Генератор на TL494 с регулировкой частоты и скважности. Катушки Теслы

Только самое главное.
Напряжение питания 8-35в (вроде можно до 40в, но не испытывал)
Возможность работать в однотактном и двухтактном режиме.

Для однотактного режима максимальная длительность импульса составляет 96% (не меньше 4% мертвого времени).
Для двухтактного варианта – длительность мертвого времени не может быть меньше 4%.
Подавая на вывод 4 напряжение 0…3,3в можно регулировать мертвое время. И осуществлять плавный запуск.
Имеется встроенный стабилизированный источник опорного напряжения 5в и током до 10ма.
Имеется встроенная защита от пониженного напряжения питания, выключаясь ниже 5,5…7в (чаще всего 6,4в). Беда в том, что при таком напряжении мосфеты уже переходят в линейный режим и сгорают…
Имеется возможность выключит генератор микросхемы замкнув ключом вывод Rt (6) вывод опорного напряжения (14) или вывод Ct (5) на землю.

Рабочая частота 1…300кГц.

Два встроенных операционных усилителя «ошибки» с коэффициентом усиления Ку=70..95Дб. Входы - выводы (1); (2) и (15); (16). Выходы усилителей объединены элементом ИЛИ, поэтому тот на выходе которого напряжение больше и управляет длительностью импульса. Один из входов компаратора обычно привязывают к опорному напряжению (14), а второй – куда нада…Задержка сигнала внутри Усилителя 400нс, они не предназначены для работы в пределах одного такта.

Выходные каскады микросхемы при среднем токе в 200ма, достаточно быстро заряжают входную емкость затвора мощного мосфета, но не обеспечивают ее разряд. за приемлемое время. В связи с чем обязательно необходим внешний драйвер.

Вывод (5) кондесатор С2 и вывод (6) резисторы R3; R4 - задают частоту внутреннего генератора микросхемы. В двухтактном режиме она делиться на 2.

Есть возможность синхронизации, запуск входными импульсами.

Однотактный генератор с регулировкой частоты и скважности
Однотактный генератор с регулировкой частоты и скважности (отношение длительности импульса к длительности паузы). С одно транзисторным выходным драйвером. Такой режим реализуется, если соединить вывод 13 с общей шиной питания.

Схема (1)


Поскольку микросхема имеет два выходных каскада, которые в данном случае работают синфазно, их для увеличения выходного тока можно включить параллельно… Или не включать…(зеленым цветом на схеме) Так же не всегда ставиться и резистор R7.

Измеряя операционным усилителем напряжение на резисторе R10, можно ограничить выходной ток. На второй вход подается опорное напряжение делителем R5; R6. Ну понимаете R10 будет греться.

Цепь С6; R11, на (3) ногу, ставят для большей устойчивости, даташит просит, но работает и без нее. Транзистор можно взять и npn структуры.


Схема (2)



Схема (3)

Однотактный генератор с регулировкой частоты и скважности. С двух транзисторным выходным драйвером (комплементарный повторитель).
Что могу сказать? Форма сигнала лучше, сокращаются переходные процессы в моменты переключения, выше нагрузочная способность, меньше тепловые потери. Хотя может быть это субъективное мнение. Но. Сейчас я использую только двух транзисторный драйвер. Да, резистор в цепи затвора ограничивает скорость переходных процессов при переключении.


Схема (4)


А здесь имеем схему типичного повышающего (boost) регулируемого однотактного преобразователя, с регулировкой напряжения и ограничением тока.

Схема рабочая, собиралась мной в нескольких вариантах. Выходное напряжение зависит от количества витков катушки L1, ну и от сопротивления резисторов R7; R10; R11, которые при налаживании подбираются... Саму катушку можно мотать на чем угодно. Размер - в зависимости от мощности. Кольцо, Ш-сердечник, даже просто на стержне. Но она не должна входить в насыщение. Поэтому если кольцо из феррита, то нужно разрезать и склеить с зазором. Хорошо пойдут большие кольца из компьютерных блоков питания, их резать не надо, они из "рапыленного железа" зазор уже предусмотрен. Если сердечник Ш-образный - ставим не магнитный зазор, бывают с коротким средним керном - эти уже с зазором. Короче, мотаем толстым медным или монтажным проводом (0,5-1,0мм в зависимости от мощности) и числом витков 10-и больше (в зависимости, какое напряжение желаем получить). Подключаем нагрузку на планируемое напряжение небольшой мощности. Подключаем наше творение к аккумулятору через мощную лампу. Если лампа не загорелась в полный накал - берем вольтметр и осцилограф...

Подбираем резисторы R7; R10; R11 и число витков катушки L1, добиваясь задуманного напряжения на нагрузке.

Дроссель Др1 - 5...10 витков толстым проводом на любом сердечнике. Видел даже варианты, где L1 и Др1 намотаны на одном сердечнике. Сам не проверял.


Схема (5)


Это тоже реальная схема повышающего преобразователя, который можно использовать, например для зарядки ноутбука от автомобильного аккумулятора. Компаратор по входам (15);(16) следит за напряжением аккумулятора "донора" и отключит преобразователь, когда напряжение на нем упадет ниже выбранного порога.

Цепь С8; R12; VD2 - так называемый Снаббер, предназначен для подавления индуктивных выбросов. Спасает низковольтный МОСФЕТ, например IRF3205 выдерживает, если не ошибаюсь, (сток - исток) до 50в. Однако здорово уменьшает КПД. И диод и резистор прилично греются. За то увеличивается надежность. В некоторых режимах (схемах) без него просто сразу сгорает мощный транзистор. А бывает работает и без всего этого...Надо смотреть осциллограф...


Схема (6)


Двухтактный задающий генератор.
Различные варианты исполнения и регулировок.
На первый взгляд огромное разнообразие схем включения сводится к намного более скромному количеству действительно работающих… Первое, что я обычно делаю, когда вижу "хитрую" схему – перерисовываю в привычном для себя стандарте. Раньше это называлось – ГОСТ. Сейчас рисуют не понятно как, что крайне затрудняет восприятие. И скрывает ошибки. Думаю, что часто это делается специально.
Задающий генератор для полумоста или моста. Это простейший генератор, Длительность импульсов и частота регулируется в ручную. Оптроном по (3) ноге тоже можно регулировать длительность, однако регулировка очень острая. Я использовал для прерывания работы микросхемы. Некоторые "корифеи" говорят, что управлять по (3) выводу нельзя, микросхема сгорит, но мой опыт подтверждает работоспособность данного решения. Кстати оно удачно использовалось в сварочном инверторе.


Схема (10)

Примеры реализации регулировок (стабилизации) тока и напряжения. То, что на рисунке №12 делал сам, - понравилось. Синие конденсаторы наверное можно не устанавливать, но лучше пусть будут.


Схема (11)



Общее описание и использование

TL 494 и ее последующие версии - наиболее часто применяемая микросхема для построения двухтакных преобразователей питания.

  • TL494 (оригинальная разработка Texas Instruments) - ИС ШИМ преобразователя напряжения с однотактными выходами (TL 494 IN - корпус DIP16, -25..85С, TL 494 CN - DIP16, 0..70C).
  • К1006ЕУ4 - отечественный аналог TL494
  • TL594 - аналог TL494 c улучшенной точностью усилителей ошибки и компаратора
  • TL598 - аналог TL594 c двухтактным (pnp-npn) повторителем на выходе

Настоящий материал - обобщение на тему оригинального техдока Texas Instruments , публикаций International Rectifier ("Силовые полупроводниковые приборы International Rectifier", Воронеж, 1999) и Motorola.

Достоинства и недостатки данной микросхемы:

  • Плюс: Развитые цепи управления, два дифференциальный усилителя (могут выполнять и логические функции)
  • Минус: Однофазные выходы требуют дополнительной обвески (по сравнению с UC3825)
  • Минус: Недоступно токовое управление, относительно медленная петля обратной связи (некритично в автомобильных ПН)
  • Минус: Cинронное включение двух и более ИС не так удобно, как в UC3825

1. Особенности микросхем TL494

Цепи ИОНа и защиты от недонапряжения питания . Схема включается при достижении питанием порога 5.5..7.0 В (типовое значение 6.4В). До этого момента внутренние шины контроля запрещают работу генератора и логической части схемы. Ток холостого хода при напряжении питания +15В (выходные транзисторы отключены) не более 10 мА. ИОН +5В (+4.75..+5.25 В, стабилизация по выходу не хуже +/- 25мВ) обеспечивает вытекающий ток до 10 мА. Умощнять ИОН можно только используя npn-эмиттерный повторитель (см TI стр. 19-20), но на выходе такого "стабилизатора" напряжение будет сильно зависеть от тока нагрузки.

Генератор вырабатывает на времязадающем конденсаторе Сt (вывод 5) пилообразное напряжение 0..+3.0В (амплитуда задана ИОНом) для TL494 Texas Instruments и 0...+2.8В для TL494 Motorola (чего же ждать от других?), соответственно для TI F=1.0/(RtCt), для Моторолы F=1.1/(RtCt).

Допустимы рабочие частоты от 1 до 300 кГц, при этом рекомендованный диапазон Rt = 1...500кОм, Ct=470пФ...10мкФ. При этом типовой температурный дрейф частоты составляет (естественно без учета дрейфа навесных компонентов) +/-3%, а уход частоты в зависимости от напряжения питания - в пределах 0.1% во всем допустимом диапазоне.

Для дистанционного выключения генератора можно внешним ключом замкнуть вход Rt (6) на выход ИОНа, или - замкнуть Ct на землю. Разумеется, сопротивление утечки разомкнутого ключа должно учитываться при выборе Rt, Ct.

Вход контроля фазы покоя (скважности) через компаратор фазы покоя задает необходимую минимальную паузу между импульсами в плечах схемы. Это необходимо как для недопущения сквозного тока в силовых каскадах за пределами ИС, так и для стабильной работы триггера - время переключения цифровой части TL494 составляет 200 нс. Выходной сигнал разрешен тогда, когда пила на Cт превышает напряжение на управляющем входе 4 (DT). На тактовых частотах до 150 кГц при нулевом управляющем напряжении фаза покоя = 3% периода (эквивалентное смещение управляющего сигнала 100..120 мВ), на больших частотах встроенная коррекция расширяет фазу покоя до 200..300 нс.

Используя цепь входа DT, можно задавать фиксированную фазу покоя (R-R делитель), режим мягкого старта (R-C), дистанционное выключение (ключ), а также использовать DT как линейный управляющий вход. Входная цепь собрана на pnp-транзисторах, поэтому входной ток (до 1.0 мкА) вытекает из ИС а не втекает в нее. Ток достаточно большой, поэтому следует избегать высокоомных резисторов (не более 100 кОм). На TI, стр. 23 приведен пример защиты от перенапряжения с использованием 3-выводного стабилитрона TL430 (431).

Усилители ошибки - фактически, операционные усилители с Ку=70..95дБ по постоянному напряжению (60 дБ для ранних серий), Ку=1 на 350 кГц. Входные цепи собраны на pnp-транзисторах, поэтому входной ток (до 1.0 мкА) вытекает из ИС а не втекает в нее. Ток достаточно большой для ОУ, напряжение смещения тоже (до 10мВ) поэтому следует избегать высокоомных резисторов в управляющих цепях (не более 100 кОм). Зато благодаря использованию pnp-входов диапазон входных напряжений - от -0.3В до Vпитания-2В.

Выходы двух усилителей объединены диодным ИЛИ. Тот усилитель, на выходе которого большее напряжение, перехватывает управление логикой. При этом выходной сигнал доступен не порознь, а только с выхода диодного ИЛИ (он же вход компаратора ошибки). Таким образом, только один усилитель может быть замкнут петлей ОС в линейном режиме. Этот усилитель и замыкает главную, линейную ОС по выходному напряжению. Второй усилитель при этом может использоваться как компаратор - например, превышения выходного тока, или как ключ на логический сигнал аварии (перегрев, КЗ и т.п.), дистанционного выключения и пр. Один из входов компаратора привязывается к ИОНу, на втором организуется логическое ИЛИ аварийных сигналов (еще лучше - логическое И сигналов нормальных состояний).

При использовании RC частотнозависимой ОС следует помнить, что выход усилителей - фактически однотактный (последовательный диод!), так что заряжать емкость (вверх) он зарядит, а вниз - разряжать будет долго. Напряжение на этом выходе находится в пределах 0..+3.5В (чуть больше размаха генератора), далее коэффициент напряжения резко падает и примерно при 4.5В на выходе усилители насыщаются. Аналогично, следует избегать низкоомных резисторов в цепи выхода усилителей (петли ОС).

Усилители не предназначены для работы в пределах одного такта рабочей частоты. При задержке распространения сигнала внутри усилителя в 400 нс они для этого слишком медленные, да и логика управления триггером не позволяет (возникали бы побочные импульсы на выходе). В реальных схемах ПН частота среза цепи ОС выбирается порядка 200-10000 Гц.

Триггер и логика управления выходами - При напряжении питания не менее 7В, если напряжение пилы на генераторе больше чем на управляющем входе DT, и если напряжение пилы больше чем на любом из усилителей ошибки (с учетом встроенных порогов и смещений) - разрешается выход схемы. При сбросе генератора из максимума в ноль - выходы отключаются. Триггер с парафазным выходом делит частоту надвое. При логическом 0 на входе 13 (режим выхода) фазы триггера объединяются по ИЛИ и подаются одновременно на оба выхода, при логической 1 - подаются парафазно на каждый выход порознь.

Выходные транзисторы - npn Дарлингтоны со встроенной тепловой защитой (но без защиты по току). Таким образом, минимальное падение напряжение между коллектором (как правило замкнутым на плюсовую шину) и эмитттером (на нагрузке) - 1.5В (типовое при 200 мА), а в схеме с общим эмиттером - чуть лучше, 1.1 В типовое. Предельный выходной ток (при одном открытом транзисторе) ограничен 500 мА, предельная мощность на весь кристалл - 1Вт.

2. Особенности применения

Работа на затвор МДП транзистора. Выходные повторители

При работе на емкостную нагрузку, какой условно является затвор МДП транзистора, выходные транзисторы TL494 включаются эмиттерным повторителем. При ограничении среднего тока в 200 мА схема способна достаточно быстро зарядить затвор, но разрядить его выключенным транзистором невозможно. Разряжать затвор с помощью заземленного резистора - также неудовлетворительно медленно. Ведь напряжение на условной емкости затвора спадает по экспоненте, а для закрытия транзистора затвор надо разрядить от 10В до не более 3В. Ток разряда через резистор будет всегда меньше тока заряда через транзистор (да и греться резистор будет неслабо, и красть ток ключа при ходе вверх).


Вариант А. Цепь разряда через внешний pnp транзистор (заимствовано на сайте Шихмана - см. "Блок питания усилителя Jensen"). При зарядке затвора ток, протекающий через диод, запирает внешний pnp-транзистор, при выключении выхода ИС - заперт диод, транзистор открывается и разряжает затвор на землю. Минус - работает только на небольшие емкости нагрузки (ограниченные токовым запасом выходного транзистора ИС).

При использовании TL598 (c двухтактным выходом) функция нижнего, разрядного, плеча уже зашита на кристалле. Вариант А в этом случае нецелесообразен.

Вариант Б. Независимый комплементарный повторитель. Так как основная токовая нагрузка отрабатывается внешним транзистором, емкость (ток заряда) нагрузки практически не ограничена. Транзисторы и диоды - любые ВЧ с небольшим напряжением насыщения и Cк, и достаточным запасом по току (1А в импульсе и более). Например, КТ644+646, КТ972+973. "Земля" повторителя должна распаиваться непосредственно рядом с истоком силового ключа. Коллекторы транзисторов повторителя обязательно зашунтировать керамической емкостью (на схеме не показана).

Какую схемы выбрать - зависит прежде всего от характера нагрузки (емкость затвора или заряд переключения), рабочей частоты, временных требований к фронтам импульса. А они (фронты) должны быть как можно быстрее, ведь именно на переходных процессах на МДП ключе рассеивается большая часть тепловых потерь. Рекомендую обратится к публикациям в сборнике International Rectifier для полного анализа задачи, сам же ограничусь примером.

Мощный транзистор - IRFI1010N - имеет справочный полный заряд на затворе Qg=130нКл. Это немало, ведь транзистор имеет исключительно большую площадь канала, чтоб обеспечить предельно низкое сопротивление канала (12 мОм). Именно такие ключи и требуются в 12В преобразователях, где каждый миллиом на счету. Чтоб гарантированно открыть канал, на затворе надо обеспечить Vg=+6В относительно земли, при этом полный заряд затвора Qg(Vg)=60нКл. Чтоб гарантированно разрядить затвор, заряженный до 10В, надо рассосать Qg(Vg)=90нКл.

2. Реализация защиты по току, мягкого старта, ограничения скважности

Как правило, в роли датчика тока так и просится последовательный резистор в цепи нагрузки. Но он будет красть драгоценные вольты и ватты на выходе преобразователя, да и контролировать только цепи нагрузки, а КЗ в первичных цепях обнаружить не сможет. Решение - индуктивный датчик тока в первичной цепи.

Собственно датчик (трансформатор тока) - миниатюрная тороидальная катушка (внутренний ее диаметр должен, помимо обмотки датчика, свободно пропустить провод первичной обмотки главного силового трансформатора). Сквозь тор пропускаем провод первичной обмотки трансформатора (но не "земляной" провод истока!). Постоянную времени нарастания детектора задаем порядка 3-10 периодов тактовой частоты, спада - в 10 раз более, исходя из тока срабатывания оптрона (порядка 2-10 мА при падении напряжения 1.2-1.6В).


В правой части схемы - два типовых решения для TL494. Делитель Rdt1-Rdt2 задает максимальную скважность (минимальную фазу покоя). Например, при Rdt1=4.7кОм, Rdt2=47кОм на выходе 4 постоянное напряжение Udt=450мВ, что соответствует фазе покоя 18..22% (в зависимости от серии ИС и рабочей частоты).

При включении питания Css разряжен и потенциал на входе DT равен Vref (+5В). Сss заряжается через Rss (она же Rdt2), плавно опуская потенциал DT до нижнего предела, ограниченного делителем. Это "мягкий старт". При Css=47мкФ и указанных резисторах выходы схемы открываются через 0.1 с после включения, и выходят на рабочую скважность еще в течении 0.3-0.5 с.

В схеме, помимо Rdt1, Rdt2, Css присутствуют две утечки - ток утечки оптрона (не выше 10 мкА при высоких температурах, порядка 0.1-1 мкА при комнатной температуре) и вытекающий из входа DT ток базы входного транзистора ИС. Чтобы эти токи не влияли существенно на точность делителя, Rdt2=Rss выбираем не выше 5 кОм, Rdt1 - не выше 100 кОм.

Разумеется, выбор именно оптрона и цепи DT для управления непринципиален. Возможно и использование усилителя ошибки в режиме компаратора, и блокировка емкости или резистора генератора (например, тем же оптроном) - но это именно выключение, а не плавное ограничение.

Dragons" Lord (2005)

Задача: Собрать удобный в эксплуатации, максимально универсальный генератор прямоугольных импульсов. Обязательное условие - обеспечить максимально возможные крутые передний и задний фронт сигнала. Также желательно охватить максимально широкий диапазон частот и скважности. Согласно поставленной задаче, общими усилиями участников проекта "сайт" была рождена схема, с которой вам предлагается ознакомиться далее.

Принципиальная схема и графики:

Фотографии готового генератора: в процессе работы с данным генератором, он периодически совершенствовался, номиналы схемы уточнялись. В связи с чем генератор претерпел два апгрейда. Представим все версии генератора по порядку. Первая версия, собранная сразу, отличалась тем, что не имела "на борту" источника питания.





В процессе эксплуатации выяснилось, что такой большой конденсатор не нужен. Конденсаторы были установлены непосредственно на плату генератора вместе со стабилизатором напряжения. На общее основание интегрированы трансформатор и тумблер по питанию.





Совсем недавно, с целью расширить доступный диапазон охватываемых частот, был произведён очередной апгрейд, и интегрирован в схему дополнительный переключатель для оперативной смены конденсатора во времязадающей цепочке, о чём будет подробнее рассказано ниже.



Версия 3.0. (2009 год) расширен доступный частотный диапазон




Описание схемы: микросхема TL494 может работать как в однотактном режиме (именно так она изображена на схеме выше), так и в двухтактном, работая на две нагрузки попеременно. Как преобразовать схему в двухтактник я расскажу ниже, а сейчас рассмотрим однотактную схему.

Однотактная схема характеризуется прежде всего тем, что скважность сигнала мы можем изменять от нуля до 100% (канал всегда открыт). Задающая цепочка скважности находится на 2 ноге микросхемы. Старайтесь выдержать указанные номиналы: 20К - подстроечный резистор и 12К ограничивающий. Конденсатор между 2 и 4 ногами микросхемы номиналом 0,1мкФ.

Частотный диапазон регулируется двумя элементами: во первых цепочкой резисторов на 6 ноге микросхемы, во вторых ёмкостью конденсатора на 5 ноге. Резисторы устанавливаем: 330К - подстроечный и 2,2К постоянный. Далее смотрим на график, который я привёл в начале. Номиналами резисторов мы ограничили графики по горизонтали. Слева и справа. Для конденсатора на 5 ноге ёмкостью 1000пФ = 1нФ = 0,001мкФ (верхняя прямая на графике) получаемый частотный диапазон от 4КГц до предела микросхемы (реально это 150..200КГц, но потенциально до 470КГц, правда такие частоты достаются не такими методами). В последнем апгрейде генератора в схему был введён переключатель, подменяющий времязадающий конденсатор на 5 ноге микросхемы с номинала 1000пФ на другой, номиналом 100нФ = 0,1мкФ, что даёт возможность перекрывать нижний диапазон частот (вторая снизу прямая на графике). Второй диапазон получается такой: от 40Гц до 5КГц. В итоге мы получили генератор, который перекрывает диапазон от 40Гц до 200КГц.

Теперь пару слов о выходном каскаде, которым мы управляем. В качестве ключа вы можете использовать любой из трёх ключей (полевых транзисторов), в зависимости от необходимых параметров на нагрузке. Вот они: IRF540 (28А, 100В), IRF640 (18А, 200В) и IRF840 (8А, 500В). Ножки у всех трёх пронумерованы одинаково. Для более резкого заднего фронта стоит транзистор КТ6115А. Роль этого транзистора резко сажать потенциал затвора полевика на минус. Диод и резистор номиналом 1К являются обвязкой этого дополнительного транзистора (дравера). Резистор 10 Ом на затворе непосредственно устраняет возможный высокочастотный звон. Также в целях борьбы со звоном рекомендую на затворную ножку полевика надеть малюсенькое ферритовое колечко.

При необходимости схему можно переделать в двухтактную и качать две нагрузки попеременно. Основные отличия двухтактного режима - это, во первых, снижение выходной частоты на каждом канале в два раза от расчётной, и во вторых, скважность сигнала в каждом канале теперь будет регулироваться от 0 до 50%. Чтобы перевести схему в двухтактный режим необходимо подать на 8 ногу микросхемы положительное питание (как на 11 ноге). Также необходимо соединить 13 ногу с 14 и 15. Соответственно на выход 9 ноги повесить аналогичный выходной каскад, как мы видим на 10 ножке микросхемы.

На последок отмечу, что микросхема TL494 работает от диапазона питания от 7 до 41В. Менее 7 Вольт подавать нельзя, - она банально не запустится. Ключевым транзисторам указанного типа вполне хватает питания в 9 Вольт. Лучше сделать 12В, ещё лучше 15В (будет открываться быстрее, то есть передний фронт будет короче). Если не найдёте КТ6115А, можно заменить его другим, менее мощным транзистором КТ685Д (или вообще любой буквы). Ножки 685 транзистора, если он лежит к вам лицом, - слева направо: К, Б, Э. Желаю удачных экспериментов!

Генератор импульсов используется для лабораторных исследований при разработке и наладке электронных устройств. Генератор работает в диапазоне напряжений от 7 до 41 вольта ивысокой нагрузочной способностью зависящей от выходного транзистора. Амплитуда выходных импульсов может быть равна значению питающего напряжения микросхемы, вплоть до предельного значения напряжения питания этой микросхемы +41 В. Его основа - известная всем , часто используемая в .



Аналогами TL494 являются микросхемы KA7500 и её отечественный клон - КР1114ЕУ4 .

Предельные значения параметров:

Напряжение питания 41В
Входное напряжениеусилителя (Vcc+0.3)В
Выходное напряжение коллектора 41В
Выходной ток коллектора 250мА
Общая мощность рассеивания в непрерывном режиме 1Вт
Рабочий диапазон температур окружающей среды:
-c суффиксом L -25..85С
-с суффиксом С.0..70С
Диапазон температур хранения -65…+150С

Принципиальная схема устройства



Схема генератора прямоугольных импульсов

Печатная плата генератора на TL494 и другие файлы находятся в отдельном .


Регулировка частоты осуществляется переключателем S2 (грубо) и резистором RV1 (плавно), скважность регулируется резистором RV2. Переключатель SA1 изменяет режимы работы генератора с синфазного (однотактный) на противофазный (двухтактный). Резистором R3 подбирается наиболее оптимальный перекрываемый диапазон частот, диапазон регулировки скважности можно подобрать резисторами R1, R2.


Детали генератора импульсов

Конденсаторы С1-С4 времязадающей цепи выбираются под необходимый частотный диапазон и емкость их может быть от 10 микрофарад для инфранизкого поддиапазона до 1000 пикофарад - для наиболее высокочастотного.

При ограничении среднего тока в 200 мА схема способна достаточно быстро зарядить затвор, но
разрядить его выключенным транзистором невозможно. Разряжать затвор с помощью заземленного резистора – также неудовлетворительно медленно. Для этих целей применяется независимый комплементарный повторитель.


  • Читайте: "Как сделать из компьютерного".
Транзисторы подбираются любые ВЧ с небольшим напряжением насыщения и достаточным запасом по току. Например КТ972+973. В случае отсутствия нужды в мощных выходах, комплементарный повторитель можно исключить. За неимением второго построечного резистора на 20 kOm, были применены два постоянных резистора на 10 kOm, обеспечивающих скважность в пределах 50%. Автор проекта - Александр Терентьев.

Полазив по интернету, я не нашел ни одной схемы регулятора напряжения и самое главное тока - на современной элементной базе. Все они

были либо аналоговыми, либо с биполярными транзисторами, в ключевом включении. Я опробовал одну из них.

Тока более 2,5 ампер, без значительного нагрева транзистора КТ818, я не получил. При попытке снять около 4 ампер - сгорел транзистор и диод шотки. Надо уточнить - они были без радиаторов. Что, впрочем, не меняет ситуации. Задумавшись, как применить в этом включении P -канальный полевик - наткнулся на описание его работы. Тепловыделение, за счет большого сопротивления на открытом переходе, слишком большое - о хорошем кпд можно было забыть. Решено было использовать N -канальные полевики управляемые драйвером верхнего ключа .

Схема хоть и рабочая и обладает хорошим КПД все же не лишена была недостатков. Он касался использования ее в зарядке аккумуляторов. Связаны они были с тем что нижний ключ всегда открыт когда закрыт верхний. Если энергия дросселя иссякнет - ток от аккумулятора пойдет через дроссель в обратном направлении и сожжет нижний ключ. Верхний же сгорит при открытии на короткозамкнутый нижний.

Решено было отказаться от синхронного ключа и использовать по старинке мощный диод шотки.

В результате долгих поисков, проб и ошибок, горелых микросхем и полевиков была рождена вот такя схема


Основные характеристики.

1. Работает стабильно.

2. Отлично держит ток и напряжение.

3. Имеет КПД около 90 процентов. Иногда до 94!

4. Все детали валяются на свалке.

5. Практически не нуждается в настройке.

6. Очень простая и повторяемая.

7. Ток регулируется от нуля до сколько захочет пользователь.

8. Напряжение регулируется от 2.5В.

Из особенностей.

Контроль выходного тока осуществляется шунтом.


Его сопротивление около 0,01 ома. Тепловыделение на нем относительно не большое. Ток регулируется в широких пределах. От 0 ампер.... до сколько позволят ключ диод и дроссель. Максимальный предел регулировки тока (и короткого замыкания) задается резистором R6. Сразу оговорюсь ниже 4 ампер устанавливать не советую. Особенностью контроля тока является использование "вольтодобавки шунта" реализованное на диоде D4. Это позволяет TLке корректно работать околонулевыми токами и выставлять(резистором R9) ток короткого замыкания.... скажем в 1мА. Диод D5 служит для термостабилизации цепи контроля тока.

Шунтом изначально являлся отрезок медной проволоки длиной около 4,5см и диаметром 0,4мм. Так как медь очень нетермостабильна и при нагреве ток уплывал решено было расковырять китайский мультиметр. Шунт вытащеный оттуда был укорочен вполовину и впаян в плату.

Дроссель



был намотан на желто-белом колечке из компьютерного БП. Содержит около 24 витков провода диаметром 2 мм. Провод был смотан из трансформатора компьютерного UPS.


Только с таким проводом удалось избавиться от излишнего нагрева дросселя на токах свыше 5А.

Изюминкой является трансформаторный драйвер ключа. За него спасибо LiveMaker с сайта Микросмарт . Изготавливается из почти любого ферритового колечка. В идеале - марки 2000 от 2 см в диаметре. Колечко снятое с провода импульсного фильтра тоже работает (хотя и наблюдается почти неуловимый его нагрев). У меня уже две платы работают на колечках которые были сняты со жгутов проводов соединяющих платы копировальной техники. Единственный и пока не приведший к негативным последствиям минус - выбросы на границах трапеций переключающих сигналов. Они не большие(2-3В) и не влияют на работоспособность устройства. Ничего сложного в намотке нет. Мотается на глазок виток к витку. Постараться равномерно распределить витки двух катушек по кольцу. Первичная обмотка содержит 9 витков провода. Вторичная - 27 витков провода. Мотаю одной жилой обычной витой пары. Напряжение на затворе ограничивается двумя стабилитронами на 12-15 вольт. Драйвер без труда качает полевик IRF3205. Фронт у импульсов на затворе - около 168nS.

В качестве обратного диода использован мощный диод шотки из компьютерного БП. Он вместе с полевым транзистором через изолирующие прокладки сидит на радиаторе от CPU компьютера.


Вытравил и потестировал ее. Обратите внимание - резисторы R14 и R12 - на самом деле состоят из резистора и конденсатора. Просто переразводить лень.

Из - за того что на режимы регулировки тока очень влияет сопротивление шунта - блок нуждается в первичной подстройке. Заключается она в установке нужного сопротивления R6. Необходимо подобрать такое сопротивление чтобы при повороте ручки регулировки тока (R9) схема выдавала нужный вам максимальный ток (4-20А). Если максимально выдаваемый ток необходимо часто изменять то можно поставить вместо постоянного переменный резистор. Место и контакты на плате для этого есть.

В планах поменять линейный стабилизатор LM7815 на импульсный MC34063 потому что LM7815 очень греется при питающих напряжениях выше 24В, снижая КПД.

Фотографии. Уж очень побита паяльными испытаниями.





Собрал себе для зарядки и тестирования щелочных аккумуляторов блок питания. Из дохлых блоков питания PC. Максимальный ток (я решил что пока мне такого тока хватит) - 20А. Использую как правило до 10А, 18В. Итого - 180 Ватт. С средненьким обдувом. Работает уже неделю круглосуточно.

  • < Назад
  • Вперёд >

Комментарии

1 2 3 4 5 6 7 8 9 10 11 »

0 #203 Михаил 19.04.2017 22:46

Вобщем, заметил что даже при рабочей lm-ке при максимальном заполнении стабилитроны немного грелись (градусов до 50). Перемотал трансформатор затвора (витки 15 к 35) нагрев ушел, стабилизатор работает, пока полет нормальный) Автору спасибо за схему и за советы!
Колечко которое я использовал снято то ли с монитора то ли с принтера (со жгута проводов) уже не помню, но по размеру побольше чем то что в статье на фотографии.

0 #202 Super User 17.04.2017 22:45

Ну если думать логически - то 7815 может убить либо превышение входного напряжения, либо превышение выходного тока. Превысить входное напряжение при питающем в 27 вольт нам никак не получится(если печать строго по моей схеме). Остается превышение выходного тока. Вы сами указали что пробой наблюдался при максимальных напряжениях или токах. Это значит, что заполнение импульсов было максимальным. Может сердечник(неподходящих габаритов или материала) на малых Кзап чувствует себя нормально а когда заполнение увеличивается - происходит насыщение сердечника и резкое увеличение тока. Хотя мне такое не доводилось наблюдать. Выкладывайте фото печаток в хорошем качестве.На форуме можно загружать фотографии.

0 #201 Михаил 15.04.2017 09:24

Уже четвертый раз пробивается линейный стабилизатор. Не могу понять в чем причина, убил уже две lm7815, и две lm317t, симптомы всегда одни и теже, сначала все работает нормально, через время замечаю что когда выставляю макс напряжение или ток начинают дымиться стабилитроны в цепи затвора. Меряю напряжение питания tl494 и вижу что оно равно входному 25вольт, а стабилизатор пробит насквозь, меняю его и через время все по новой.
Входное напряжение 25-27 вольт, lm-ка не перегревается, стоит на радиаторе.