Электронное строение атома определение. Строение атомов химических элементов

Атом – наименьшая частица вещества. Его изучение началось еще в Древней Греции, когда к строению атома было приковано внимание не только ученых, но и философов. Каково же электронное строение атома, и какие основные сведения известны об этой частице?

Строение атома

Уже древнегреческие ученые догадывались о существовании мельчайших химически частиц, из которых состоит любой предмет и организм. И если в XVII-XVIII вв. химики были уверены, что атом неделимая элементарная частица, то на рубеже XIX-XX вв., опытным путем удалось доказать, что атом не является неделимым.

Атом, будучи микроскопической частицей вещества, состоит из ядра и электронов. Ядро в 10000 раз меньше атома, однако практически вся его масса сосредоточена именно в ядре. Главной характеристикой атомного ядра, является то, что он имеет положительный заряд и состоит из протонов и нейтронов. Протоны заряжены положительно, а нейтроны не имеют заряда (они нейтральны).

Связаны они друг с другом с помощью сильного ядерного взаимодействия. Масса протона примерно равна массе нейтрона, но при этом в 1840 раз больше массы электрона. Протоны и нейтроны имеют в химии общее название – нуклоны. Сам атом является электронейтральным.

Атом любого элемента можно обозначить электронной формулой и электронно графической формулой:

Рис. 1. Электронно-графическая формула атома.

Единственным химическим элементом из периодической системы, в ядре которого не содержатся нейтроны, является легкий водород (протий).

Электрон является отрицательно заряженной частицей. Электронная оболочка состоит из движущихся вокруг ядра электронов. Электроны имеют свойства притягиваться к ядру, а между друг друг на них оказывает влияние кулоновское взаимодействие. Чтобы преодолеть притяжения ядра, электроны должны получать энергию от внешнего источника. Чем дальше электрон находится от ядра, тем меньше энергии для этого необходимо.

Модели атомов

На протяжении долго времени ученые стремились познать природу атома. На раннем этапе большой вклад внес древнегреческий философ Демокрит. Хотя сейчас его теория и кажется нам банальной и слишком простой, в тот период, когда представления об элементарных частицах только начинало зарождаться, его теория о кусочках материи воспринималась совершенно серьезно. Демокрит считал, что свойства любого вещества зависят от формы, массы и других характеристик атомов. Так, например, у огня, полагал он, острые атомы – поэтому огонь обжигает; у воды атомы гладкие, поэтому она способна течь; у твердых предметов, по его представлению, атомы были шереховатые.

Демокрит считал, что из атомов состоит абсолютно все, даже душа человека.

В 1904 году Дж. Дж. Томсон предложил свою модель атома. Основные положения теории сводились к тому, что атом представлялся положительно заряженным телом, внутри которого находились электроны с отрицательным зарядом. Позже эта теория была опровергнута Э. Резерфордом.

Рис. 2. Модель атома Томсона.

Также в 1904 году японским физиком Х. Нагаока была предложена ранняя планетарная модель атома по аналогии с планетой Сатурн. Электроны по этой теории объединены в кольца и вращаются вокруг положительно заряженного ядра. Эта теория оказалась ошибочной.

В 1911 году Э. Резерфорд, проделав ряд опытов, сделал выводы, что атом по своему строению похож на планетную систему. Ведь электроны, словно планеты, движутся по орбитам вокруг тяжелого положительно заряженного ядра. Однако это описание противоречило классической электродинамике. Тогда датский физик Нильс Бор в 1913 году ввел постулаты, суть которых заключалась в том, что электрон, находясь в некоторых специальных состояниях, не излучает энергию. Таким образом, постулаты бора показали, что для атомов классическая механика неприменима. Планетарная модель, описанная Резерфордом и дополненная Бором, получила название – планетарная модель Бора-Резерфорда.

Рис. 3. Планетарная модель Бора-Резерфорда.

Дальнейшее изучение атома привело к созданию такого раздела, как квантовая механика, с помощью которого объяснялись многие научные факты. Современные представления об атоме развились из планетарной модели Бора-Резерфорда.Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 469.

Электроны

Понятие атом возникло еще в античном мире для обозначения частиц вещества. В переводе с греческого атом означает «неделимый».

Ирландский физик Стони на основании опытов пришел к выводу, что электричество переносится мельчайшими частицами, сущеетвующими в атомах всех химических элементов. В 1891 г. Стони предложил эти частицы назвать электронами, что по-гречески означает «янтарь». Через несколько лет после того, как электрон получил свое название, английский физик Джозеф Томсон и французский физик Жан Перрен доказали, что электроны несут на себе отрицательный заряд. Это наименьший отрицательный заряд, который в химии принят за единицу (-1). Томсон даже сумел определить скорость движения электрона (скорость электрона на орбите обратно пропорциональна номеру орбиты n. Радиусы орбит растут пропорционально квадрату номера орбиты. На первой орбите атома водорода (n=1; Z=1) скорость равна ≈ 2,2·106 м/с, то есть примерно в сотню раз меньше скорости света с=3·108 м/с.) и массу электрона (она почти в 2000 раз меньше массы атома водорода).

Состояние электронов в атоме

Под состоянием электрона в атоме понимают со­вокупность информации об энергии определенного электрона и пространстве, в котором он находится . Электрон в атоме не имеет траектории движения, т. е. можно говорить лишь о веро­ятности нахождения его в пространстве вокруг ядра .

Он может находиться в лю­бой части этого пространства, окружающего ядро, и совокупность его различных положений рассматривают как электронное облако с определенной плотностью отрицательного заряда. Образно это можно предста­вить себе так: если бы удалось через сотые или миллионные доли секунды сфотографиро­вать положение электрона в атоме, как при фотофинише, то электрон на таких фотогра­фиях был бы представлен в виде точек. При наложении бесчисленного множества та­ких фотографий получилась бы картина электронного облака с наибольшей плот­ностью там, где этих точек будет больше всего.

Пространство вокруг атомного ядра, в котором наиболее вероятно нахождение электрона, называ­ется орбиталью. В нем заключено приблизительно 90 % электронного облака , и это означает, что около 90 % времени электрон находится в этой части пространства. По форме различают 4 известных ныне типа орбиталей , которые обозначаются латинскими буквами s, p, d и f . Графическое изображение некоторых форм электронных орбиталей представлено на рисунке.

Важнейшей характеристикой движения электрона на определенной орбитали является энергия его связи с ядром . Электроны, обладающие близкими значениями энергии, образуют единый электронный слои, или энергетический уровень. Энергетические уровни нумеруют, начиная от ядра, - 1, 2, 3, 4, 5, 6 и 7.

Целое число n, обозначающее номер энергетического уровня, называют главным квантовым числом. Оно характеризует энергию электронов, занимающих данный энергетический уровень. Наименьшей энергией обладают электроны первого энергетического уровня, наиболее близкого к ядру. По сравнению с электронами первого уровня, электроны последующих уровней будут характеризоваться большим запасом энергии. Следовательно, наименее прочно связаны с ядром атома электроны внешнего уровня.

Наибольшее число электронов на энергетичес­ком уровне определяется по формуле:

N = 2n 2 ,

где N - максимальное число электронов; n - но­мер уровня, или главное квантовое число. Следовательно, на первом, ближайшем к ядру энергетическом уровне может находиться не бо­лее двух электронов; на втором - не более 8; на третьем - не более 18; на четвертом - не бо­лее 32.

Начиная со второго энергетического уровня (n = 2) каждый из уровней подразделяется на подуровни (подслои), несколько отличающиеся друг от друга энергией связи с ядром. Число подуровней равно значению главного квантового числа: первый энергетический уровень имеет один подуровень; второй - два; третий - три; четвертый - четыре подуровня . Подуровни в свою очередь образованы орбиталями. Каждому значению n соответствует число орбиталей, равное n.

Подуровни принято обозначать латинскими буквами, равно как и форму орбиталей, из которых они состоят: s, p, d, f.

Протоны и нейтроны

Атом любого химического элемента сравним с крохотной Солнечной системой. Поэтому такую модель атома, предложенную Э. Резерфордом, называют планетарной .

Атомное ядро, в котором сосредоточена вся масса атома, состоит из частиц двух видов - протонов и нейтронов .

Протоны имеют заряд, равный заряду электронов, но противоположный по знаку (+1), и массу, равную массе атома водорода (она принята в химии за единицу). Нейтроны не несут заряда, они нейтральны и имеют массу, равную массе протона.

Протоны и нейтроны вместе называют нуклонами (от лат. nucleus - ядро). Сумма числа протонов и нейтронов в атоме называется массовым числом . Например, массовое число атома алюминия:

13 + 14 = 27

число протонов 13, число нейтронов 14, массовое число 27

Так как массой электрона, ничтожно малой, можно пренебречь, то очевидно, что в ядре сосредоточена вся масса атома. Электроны обозначают e — .

Поскольку атом электронейтрален , то также очевидно, что число протонов и электронов в атоме одинаково. Оно равно порядковому номеру химического элемента, присвоенному ему в Периодической системе. Масса атома складывается из массы протонов и нейтронов. Зная порядковый номер элемента (Z), т. е. число протонов, и массовое число (А), равное сумме чисел протонов и нейтронов, можно найти число нейтронов (N) по формуле:

N = A — Z

Например, число нейтронов в атоме железа равно:

56 — 26 = 30

Изотопы

Разновидности атомов одного и того же элемента, имеющие одинаковый заряд ядра, но разное массовое число, называются изотопами . Химические элементы, встречающиеся в природе, являются смесью изотопов. Так, углерод имеет три изотопа с массой 12, 13, 14; кислород - три изотопа с массой 16, 17, 18 и т. д. Обычно приводимая в Периодической системе относительная атомная масса химического элемента является средним значением атомных масс природной смеси изотопов данного элемента с учетом их относительного содержания в природе. Химические свойства изотопов большинства химических элементов совершенно одинаковы. Однако изотопы водорода сильно различаются по свойствам из-за резкого кратного увеличения их относительной атомной массы; им даже присвоены индивидуальные названия и химические знаки.

Элементы первого периода

Схема электронного строения атома водорода:

Схемы электронного строения атомов показывают распределение электронов по электронным слоям (энергетическим уровням).

Графическая электронная формула атома во­дорода (показывает распределение электронов по энергетическим уровням и подуровням):

Графические электронные формулы атомов показывают распределение электронов не только по уровням и подуровням, но и по орбиталям.

В атоме гелия первый электронный слой завершен - в нем 2 электрона. Водород и гелий - s-элементы; у этих атомов заполняется электронами s-орбиталь.

У всех элементов второго периода первый электронный слой заполнен , и электроны заполняют s- и р-орбитали второго электронного слоя в соот­ветствии с принципом наименьшей энергии (снача­ла s, а затем р) и правилами Паули и Хунда.

В атоме неона второй электронный слой завершен - в нем 8 электронов.

У атомов элементов третьего периода первый и второй электронные слои завершены, поэтому заполняется третий электронный слой, в котором электроны могут занимать 3s-, 3р- и 3d- подуровни.

У атома магния достраивается 3s- электронная орбиталь. Na и Mg - s-элементы.

У алюминия и последующих элементов запол­няется электронами 3р-подуровень.

У элементов третьего периода остаются неза­полненными 3d-орбитали.

Все элементы от Al до Ar - р-элементы. s- и р-элементы образуют главные подгруппы в Пе­риодической системе.

Элементы четвертого — седьмого периодов

У атомов калия и кальция появляется четвертый электронный слой, заполняется 4s-подуровень, т. к. он имеет меньшую энергию, чем 3d-подуровень.

К, Са - s-элементы, входящие в главные под­группы. У атомов от Sc до Zn заполняется электро­нами 3d-подуровень. Это 3d-элементы. Они входят в побочные подгруппы, у них заполняется пред­внешний электронный слой, их относят к переход­ным элементам.

Обратите внимание на строение электронных оболочек атомов хрома и меди. В них происходит «провал» одного электрона с 4s- на 3d-подуровень, что объясняется большей энергетической устойчи­востью образующихся при этом электронных кон­фигураций 3d 5 и 3d 10:

В атоме цинка третий электронный слой завер­шен - в нем заполнены все подуровни 3s, 3р и 3d, всего на них 18 электронов. У следующих за цин­ком элементов продолжает заполняться четвертый электронный слой, 4р-подуровень.

Элементы от Ga до Кr - р-элементы.

У атома криптона внешний слой (четвертый) завершен, имеет 8 электронов. Но всего в четвертом электронном слое может быть 32 электрона; у атома криптона пока остаются незаполненными 4d- и 4f-подуровни.У элементов пятого периода идет заполнение по-дуровней в следующем порядке: 5s — 4d — 5р. И так-же встречаются исключения, связанные с «провалом » электронов, у 41 Nb, 42 Мо, 44 Ru, 45 Rh, 46 Pd, 47 Ag.

В шестом и седьмом периодах появляются f-элементы, т. е. элементы, у которых идет заполнение соответственно 4f- и 5f-подуровней третьего снаружи электронного слоя.

4f-элементы называют лантаноидами.

5f-элементы называют актиноидами.

Порядок заполнения электронных подуровней в атомах элементов шестого периода: 55 Cs и 56 Ва - 6s-элементы; 57 La … 6s 2 5d x - 5d-элемент; 58 Се - 71 Lu - 4f-элементы; 72 Hf — 80 Hg - 5d-элементы; 81 Т1 — 86 Rn - 6d-элементы. Но и здесь встречаются элементы, у которых «нарушается» порядок заполне­ния электронных орбиталей, что, например, связано с большей энергетической устойчивостью наполовину и полностью заполненных f-подуровней, т. е. nf 7 и nf 14 . В зависимости от того, какой подуровень атома заполняется электронами последним, все элемен­ты делят на четыре электронных семейства, или блока:

  • s-элементы . Электронами заполняется s-под­уровень внешнего уровня атома; к s-элементам относятся водород, гелий и элементы главных подгрупп I и II групп.
  • p-элементы . Электронами заполняется р-подуровень внешнего уровня атома; к р-элементам относятся элементы главных подгрупп III- VIII групп.
  • d-элементы . Электронами заполняется d-под­уровень предвнешнего уровня атома; к d-эле­ментам относятся элементы побочных подгрупп I-VIII групп, т. е. элементы вставных декад больших периодов, расположенных между s- и р-элементами. Их также называют переход­ными элементами.
  • f-элементы . Электронами заполняется f-подуро­вень третьего снаружи уровня атома; к ним от­носятся лантаноиды и антиноиды.

Швейцарский физик В. Паули в 1925 г. установил, что в атоме на одной орбитали может находиться не более двух электронов, имеющих противоположные (антипараллельные) спины (в переводе с английского - «веретено»), т. е. обладающих такими свойствами, которые условно можно представить себе как вращение электрона вокруг своей воображаемый оси: по часовой или против часовой стрелки.

Этот принцип носит название принципа Паули . Если на орбитали находится один электрон, то он называется неспаренным, если два, то это спаренные электроны, т. е. электроны с противоположными спинами. На рисунке показана схема подразделения энергетических уровней на подуровни и очередность их заполнения.


Очень часто строение электронных оболочек атомов изображают с помощью энергетических или квантовых ячеек - записывают так называемые графические электронные формулы. Для этой записи используют следующие обозначения: каждая квантовая ячейка обозначается клеткой, которая соответствует одной орбитали; каждый электрон обозначается стрелкой, соответствующей направлению спина. При записи графической электронной формулы следует помнить два правила: принцип Паули и правило Ф. Хунда , согласно которому электроны занимают свободные ячейки сначала по одному и имеют при этом одинаковое значение спина, а лишь затем спариваются, но спины, при этом по принципу Паули будут уже противоположно направленными.

Правило Хунда и принцип Паули

Правило Хунда - правило квантовой химии, определяющее порядок заполнения орбиталей определённого подслоя и формулируется следующим образом: суммарное значение спинового квантового числа электронов данного подслоя должно быть максимальным. Сформулировано Фридрихом Хундом в 1925 году.

Это означает, что в каждой из орбиталей подслоя заполняется сначала один электрон, а только после исчерпания незаполненных орбиталей на эту орбиталь добавляется второй электрон. При этом на одной орбитали находятся два электрона с полуцелыми спинами противоположного знака, которые спариваются (образуют двухэлектронное облако) и, в результате, суммарный спин орбитали становится равным нулю.

Другая формулировка : Ниже по энергии лежит тот атомный терм, для которого выполняются два условия.

  1. Мультиплетность максимальна
  2. При совпадении мультиплетностей суммарный орбитальный момент L максимален.

Разберём это правило на примере заполнения орбиталей p-подуровня p -элементов второго периода (то есть от бора до неона (в приведённой ниже схеме горизонтальными чёрточками обозначены орбитали, вертикальными стрелками - электроны, причём направление стрелки обозначает ориентацию спина).

Правило Клечковского

Правило Клечковского — по мере увеличения суммарного числа электронов в атомах (при возрастании зарядов их ядер, или порядковых номеров химических элементов) атомные орбитали заселяются таким образом, что появление электронов на орбитали с более высокой энергией зависит только от главного квантового числа n и не зависит от всех остальных квантовых чисел, в том числе и от l. Физически это означает, что в водородоподобном атоме (в отсутствие межэлектронного отталкивания) орбитальная энергия электрона определяется только пространственной удаленностью зарядовой плотности электрона от ядра и не зависит от особенностей его движения в поле ядра.

Эмпирическое правило Клечковского и вытекающее из него схема очерёдностей несколько противоречатреальной энергетической последовательности атомых орбиталей только в двух однотипных случаях: у атомов Cr, Cu, Nb, Mo, Ru, Rh, Pd, Ag, Pt, Au имеет место “провал” электрона с s-подуровня внешнего слояна d-подуровень предыдущего слоя, что приводит к энергетически более устойчивому состоянию атома, аименно: после заполнения двумя электронами орбитали 6s

Атом - это электронейтральная частица, состоящая из положительно заряженного ядра и отрицательно заряженных электронов.
Строение атомных ядер
Ядра атомов состоят из элементарных частиц двух видов: протонов (p ) и нейтронов (n ). Сумма протонов и нейтронов в ядре одного атома называется нуклонним числом :
,
где А - нуклонне число, N - число нейтронов, Z - число протонов.
Протоны имеют положительный заряд (+1), нейтроны заряда не имеют (0), электроны имеют отрицательный заряд (-1). Массы протона и нейтрона примерно одинаковы, их принимают равными 1. Масса электрона намного меньше чем масса протона, поэтому в химии ею пренебрегают, считая, что вся масса атома сосредоточена в его ядре.
Число положительно заряженных протонов в ядре равно числу отрицательно заряженных электронов, то атом в целом електронейтральний .
Атомы с одинаковым зарядом ядра составляют химический элемент .
Атомы различных элементов называются нуклидами .
Изотопы - атомы одного и того же элемента, имеющие разное нуклонне число вследствие разного количества нейтронов в ядре.
Изотопы Водорода
Название A Z N
Протий Н 1 1 0
Дейтерий D 2 1 1
Тритий T 3 1 2
Радиоактивный распад
Ядра нуклидов могут распадаться с образованием ядер других элементов, а также , или других частиц.
Спонтанный распад атомов некоторых элементов называется радіоактивніст ю, а такие вещества - радиоактивным и. Радиоактивность сопровождается испусканием элементарных частиц и электромагнитных волн - излучение г.
Уравнение ядерного распада - ядерные реакции - записываются следующим образом:

Время, за которое распаду подвергается половина атомов данного нуклида, называется периодом полураспада .
Элементы, состоящие только из радиоактивных изотопов, называются радиоактивным ы. Это элементы 61 и 84-107.
Виды радиоактивного распада
1) -розпа д. Излучаются -частицы, т.е. ядра атома Гелия . При этом нуклонне число изотопа уменьшается на 4, а заряд ядра-на 2 единицы, например:

2) -розпа д.В неустойчивом ядре нейтрон превращается в протон, при этом ядро испускает электроны и антинейтрино. Во время -распада нуклонне число не изменяется, а заряд ядра увеличивается на 1, например:

3) -розпа д. Возбужденное ядро испускает лучи с очень малой длиной волны, при этом энергия ядра уменьшается, нуклонне число и заряд ядра не изменяются, например:
Строение электронных оболочек атомов элементов первых трех периодов
Электрон имеет двойственную природу: он может вести себя и как частица, и как волна. Электрон в атоме не движется по определенным траекториям, а может находиться в любой части вокруг ядерного пространства, однако вероятность его нахождения в разных частях этого пространства неодинакова. Пространство вокруг ядра, в котором вероятно нахождение электрона, называется орбіталл ю.
Каждый электрон в атоме находится на определенном расстоянии от ядра согласно запаса его энергии. Электроны с более-менее одинаковой энергией формируют энергетические рівн и, или электронные слой и.
Число заполненных электронами энергетических уровней в атоме данного элемента равно номеру периода, в котором он расположен.
Число электронов на внешнем энергетическом уровне равно номеру группы, в которой расположен данный элемент.
В пределах одного энергетического уровня электроны могут отличаться формой электронной облаков и, или орбитал и. Существуют такие формы орбиталей:
s -форма:
p -форма:
Существуют также d -, f -орбитали и другие, с более сложной формой.
Электроны с одинаковой формой электронного облака образуют одноименные энергетические підрівн и:s -, p -, d -, f -подуровни.
Количество подуровней на каждом энергетическом уровне равно номеру этого уровня.
В пределах одного энергетического подуровня возможен различный распределение орбиталей в пространстве. Так, в трехмерной системе координат для s -орбитали возможно только одно положение:

для р -орбитали - три:

для d -орбитали - пять, для f -орбитали - семь.
Орбитали изображают:
s -подуровень -
p -подуровень -
d -подуровень -
Электрон на схемах обозначается стрелкой, которая указывает его спин. Под спином понимают вращения электрона вокруг своей оси. Он обозначается стрелкой: или . Два электрона на одной орбитали записываются , но не .
Более двух электронов на одной орбитали находиться не может (принцип Паули ).
Принцип наименьшего энерги й: в атоме каждый электрон располагается так, чтобы его энергия была минимальной (что соответствует его крупнейшем связи с ядром) .
Например, распределение электронов в атоме Хлора в:

Один неспаренный электрон определяет валентность Хлора в таком состоянии - I.
Во время получения дополнительной энергии (облучение, нагревание) возможно розпарування электронов (промотирования). Такое состояние атома называется збуджени м. При этом количество неспаренных электронов увеличивается и, соответственно, меняется валентность атома.
Возбужденное состояние атома Хлор в:

Соответственно к числу неспаренных электронов Хлор может иметь валентность III, V и VII.

Тем, какой состав имеет молекула. То есть какими атомами образована молекула, в каком количестве, какими связями соединены эти атомы. Все это определяет свойство молекулы, и соответственно свойство вещества, которое эти молекулы образуют.

Например, свойства воды: прозрачность, текучесть, способность вызывать ржавчину обусловлено именно наличием двух атомов водорода и одного атома кислорода.

Поэтому прежде, чем приступить к изучению свойств молекул (то есть свойств веществ), нужно рассмотреть «кирпичики», которыми эти молекулы образованы. Разобраться в строении атома.

Как устроен атом?

Атомы – это частицы, которые, соединяясь друг с другом, образуют молекулы.

Сам атом состоит из положительно заряженного ядра (+) и отрицательно заряженной электронной оболочки (-) . В целом атом электронейтрален. То есть заряд ядра равен по модулю заряду электронной оболочки.

Ядро образовано следующими частицами:

  • Протоны . Один протон несет заряд +1. Масса его равна 1 а.е.м (атомная единица массы). Эти частицы обязательно присутствуют в ядре.

  • Нейтроны . Нейтрон не имеет заряда (заряд = 0). Масса его равна 1 а.е.м. Нейтронов может не быть в ядре. Это не обязательный компонент атомного ядра.

Таким образом за общий заряд ядра отвечают протоны. Поскольку один нейтрон имеет заряд +1, то заряд ядра равен числу протонов.

Электронная оболочка, как видно из названия образована частицами, которые называются электронами. Если сравнивать ядро атома с планетой, то электроны – это ее спутники. Вращаясь вокруг ядра (пока представим, что по орбитам, а на самом деле по орбиталям), они образуют электронную оболочку.

  • Электрон – это очень маленькая частица. Ее масса на столько мала, что принимается за 0. А вот заряд у электрона -1. То есть по модулю равен заряду протона, отличается знаком. Поскольку один электрон несет заряд -1, то общий заряд электронной оболочки равен числу электронов в ней.

Одно важное следствие, раз атом – частица, не имеющая заряда (заряд ядра и заряд электронной оболочки равны по модулю, но противоположены по знаку), то есть электронейтральная, следовательно, число электронов в атоме равно числу протонов .

Чем отличаются атомы разных химических элементов друг от друга?

Атомы разных химических элементов отличаются друг от друга зарядом ядра (то есть числом протонов, и, следовательно, числом электронов).

Как узнать заряд ядра атома элемента? Гениальный отечественный химик Д. И. Менделеев, открыв периодический закон, и разработав таблицу, названную его именем, дал нам возможность сделать это. Его открытие забегало далеко вперед. Когда еще не было известно о строении атома, Менделеев расположил элементы в таблице в порядке возрастания заряда ядра.

То есть порядковый номер элемента в периодической системе – это заряд ядра атома данного элемента. Например, у кислорода порядковый номер 8, соответственно заряд ядра атома кислорода равен +8. Соответственно число протонов равно 8, и число электронов равно 8.

Именно электроны в электронной оболочке определяют химические свойства атома, но об этом чуть позже.

Теперь поговорим о массе .

Один протон – это одна единица массы, один нейтрон – это тоже одна единица массы. Поэтому сумма нейтронов и протонов в ядре называется массовым числом . (Электроны на массу никак не влияют, так как мы пренебрегаем его массой и считаем ее равной нулю).

Атомная единица массы (а. е. м.) – специальная физическая величина для обозначения малых масс частиц, образующих атомы.

Все эти три атома – атомы одного химического элемента – водорода. Поскольку у них одинаковый заряд ядра.

Чем они будут отличаться? У этих атомов разные массовые числа (из-за разного числа нейтронов). У первого атома массовое число равно 1, у второго 2, у третьего 3.

Атомы одного элемента, различающиеся количеством нейтронов (и, следовательно, массовыми числами) называются изотопами .

У представленных изотопов водорода даже есть свои названия:

  • Первый изотоп (с массовым числом 1) называется протий.
  • Второй изотоп (с массовым числом 2) называется дейтерий.
  • Третий изотоп (с массовым числом 3) называется тритий.

Теперь следующий резонный вопрос: почему если число нейтронов и протонов в ядре число целое, масса их по 1 а.е.м., то в периодической системе масса атома – дробное число. У серы, например: 32,066.

Ответ: у элемента есть несколько изотопов, они отличаются друг от друга массовыми числами. Поэтому атомная масса в периодической таблице – это среднее значение атомных масс всех изотопов элемента с учетом их встречаемости в природе. Эта масса, указанная в периодической системе, называется относительной атомной массой .

Для химических расчетов используются показатели именно такого «усредненного атома». Атомная масса округляется до целого.

Строение электронной оболочки.

Химические свойства атома определяются строением его электронной оболочки. Электроны вокруг ядра располагаются не абы как. Электроны локализуются на электронных орбиталях.

Электронная орбиталь – пространство вокруг атомного ядра, где вероятность нахождения электрона наибольшая.

У электрона есть один квантовый параметр, который называется спин. Если брать классическое определение из квантовой механики, то спин – это собственный момент импульса частицы. В упрощенном виде это можно представить, как направление вращения частицы вокруг своей оси.

Электрон – это частица с полуцелым спином, у электрона спин может быть либо +½ либо -½. Условно это можно представить, как вращение по часовой и против часовой.

На одной электронной орбитали могут находиться не более двух электронов с противоположенными спинами.

Общепринятым обозначением электронной обитали является клетка либо черточка. Электрон обозначается стрелкой: стрелка вверх – электрон с положительным спином +½, стрелка вниз ↓ – электрон с отрицательным спином -½.

Электрон, одинокий на орбитали называется неспаренным . Два электрона, располагающиеся на одной орбитали, называются спаренными .

Электронные орбитали подразделяются в зависимости от формы на четыре вида: s, p, d, f. Орбитали одинаковой формы формируют подуровень. Число орбиталей на подуровне определяется числом возможных вариантов расположения в пространстве.

  1. s-орбиталь.

s-орбиталь имеет форму шара:

В пространстве s-орбиталь может располагаться только одним способом:

Поэтому s-подуровнь формируется только одной s-орбиталью.

  1. р-орбиталь.

p-орбиталь имеет форму гантели:

В пространстве p-орбиталь может располагаться только тремя способами:

Поэтому p-подуровнь формируется тремя p-орбиталями.

  1. d-орбиталь.

d-орбиталь имеет сложную форму:

В пространстве d-орбиталь может располагаться пятью разными способами. Поэтому d-подуровнь формируется пятью d-орбиталями.

  1. f-орбиталь

f-орбиталь имеет еще более сложную форму. В пространстве f-орбиталь может располагаться семью разными способами. Поэтому f-подуровнь формируется семью f-орбиталями.

Электронная оболочка атома похожа на слоеное кондитерское изделие. В нем тоже есть слои. Электроны, находящиеся на разных слоях, имеют разную энергию: на слоях ближе ядру – меньше, на удаленных от ядра – бо̀льшую. Слои эти называются энергетическими уровнями.

Заполнение электронных орбиталей .

Первый энергетический уровень имеет только s-подуровень:

На втором энергетическом уровне есть s-подуровень и появляется p-подуровень:

На третьем энергетическом уровне есть s-подуровень, p-подуровень и появляется d-подуровень:

На четвертом энергетическом уровне, в принципе, прибавляется f-подуровень. Но в школьном курсе f-орбитали не заполняются, поэтому мы можем не изображать f-подуровень:

Число энергетических уровней в атоме элемента равно номеру периода . При заполнении электронных орбиталей нужно следовать следующим принципам:

  1. Каждый электрон старается занять в атоме то положение, где его энергия будет минимальной. То есть сначала идет заполнение первого энергетического уровня, потом второго и так далее.

Для описания строения электронной оболочки так же используется электронная формула. Электронная формула – это краткая запись в одну строку распределения электронов по подуровням.

  1. На подуровне сначала каждый электрон заполняет свободную орбиталь. И каждый имеет спин +½ (стрелка вверх).

И только после того как на каждой орбитали подуровня будет по одному электрону, следующий электрон становится спаренным – то есть занимает орбиталь, на которой уже есть электрон:

  1. d-подуровень заполняется по-особому.

Дело в том, что энергия d-подуровня выше, чем энергия s-подуровня СЛЕДУЮЩЕГО энергетического слоя. А как мы знаем, электрон старается занять то положение в атоме, где его энергия будет минимальной.

Поэтому после заполнения 3p-подуровня, заполняется сначала 4s-подуровень, после чего заполняется 3d-подуровень.

И только после того как 3d-подуровень заполнен полностью, заполняется 4p-подуровень.

Так же и с 4 энергетическим уровнем. После заполнения 4p-подуровня, следующим заполняется 5s-подуровень, после него 4d-подуровень. И после него только 5p.

  1. И есть еще один момент, одно правило касаемо заполнения d-подуровня.

То происходит явление, называемое провалом . При провале один электрон с s-подуровня следующего энергетического уровня, в прямом смысле проваливается на d-электрон.

Основное и возбужденное состояния атома.

Атомы, электронные конфигурации которых мы сейчас строили, называются атомами в основнóм состоянии . То есть, это обычное, естественное, если угодно, состояние.

Когда атом получает энергию извне, может произойти возбуждение.

Возбуждение – это переход спаренного электрона на пустую орбиталь, в пределах внешнего энергетического уровня .

Например, у атома углерода:

Возбуждение характерно для многих атомов. Это необходимо помнить, потому как возбуждение определяет способность атомов связываться друг с другом. Главное помнить условие, при котором может произойти возбуждение: спаренный электрон и пустая орбиталь на внешнем энергетическом уровне.

Есть атомы, у которых несколько возбужденных состояний:

Электронная конфигурация иона.

Ионы – это частицы, в которые превращаются атомы и молекулы, приобретая или теряя электроны. Эти частицы имеют заряд, так как у них либо «не хватает» электронов, либо их избыток. Положительно заряженные ионы называются катионами , отрицательные – анионами .

Атом хлора (не имеет заряда) приобретает электрон. У электрона заряд 1- (один минус), соответственно образуется частица, имеющая избыточный отрицательный заряд. Анион хлора:

Cl 0 + 1e → Cl –

Атом лития (тоже не имеющий заряда) теряет электрон. У электрона заряд 1+ (один плюс), образуется частица, с недостатком отрицательного заряда, то есть заряд у нее положительный. Катион лития:

Li 0 – 1e → Li +

Превращаясь в ионы, атомы приобретают такую конфигурация, что внешний энергетический уровень становится «красивым», то есть полностью заполненным. Такая конфигурация наиболее термодинамически стабильная, поэтому атомам есть резон превращаться в ионы.

И поэтому атомы элементов VIII-A группы (восьмой группы главной подгруппы), как сказано в следующем параграфе это благородные газы, такие химически малоактивны. У них в основном состоянии такое строение: внешний энергетический уровень полностью заполнен. Другие атомы, как бы стремятся приобрести конфигурацию этих самых благородных газов, поэтому и превращаются в ионы и образуют химические связи.

Понятие «атом» знакомо человечеству ещё со времен Древней Греции. Согласно высказыванию древних философов, атом представляет собой мельчайшую частицу, входящую в состав вещества.

Электронное строение атома

Атом состоит из положительно заряженного ядра внутри которого находятся протоны и нейтроны. Вокруг ядра по орбитам движутся электроны, каждый из которых можно охарактеризовать набором из четырех квантовых чисел: главного (n), орбитального (l), магнитного (m l) и спинового (m s или s).

Главное квантовое число определяет энергию электрона и размеры электронных облаков. Энергия электрона главным образом зависит от расстояния электрона от ядра: чем ближе к ядру находится электрон, тем меньше его энергия. Другими словами, главное квантовое число определяет расположение электрона на том или ином энергетическом уровне (квантовом слое). Главное квантовое число имеет значения ряда целых чисел от 1 до бесконечности.

Орбитальное квантовое число характеризует форму электронного облака. Различная форма электронных облаков обусловливает изменение энергии электронов в пределах одного энергетического уровня, т.е. расщепление её на энергетические подуровне. Орбитальное квантовое число может имеет значения от нуля до (n-1), всего n значений. Энергетические подуровни обозначают буквами:

Магнитное квантовое число показывает ориентацию орбитали в пространстве. Оно принимает любое целое числовое значение от (+l) до (-l), включая нуль. Число возможных значений магнитного квантового числа равна (2l+1).

Электрон, двигаясь в поле ядра атома, кроме орбитального момента импульса обладает также собственным моментам импульса, характеризующим его веретенообразное вращение вокруг собственной оси. Это свойства электрона получило название спина. Величину и ориентацию спина характеризует спиновое квантовое число, которое может принимать значения (+1/2) и (-1/2). Положительное и отрицательное значения спина связаны с его направлением.

До того, как все вышеописанное стало известно и подтверждено экспериментально существовало несколько моделей строения атома. Одна из первых моделей строения атома была предложена Э. Резерфордом, который в опытах по рассеянию α-частиц показал, что почти вся масса атома сосредоточена в очень малом объеме - положительно заряженном ядре. Согласно его модели, вокруг ядра на достаточно большом расстоянии движутся электроны, причем их число таково, что в целом атом электронейтрален.

Развивать модель строения атома Резерфорда стал Н. Бор, который в своем исследовании также объединил учения Эйнштейна о световых квантах и квантовую теорию излучения Планка. Завершили начатое и представили миру современную модель строения атома химического элемента Луи де Бройль и Шредингер.

Примеры решения задач

ПРИМЕР 1

Задание Укажите количество протонов и нейтронов, которые содержатся в ядрах азота (атомный номер 14), кремния (атомный номер 28) и бария (атомный номер 137).
Решение Количество протонов в ядре атома химического элемента определяется по его порядковому номеру в Периодической таблице, а количество нейтронов - это разница между массовым числом (М) и зарядом ядра (Z).

Азот:

n(N)= M -Z = 14-7 = 7.

Кремний:

n(Si)= M -Z = 28-14 = 14.

Барий:

n (Ba)= M -Z = 137-56 = 81.

Ответ Количество протонов в ядре азота равно 7, нейтронов - 7; в ядре атоме кремня протонов 14, нейтронов - 14; в ядре атоме бария протонов 56, нейтронов - 81.

ПРИМЕР 2

Задание Расположите энергетические подуровни в последовательности их заполнения электронами:

а) 3р, 3d, 4s, 4р;

б) 4d, 5s, 5р, 6s;

в) 4f, 5s, 6р; 4d, 6s;

г) 5d, 6s, 6р, 7s, 4f.

Решение Энергетические подуровни заполняются электронами в соответствии с правилами Клечковского. Обязательным условием является минимальное значение суммы главного и орбитального квантового чисел. Для s-подуровня характерно число 0, p - 1, d - 2 и f-3. Второе условие - первым заполняется подуровень с наименьшим значением главного квантового числа.
Ответ а) Орбиталям 3р, 3d, 4s, 4р будут соответствовать числа 4, 5, 4 и 5. Следовательно заполнение электронами будет происходить в следующей последовательности: 3p, 4s, 3d, 4p.

б) Орбиталям 4d, 5s, 5р, 6s будут соответствовать числа 7, 5, 6 и 6. Следовательно заполнение электронами будет происходить в следующей последовательности: 5s, 5p, 6s, 4d.

в) Орбиталям 4f, 5s, 6р; 4d, 6s будут соответствовать числа 7, 5, 76 и 6. Следовательно заполнение электронами будет происходить в следующей последовательности: 5s, 4d, 6s, 4f, 6р.

г) Орбиталям 5d, 6s, 6р, 7s, 4f будут соответствовать числа 7, 6, 7, 7 и 7. Следовательно заполнение электронами будет происходить в следующей последовательности: 6s, 4f, 5d, 6р, 7s.