 и DD9, которые по­лучают импульсы изменения состояния от устройства управления счетчиком DD1 - DD3 При кратковременном нажатии на кнопку «Ff» («F|») переключается триггер на элементах DD1.1,DD1.2 (DD2.1, DD2.2). Короткий отрицательный импульс, сформированный дифференци­рующей цепью C1R21 (C2R22), через элементы DD1.3, DD1.4 (DD2.3, DD2.4) воздействует на вход +1 (- 1) микросхем DD8, DD6 и переводит реверсивные счетчики в состояние, соответствующее большему (меньшему) на единицу числу. Выходные сигналы счетчика переключают входы DD10, увеличивая или уменьшая выходной сигнал. Состояния счетчиков DD6, DD7 дешифруются микросхе­мами DD4, DD5 и отражаются на индикаторах. Так как выход микросхемы DD7 (> 9<) соединен со входом С этой микросхемы и одноименными входами DD8, DD9, а выход < 0> - через инвертор DD3.4 с их входами Ro, то при достижении состояний, соответствующих чис­лам 99 (при нажатой «Ff») и 00 (при нажатой «FJ»), счетчик останавливается. При длительно нажатой кнопке «Ff» или «FJ» на выходе элемента DD3.1 устанавли­вается уровень логической 1 и конденсатор С4 начинает заряжаться через резистор R24. В момент, когда напряже­ние на конденсаторе достигает уровня логической 1 (при­мерно через 1,3 с), включается генератор на элементах DD3.2, DD3.3, и его импульсы с частотой около 8… 12 Гц следуют через элементы DD1.3, DD1.4 (DD2.3, DD2.4) и также поступают на выход -f- 1 { - 1) микросхемDD6, DD8, непрерывно изменяя состояние счетчиков DD6 - DD9, в сторону увеличения (уменьшения) соответствую­щего ему числа до предельного значения. Импульсы управления счетчиком одновременно поступают на узел индикации, который выполнен на счетчиках DD6,DD7, дешифраторах DD4, DD5 и светодиодных матрицах.

В электронном регуляторе использованы постоянные резисторы МЛТ-0,125; подстроечный резистор R26 СПЗ-19а; конденсаторы С1, С2 - КМ5, СЗ - С5 - К52-16.

Вместо указанных на схеме деталей можно использо­вать: АЛС324Б (HG1, HG2); КД102А - В, КД520А, КД521, КД522 (VD1); К50-16 (СЗ, С5); 140УД20, 140УД6, 140УД7, 140УД8, 153УД1, 574 УД 1, 574УД2 (DA1). Вместо всех микросхем 155 серии можно исполь­зовать 133 серию, но тогда придется внести небольшую корректировку, которая заключается в применении сов­местно с микросхемами 133 серии переходных колодок. Колодки содержат печатные дорожки под 133 серию, а дорожки контачат с колами, выведенными с противо­положной стороны колодки и имеющими расположение размеров выводов 155 серии. Колодки с распаянными микросхемами и колами вставляются в отверстия, пред­назначенные для микросхем 155 серии в плате и про­паиваются.

Все детали размещены на плате из фольгированно-го стеклотекстолита СФ1-1,5. Монтаж перемычек на пла­те выполнен проводом МГТФ или ШБПВЛ. Чертеж печатной платы показан на рис. 2, а расположение элементов на ней - на рис. 3.

Налаживание регулятора начинают с проверки монтажа, затем проверяется работа счетчиков: при каж­дом нажатии на кнопку «Ff» или кнопку «FJ» показание индикаторов должно соответственно увеличиваться или уменьшаться на единицу. При длительном нажатии на эти же кнопки показания индикаторов должны нарастать или убывать до тех пор, пока они не окажутся рав­ными 99 или 00. Работоспособность счетчиков указы­вает на работоспособность всей схемы управления.

Потенциальные возможности ЦАП 572ПА1А в данной схеме используются не полностью, так как он способен обеспечить 256 ступеней регулировки уровня громкости, но они ограничены до 100 ступеней двухразрядным деся­тичным индикатором. Недостаток, связанный с линей­ным законом регулирования уровня громкости, компен­сируется большим количеством ступеней регулировки и возможностью быстрой регулировки при длительном на­жатии кнопки.

Начальное состояние регулятора при включении пи­тания соответствует нулевому уровню благодаря подключению выводов Д1, Д2, Д4 и Д8 микросхем DD6 - DD9 к «земле».

Питание электронного регулятора громкости осу­ществляется от двух источников. Операционный усилитель DA1 питается от двуполярного источника напряжения ± 5 В с током потребления 15 мА. Остальные элементы регулятора питаются от источника с напряжением 5 В с током потребления 350 мА. Допустимая пульсация напряжений источников питания не должна превышать 5 мВ.

Рис. 2. Чертеж печатной платы

Рис. 3. Расположение элементов на плате

Литература

  • В помощь радиолюбителю: Сборник. Вып. 104/ Б. Колобов

Фото 1. Собранный регулятор


Думаю, каждый, кто занимался сборкой усилителя, сталкивался с выбором регулятора громкости для своего творения. В этой статье я хочу предложить свой вариант решения – цифровой регулятор громкости с опторазвязкой цифровой и аналоговой части.

Это моя первая статья подобного рода, поэтому прошу сильно не ругать. Все началось с того, что я собрал пару довольно приличных колонок. Слушал я их через ресивер Kenwood середины 90-х, который новые колонки тянул плоховато. Встал вопрос о сборке нового усилителя.

Первое, что встречает на своём пути звуковой сигнал в усилителе, это входной буфер и регулятор громкости. С них я и решил начать. Поскольку усилитель планируется довольно большой (моноблок на 4 канала по ~100 Ватт), то размещать переменный резистор на передней панели и тянуть к нему проводку через весь корпус не хотелось, да и 4-канальный переменник ещё найти надо.

Вторая идея – использовать цифровые резисторы. Однако чипы найти оказалось непросто, да и цена у них тоже не маленькая.

Идея третья – взять готовый цифровой аудиопроцессор типа TDA7313. Идея неплохая. Вытравил печатку, запаял, подключил и не понравилось. Что-то со звуком было не то: появился какой-то неприятный окрас. Да и функционал TDA7313 для меня излишен. Регулятор тембра мне не нужен и мультиплексор тоже.

Идея четвертая – регулятор на релюшках, известный как «регулятор Никитина». Не пошёл по причине отсутствия достаточного количества особых реле и точных резисторов.

И решил я придумать чего-нибудь сам.

--
Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»

Архив версии 1. Прошивка, исходники, модель для Proteus. Стартовая версия, вместо - кнопки. Реализовано только управление регулятором.
🕗 08/03/14 ⚖️ 91,15 Kb ⇣ 47 Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.

Хорош! Халява кончилась. Хочешь файлы и полезные статьи - помоги мне!