Сварочный трансформатор из статора электродвигателя. Самодельный сварочный аппарат из электродвигателя

Конструированием сварочных трансформаторов я занимаюсь давно, так что опыт в этом деле есть. Хочу предложить читателям мою последнюю - как кажется, самую удачную - разработку сварочного аппарата не совсем обычной конструкции.

Своеобразие этого устройства в том, что сердечник для трансформатора представляет собой статор отслужившего свой срок асинхронного двигателя. Выбор сердечника определяется площадью поперечного сечения статора - она должна быть не менее 20 см 2 . Если, такое условие выполняется, подойдет статор от любого асинхронного двигателя. Ну а площадь поперечного сечения определяется так, как это показано на рисунке.

Упомяну, что наиболее рациональная величина сечения статора-сердечника лежит между величинами 20 см 2 и 50 см 2 . В принципе, подойдут и сердечники с площадью меньше 20 см 2 , однако при этом придется уменьшать сечение провода в первичной и вторичной обмотках трансформатора, что значительно уменьшит мощность аппарата и сузит его возможности. Ну а использование сердечников с площадью сечения более 50 см 2 также нерационально: трансформатор на его базе получается неоправданно громоздким и тяжелым, и это тоже не является достоинством портативного сварочного аппарата.

Извлечь статор из станины двигателя не слишком сложно. Для этого следует воспользоваться ножовкой по металлу и небольшой кувалдой. Для начала с двигателя снимаются передняя и задняя крышки вместе с якорем. Затем ножовкой надо сделать пару пропилов таким образом, как это показано на рисунке. Пропил нужен максимально глубокий, однако старайтесь при этом не повредить статор. Знайте только: чем глубже будет пропил - тем легче и без повреждений удастся извлечь статор из корпуса.

Теперь хорошенько ударьте кувалдой рядом с одним и другим пропилами. Как правило, хватает нескольких ударов, чтобы корпус развалился и статор с обмотками оказался освобожденным от него.

Обмотку сгоревших двигателей использовать, как правило, бывает невозможно, так что ее придется удалить с помощью плоскогубцев и ножниц для резки металла.

Освободив статор от обмотки, вы получите заготовку сердечника сварочного трансформатора. Надо только удалить перемычки пазов под обмотки - и вы получите готовый сердечник. Для этого используются обычное зубило и молоток. Удобнее всего удалять перемычки сначала с одного торца, а затем с другого. Предупреждаю, что работать надо в защитных очках, в изолированном помещении. Проследите также, чтобы поблизости не оказалось бьющихся предметов. Срубать зубья старайтесь как можно ближе к основанию и желательно поровнее.

а - высота поперечного сечения сердечника, б - ширина поперечного сечения сердечника, S - площадь поперечного сечения сердечника.

1 - статор (сердечник трансформатора), 2 - изолента, 3 - челнок с изолентой.

После удаления зубьев сердечник обматывается хлопчатобумажной изоляционной лентой - это обезопасит первый спой обмотки от пробоя на корпус. Изоляцию удобно наматывать с помощью специального челнока, вырезанного из фанеры, как это показано на рисунке. Кстати, такой же челнок понадобится вам и для намотки провода на сердечник.

Первичная обмотка трансформатора лучше всего получается из проволоки в хлопчатобумажной изоляции. Сечение ее можно подобрать в соответствии с таблицей 1. Для вторичной обмотки подойдет стандартная «жила» в резиновой изоляции - такие используются в силовых кабелях.

Таблица 1

В таблице 1 используются следующие обозначения:

S 1 -площадьпоперечногосечения первичной обмотки;

S-площадьпоперечногосечения сердечника, равная произведению высоты сердечника на его толщину;

W 1 - число витков первичной обмотки трансформатора;

W 2 - число витков вторичной обмотки трансформатора;

S 2 -площадьпоперечногосечения вторичной обмотки трансформатора;

W 3 - дополнительная обмотка, наматывается той же проволокой, что и первичная обмотка W, служит для регулировки сварочного тока.

Дополнительная обмотка W может иметь от двух до пяти дополнительных отводов, но, в принципе, можно обойтись и без нее, оставив только единственную обмотку W. При этом, правда, несколько ухудшится экономичность сварочного аппарата.

1, 2 - силовые кабели, 3 - основание трансформатора, 4 - гайка, 5 - резьбовая шпилька, 6 - сердечник трансформатора, 7 - обмотки, 8 – винт крепления верхней панели, 9 - верхняя панель, 10 - замыкатель (сетевая розетка), 11 - перемычка (сетевая вилка с перемычкой), 12 - сетевой шнур, 13 - вилка сварочного аппарата.

Как видно из схемы трансформатора, сварочный ток регулируется с помощью замыкателя SА1. Для этого на панели прибора закрепляются несколько обычных сетевых розеток - их количество выбирается в зависимости от числа выводов дополнительной обмотки. Замыкателем же служит сетевая вилка, у которой ножки разъема соединены между собой одножильным проводом, диаметр которого составляет 1/4 диаметра провода первичной обмотки. Это дает возможность использовать замыкатель в качестве плавкого предохранителя, который срабатывает при нежелательных перегрузках.

Хотелось бы предупредить тех, кому не удастся достать провод для первичной обмотки подходящего сечения, что это не причина для того, чтобы вовсе не браться за создание сварочного аппарата. Вполне можно подобрать несколько проводов таким образом, чтобы их суммарное сечение было бы не меньше рекомендованного для W. В принципе, можно даже использовать неизолированную проволоку, обмотав ее самостоятельно хлопчатобумажной изоляционной лентой. Точно так же можно подбирать проволоку и для вторичной обмотки. Кстати, именно так и пришлось поступить мне при изготовлении своего сварочного аппарата. При этом для изолирования проволоки потребовалось десять мотков узкой хлопчатобумажной изоленты, которую вполне можно приобрести в хозяйственных магазинах или в магазинах электротоваров.

Хотелось бы предупредить, что после намотки первичной обмотки не следует сразу же заполнять и вторичную - сначала надо ее проверить. Для этого первичная обмотка подключается к сети через плавкий предохранитель, в качестве которого используется отрезок медной проволоки диаметром 0,1…0,15 мм. Если обмотка не гудит и не греется, это означает, что работу вы выполнили качественно и можете приступать к намотке вторичной обмотки. Если же предохранитель сгорает - это явный признак короткозамкнутого витка. Из этого следует, что первичную обмотку придется наматывать заново, обращая особое внимание на качество изоляции проволоки. Ну а если обмотка не греется, но прослушивается довольно громкое гудение, то это означает, что вы ошиблись при подсчете витков и у вас оказалось меньше, чем рекомендует таблица 1. В этом случае надо подмотать еще несколько витков и повторить проверку.

Для того чтобы сварочный аппарат был универсальным, на вторичной обмотке необходимо сделать отвод от третьей части витков и подключить через него трансформатор к мощному диодному выпрямителю - таким образом получается «пускач» для автомобиля, который особенно удобно использовать в холодное время года, что существенно продлит жизнь аккумулятору вашего автомобиля.

Учтите, что использование в выпрямителе мощных диодов с прямым током не меньше 200 А позволит вам сваривать детали дугой постоянного тока - это дает лучшее зажигание дуги и более ровный шов. Если же величина прямого тока диодов лежит в промежутке от 50 до 200 А, то в этом случае получается устройство для сварки переменным током и для запуска автомобиля выпрямленным током.

Учтите, что правильно собранный трансформатор не требует никакой настройки и сразу же после сборки готов к работе. Разумеется, при выполнении сварочных работ необходимо соблюдать все меры предосторожности, рекомендуемые при работах с электроприборами. В частности, запрещается касаться токоведущих участков; все переключения режимов работы сварочного аппарата необходимо производить только при отключении его от сети. Сварочные работы следует вести в специальной маске и в спецодежде, не допуская попадания брызг раскаленного металла и светового излучения на открытые участки тела.

Если вам в процессе работы встретятся какие-либо трудности, охотно поделюсь своим опытом, отвечу на любые вопросы по конструкции моего сварочного аппарата и по его работе.

Мой адрес: 654000, г. Новокузнецк Кемеровской обл., ул. Кирова, д. 10-а, кв. 3.

Василий ДРУЖИНИН, инженер

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter , чтобы сообщить нам.

Конструкция предлагаемого сварочного аппарата «сухая» - сделанная на основе статора от электродвигателя. Убедился: лучше всего использовать соответствующий магнитопровод от асинхронной трёхфазной машины мощностью 4-5 кВт. Высвободить такой статор из корпусной оболочки проще всего кувалдой или увесистым молотком, ударяя по самым слабым местам.

Далее удаляется обмотка. Причём - в два приёма. Сначала убирают её с какой-нибудь одной стороны, воспользовавшись ножовкой по металлу. Хотя вполне можно применить для этой же цели молоток со стамеской, направляя силу удара по касательной к диаметру статора. Ну а затем уже, зайдя с противоположной стороны, начинают пассатижами вытаскивать отрезки «наполовину разлохмаченных» проводов из пазов. Освобождающийся от обмотки магнитопровод и станет тороидальным сердечником сварочного трансформатора.

Рис.1. Сварочный трансформатор с магнитопроводом из статора сгоревшего электродвигателя (изоляция между обмотками, их слоями, а также магнитопроводом условно не показана):

1 - ножка-амортизатор (от флаконов с бытовой химией, резина, 6 шт.), 2 - стенка-корпус (10-мм термостойкий листовой изолятор, 2 шт.), 3 - клемма-стяжка (болт М8 из меди или латуни, 6 шт.), 4 - гайка М8 (из меди или латуни, 18 шт.), 5 - шайба медная (28 шт.), 6 - кабель силовой одножильный сечением 20 мм2 (2 шт.), 7 - гайка-барашек М8 (2 шт.), 8 - отвод (отрезок провода электрического многожильного сечением 20 мм2 в хлопчатобумажной изоляции, 4 шт.), 9 - магнитопровод с сечением a x b (из статора сгоревшего электродвигателя), 10 - кабель сетевой двухжильный, 11 - вывод вторичной обмотки трансформатора (2 шт.).

Как показывает практика, при выборе «пакета железа» для него надо стремиться к тому, чтобы размер «а» статора-заготовки находился бы в пределах 30...40 мм. Тогда для получения оптимального сечения в 20...25 см2 придётся расчленить наш исходный тор на 2-3 части, чтобы размер «в» оказался равным 50...80 мм. Лучше это сделать ножовкой по металлу, пропилив наружные литые стяжки в пазах (обычно их 8). Затем, удалив «попорченные» 3...4 листа «статорного железа», расклёпывают стяжки, скрепляя тем самым каждый из будущих тороидальных сердечников. А вот дуговой резкой-сваркой здесь увлекаться не следует, так как возникающие в этих местах вихревые токи Фуко ведут к разогреву магнитопровода и существенно снижают эффективность работы трансформатора.

Рис.2. Заточка зубила-крейцмейселя.

Внутренние зубцы - полюса статора - выбираются зубилом-крейцмейселем с особой заточкой (см. рис.). Естественно, не следует при этом пренебрегать правилами техники безопасности. Обязательно надо использовать очки и рукавицы. Зубило лучше всего держать пассатижами, а не руками.

Ни в коем случае нельзя срезать зубцы электро- или газосваркой. Ведь в магнитопроводе при работе трансформатора опять-таки возникнут токи Фуко. Поэтому лучше всего воспользоваться здесь «дедовским методом» с зубилом и молотком массой в 1 кг. А остающиеся после вырубки зубцов неровности целесообразно убрать шлифовкой с помощью абразивного круга. Готовый магнитопровод-тор обматывается киперной или другой изоляционной лентой на тканевой основе.
Теперь дело за первичной обмоткой. Количество витков в ней с приемлемой для практики точностью можно найти, умножив значение напряжения в сети на частное от деления «40» на площадь поперечного сечения (в см2) сердечника трансформатора. В нашем случае этот коэффициент, характеризующий расчётное число витков на 1 В, равен двум.

Таким образом для сетевой (первичной) обмотки предлагаемого мной «сварочника» потребуется всего лишь 440 витков. Причём лучше всего использовать здесь медный провод сечением 2...3 мм2 (диаметром 1,6...2 мм) в стеклотканевой изоляции. Слои первичной обмотки тщательно изолируются друг от друга. Как, впрочем, и слои вторичной, число витков в которой, исходя из требуемого напряжения (56 В) и вышеназванного коэффициента (2), должно быть равно 112, а сечение - 10...30 мм2. Обмоточные провода можно взять из старых электродвигателей с фазным ротором мощностью 3...6 кВт. Я, например, использовал именно от них провод с стеклотканевой изоляцией (сечение - 3 мм2) для первичной обмотки. Кстати, из этих же электродвигателей можно заимствовать и шинопровод сечением 18 мм для вторичной обмотки сварочного трансформатора. Тем более что всё это - из чистейшей меди.
Естественно, для намотки «сварочника» можно довольствоваться и алюминием. Но тогда размер сечения каждой из обмоток увеличивается в 1,65 раза. Например, для первичной потребуется провод уже не менее 3,3...5 мм2. Помня об этом, я в одном из вариантов сварочных трансформаторов был вынужден использовать двужильный алюминиевый провод - «лапшу» с сечением 2x2,5 мм2 (диаметр одной жилы у него составляет почти 1,9 мм).

Сколько надо взять провода для той или иной обмотки? Определить это, как говорится, проще простого. Измерив расход провода на 1 виток обмотки (см. рис.), надо данную величину помножить на расчётное число витков обмотки. Но взять (учитывая толщину изоляции и пр.) с трёхпроцентным запасом (для первичной) или шестипроцентным (для вторичной обмотки).

В своих «сварочниках» предусматриваю 5 ступеней регулировки (до максимума в 56 В), делая отводы во вторичной обмотке, рассчитанные на напряжения 32 В, 38 В, 44 В и 50 В. При переходе на витки это, соответственно, будут 64, 76, 88 и 100. Отводы предпочитаю выполнять путём подмотки отрезков гибкого провода сечением не менее 10 мм2.

Найти точные места выводов во вторичной обмотке проще всего экспериментально, методом «проб и ошибок». Особенно если её намотка «рыхлая», да ещё и велась гибким проводом. Тогда смело включают трансформатор в сеть и условно, приняв первый вывод вторичной обмотки за «общий», протыкают изоляцию щупом-иглой то в одном, то в другом месте. А найдя таким образом напряжения 32 В, 38 В, 44 В, 50 В, маркируют их. Если же вторичная обмотка намотана шинопроводом, то придётся-таки ограничиться «расчётным» методом. То есть заранее определять, на каком витке будет выполнен тот или иной отвод, умножая вышеназванный коэффициент (2) на требуемое число вольт.

Готовому трансформатору придают удобную и надёжную с точки зрения пользователей форму. Для этого вырезают два квадрата из 10-мм фанеры. А ещё лучше - из стеклотекстолита или другого термостойкого изолятора. В середине высверливают 30-мм круг для вентиляции (см. рис.), а симметрично ему и по углам - семь 8-мм отверстий для прохода клемм-стяжек и сетевого провода.
Корпус, по сути, готов. Ну а остальное, думаю, ясно из иллюстраций, которые здесь приводятся. Убеждён: сделать себе добротный сварочный трансформатор по изложенной выше методике сможет любой желающий.

В предлагаемом сварочном во вторичной обмотке сделаны выводы с шагом в 6 В. Используя же принцип автотрансформатора, можно иметь на выходе целую «гамму» напряжений: от 6 до 56 В. В частности, используя выводы 56 В и 50 В, легко получить разностное напряжение 6 В. Выводы 44 В и 56 В позволяют иметь на выходе 12 В. Подключив, например, к такому трансформатору выпрямитель на 200 А, можно смело запускать стартер двигателя.

Да, «сварочник» действительно выдает до 200 А во вторичной обмотке. А это значит, что можно уже использовать электроды диаметром 2...5 мм! Будучи сделанным по предлагаемой технологии, сварочный трансформатор имеет небольшие габариты (в пределах 350x350x200 мм) и поистине минимальную массу (до 25 кг).

Практическая электроника

Б. АНДРЕЕВ, 15 лет, г. Заинск Татарстан
Радио 2002 год, № 7

При изготовлении различных радиолюбительских конструкций из журнала "Радио" нередко требуется сетевой трансформатор питания. Однако при подборе подходящего магнитопровода могут быть проблемы. Я использую магнитопроводы статоров старых электродвигателей, на которых можно намотать тороидальный трансформатор мощностью от 30 до 1000 Вт.

Пазы с внутренней стороны цилиндрического статора электродвигателя 1 (см. рисунок ) я не удаляю, а обматываю лако-тканью все кольцо и каждый зуб в отдельности. Затем в пазы укладываю витки 2 первичной обмотки I, предварительно разделив общее число витков на число пазов. Если все витки в пазах не умещаются, то поверх заполненных пазов укладываю дополнительный слой изоляции и доматываю оставшиеся витки первичной обмотки.

Затем укладываю два-три слоя лакоткани 4 или хлопчатобумажной изоляционной ленты и наматываю вторичную обмотку 3 так, как обычно и наматываются тороидальные трансформаторы. Каждую обмотку я пропитываю маслом, взятым из высоковольтного бумажного конденсатора (например, 4 мкФ на 600 В от лампы дневного света) или расплавленным парафином от свечки.

Перед намоткой вторичной обмотки полезно уточнить число витков на вольт, поскольку при намотке первичной обмотки возможны ошибки в подсчете числа витков. Для этого наматывается пробная вторичная обмотка из 10 или 15 витков любого провода и измеряется напряжение на ней. Затем, поделив 10 (или соответственно 15) на измеренное напряжение, рассчитывают число витков на вольт, а затем и число витков вторичной обмотки на требуемое напряжение. В формуле для расчета числа витков на вольт, которая в упрощенном виде записывается так: n = 45/S, где S - сечение магнитопровода в см 2 , я беру коэффициент не 45, а 65, при этом практически отпадает необходимость увеличивать число витков вторичной обмотки на 10...20%, как это обычно рекомендуется, трансформаторы не греются, не гудят и, вообще, работают лучше. Это проверено мною на практике.

Из статора одного электродвигателя можно изготовить магнитопроводы различной толщины для нескольких трансформаторов небольшой мощности, если разделить статор на части по склейкам между штампованными пластинами. Так были сделаны трансформаторы для лабораторного блока питания, зарядного устройства и музыкального звонка, описанные в "Радио".

От редакции. Автор заметки интуитивно и опытным путем пришел к совершенно правильному выводу о необходимости увеличения коэффициента в формуле для расчета числа витков на вольт. При этом уменьшаются индукция в магнитопроводе, он перестает заходить в насыщение на пиках синусоидального напряжения сети, отчего резко снижается ток холостого хода, уменьшается поле рассеяния и "гудение" трансформатора. Статью е подробным описанием происходящих явлений наш журнал опубликовал еще за три года до рождения автора (Поляков В. "Уменьшение поля рассеяния трансформатора" в

Для изготовления сварочного трансформатора можно использовать статор от асинхронного двигателя. Размер сердечника определяется в данном случае площадью поперечного сечения статора, которая должна быть не меньше 20 см 2 . Если, это условие выполнено, то подойдет любой статор. Площадь поперечного сечения определяется так, как это показано на рисунке немного ниже.


Наиболее рациональная величина сечения статора-сердечника находится в диапазоне 20 см 2 - 50 см 2 . Можно использовать сердечник с площадью меньше 20 см 2 , но при этом необходимо уменьшать сечение провода в обмотках, а это повечет к заметному уменьшению мощность аппарата и сузит его параметры. Использовать сердечники с площадью сечения более 50 см 2 также нестоит, так как аппарат получится слишком тяжелым и громоздким.


Сварочный трансформатор принципиальная схема вклчения

Как видно из схемы, сварочный ток регулируется с помощью SА1. Для этого на панели аппарата закрепляются несколько обычных сетевых розеток по числу выводов дополнительной обмотки. Замыкателем же является сетевая вилка, у которой ножки разъема скручены между собой одножильным проводом, диаметр которого 1/4 диаметра провода первичной обмотки. Это дает возможность использовать проволку в роли предохранителя, который сгорит при возможных перегрузках.

Помните, что использование в выпрямителе мощных диодов с прямым от 200 А дает возможность сваривать детали дугой постоянного тока это обеспечивает лучшее зажигание дуги и более аккуратный шов.

Сварочный трансформатор если правильно собран, то не требует никакой настройки и сразу же готов к работе.

Помните, что сварочные работы следует проводить в специальной маске и в спецодежде, исключающей попадание брызг расплавленного металла и светового спектра на открытые участки тела человека.

Сварочный трансформатор на магнитопроводе от Латров

Распространенным материалом для изготовления самодельных СТ являются сгоревшие ЛАТРы. Те, кто имел с ними дело, хорошо знают, что это такое. Как правило, все ЛАТРы имеют примерно одинаковый внешний вид: хорошо вентилируемый жестяной корпус круглой формы с жестяной или эбонитовой лицевой крышкой со шкалой от 0 до 250 В и вращающейся рукояткой.

Внутри корпуса размещен тороидальный автотра-тор, построенный на магнитопроводе большого сечения. Именно этот сердечник понадобится от ЛАТРа для изготовления нового СТ. Обычно используются 2 одинаковых кольца-магнитопровода от крупных ЛАТРов.

  • 1.5. Пожарная опасность комплектующих элементов электротехнических устройств
  • Глава 2
  • Нормативная оценка классов взрыво- и пожароопасных зон и их размеров
  • Аналитическая оценка классов взрыво- и пожароопасных зон и их размеров
  • 2.2. Классификация взрывоопасных смесей по группам и категориям
  • 2.3. Взрывозащищенное электрооборудование Классификация взрывозащищенного электрооборудования
  • Электрооборудование взрывозащищенное с видом взрывозащиты «взрывонепроницаемая оболочка»
  • Электрооборудование взрывозащищенное с защитой вида «е» (повышенной надежности против взрыва)
  • Электрооборудование взрывозащищенное с видом взрывозащиты «искробезопасная электрическая цепь»
  • Электрооборудование взрывозащищенное с видом взрывозащиты «масляное заполнение оболочки с токоведущими частями»
  • Электрооборудование взрывозащищенное с видом взрывозащиты «заполнение или продувка оболочки под избыточным давлением»
  • Электрооборудование взрывозащищенное с видом взрывозащиты «кварцевое заполнение оболочки»
  • Электрооборудование взрывозащищенное со специальным видом взрывозащиты
  • 2.4. Маркировка взрывозащищенного электрооборудования
  • 2.5. Зарубежное взрывозащищенное электрооборудование
  • 2.6. Особенности выбора, монтажа, эксплуатации и ремонта взрывозащищенного электрооборудования
  • 2.7. Особенности выбора, монтажа и эксплуатации электрооборудования пожароопасных зон и помещений с нормальной средой
  • 2.8. Контроль за противопожарным состоянием электроустановок
  • Глава 3 аппараты защиты в электроустановках
  • 3.1. Плавкие предохранители Принцип устройства и работы плавких предохранителей
  • Защитная характеристика предохранителя
  • Способы улучшения защитных характеристик предохранителей
  • Типы плавких предохранителей для установок напряжением до 1000 в
  • 3.2. Автоматические выключатели (автоматы)
  • Устройство и принцип работы небыстродействующих автоматов
  • Защитные характеристики автоматов
  • Типы установочных автоматов
  • 3.3. Тепловые реле
  • 3.4. Выбор аппаратов защиты
  • Требования к аппаратам защиты
  • Iср.Эл.М 1,25Iмакс;
  • Iкз (к) / Iн.Тепл 6;
  • Iкз (к) / Iн.Тепл 3.
  • Селективность (избирательность) действия аппаратов защиты
  • Выбор мест установки аппаратов защиты в зависимости от условий пожарной безопасности и технических условий
  • 3.5. Устройство защитного отключения (узо)
  • Глава 4 пожарная безопасность и методы расчета электрических сетей
  • 4.1. Нагрев проводников электрическим током
  • 4.2. Допустимая нагрузка на проводники по нагреву
  • 4.3. Пожарная опасность короткого замыкания в электрических сетях
  • 4.4. Противопожарная защита электрических сетей при проектировании
  • Расчет сетей по условиям нагрева. Выбор аппаратов защиты
  • Расчет сетей по потере напряжения
  • 4.5. Противопожарная защита электрических сетей при монтаже и эксплуатации
  • 4.6. Профилактика пожаров на вводах электрических сетей в здания и сооружения объектов агропромышленного комплекса
  • Глава 5 электродвигатели, трансформаторы и аппараты управления
  • 5.1. Общие сведения об электродвигателях
  • 5.2. Аварийные пожароопасные режимы работы электродвигателей
  • 5.3. Пожарная опасность трансформаторов
  • 5.4. Снижение пожароопасности электроизоляции обмоток элетродвигателей и трансформаторов
  • 5.5. Пожарная опасность электрических аппаратов управления
  • Глава 6 электроосветительные установки
  • 6.2. Осветительные приборы и светильники
  • 6.3. Системы и виды электрического освещения
  • 6.4. Расчет электрического освещения
  • 6.5. Пожарная опасность осветительных приборов
  • 6.6. Профилактика пожаров от осветительных приборов
  • Глава 7 заземление и зануление в электроустановках напряжением до 1000 в
  • 7.1. Опасность поражения электрическим током
  • 7.2. Заземление и зануление электроустановок как устройств электро- и пожарной безопасности
  • 7.3. Устройство заземлений и занулений
  • 7.4. Расчет заземляющих устройств
  • 7.5. Защитные заземления и зануления во взрывоопасных зонах
  • 7.6. Эксплуатация и испытания заземляющих устройств
  • Глава 8 молниезащита
  • 8.1. Молния и ее характеристики
  • 8.2. Пожаро- и взрывоопасность воздействия молнии
  • Воздействия прямого удара молнии
  • Вторичные воздействия молнии
  • 8.3. Классификация зданий и сооружений по устройству молниезащиты Категории молниезащиты
  • Обязательность устройства молниезащиты
  • Требования к устройствам молниезащиты
  • 8.4. Молниеотводы
  • Конструктивное выполнение молниеотводов
  • Зоны защиты молниеотводов
  • 8.5. Защита зданий и сооружений от прямых ударов молнии Защита зданий и сооружений I категории
  • Защита зданий и сооружений II категории
  • Защита взрывоопасных наружных технологических установок и открытых складов
  • Защита зданий и сооружений III категории
  • 8.6. Защита зданий и сооружений от вторичных воздействий молнии
  • 8.7. Эксплуатация устройств молниезащиты Испытания и приемка в эксплуатацию устройств молниезащиты
  • Контроль состояния и обслуживание устройств молниезащиты
  • Глава 9 защита взрывоопасных производств от разрядов статического электричества
  • 9.1. Общие представления об электризации
  • 9.2. Воспламеняющая способность искр статического электричества и его физиологическое воздействие на организм человека
  • 9.3. Приборы для измерения параметров статического электричества
  • 9.4. Способы устранения опасности статического электричества
  • Заземление
  • Уменьшение объемного и поверхностного удельных электрических сопротивлений
  • Ионизация воздуха
  • Дополнительные способы уменьшения опасности от статической электризации
  • 9.5. Эксплуатация устройств защиты от разрядов статического электричества
  • Глава 10 технико-экономическая эффективность решений противопожарной защиты электроустановок, молниезащиты и защиты от статического электричества
  • Приложения
  • Технические данные предохранителей
  • Технические данные автоматов серии а3100
  • Технические характеристики автоматов а3713б
  • Технические данные автоматов типа ап-50 с комбинированным расцепителем на переменный ток
  • Технические характеристики автоматов серии ва
  • Технические параметры однополюсных автоматов серии ае1000 и трехполюсных серии ае200
  • Технические данные магнитных пускателей серии пме и па
  • Допустимая потеря напряжения в осветительных и силовых сетях
  • Значение коэффициента с для определения (по упрощенной формуле) сечений проводников и потери напряжения в электропроводках
  • Коэффициенты использования вертикальных заземлителей ηв и горизонтальных соединительных полос ηг
  • Перечень стандартов на взрывозащищенное электрооборудование
  • Литература
  • 129366, Москва, ул. Б. Галушкина, 4
  • Глава 5 электродвигатели, трансформаторы и аппараты управления

    5.1. Общие сведения об электродвигателях

    Электродвигатель – машина, преобразующая электрическую энергию в механическую. В зависимости от рода потребляемого тока электродвигатели подразделяются на электродвигатели переменного и постоянного тока . Электродвигатели переменного тока делятся на асинхронные , синхронные и коллекторные .

    Асинхронный электродвигатель состоит из статора и ротора. Обмотки статора и ротора размещены в пазах их магнитопроводов. На роторе асинхронных электродвигателей располагается либо фазная, т.е. имеющая обычно столько же фаз, сколько и обмотка статора, либо короткозамкнутая. Короткозамкнутая обмотка ротора состоит из расположенных в его пазах замкнутых между собой по обеим сторонам ротора неизолированных стержней из проводникового материала. Она может быть также выполнена заливкой пазов алюминием. В зависимости от типа обмотки различают асинхронные двигатели с фазным и с короткозамкнутым ротором.

    Синхронные электродвигатели применяются в электроприводах, где требуется постоянная частота вращения, однако они имеют плохие пусковые свойства и для питания обмотки возбуждения требуется постоянный ток. Применяются на мощности свыше 600 кВт, на напряжение 6 и 10 кВ и как микродвигатели мощностью до 1 кВт. Многие серии и типы синхронных двигателей применяются для привода: компрессоров, мельниц, вентиляторов, резиносмесителей и грануляторов и т.д.

    Коллекторные электродвигатели переменного тока, в основном маломощные, используются для привода электрифицированного инструмента, бытовой техники, медицинского оборудования и т.п., т.е. в тех случаях, когда для их питания необходим однофазный и реже трехфазный переменный ток.

    Коллекторные электродвигатели постоянного тока более распространены в промышленности, что объясняется всевозрастающим применением статических выпрямителей, а также простотой и надежностью способа регулирования частоты вращения, большими пусковыми моментами и перегрузочной способностью, чем у двигателей переменного тока.

    Основными конструктивными элементами двигателей постоянного тока являются станина с закрепленными на ней главными и добавочными полюсами, вращающийся якорь с обмоткой и коллектором и щеточный аппарат.

    В настоящее время основной серией двигателей постоянного тока общего назначения является серия 2П. Исходя из требований современного электропровода создано новое поколение электродвигателей постоянного тока серии 4П. В новой серии реализована идея унификации двигателей постоянного тока с асинхронными двигателями серии 4А.

    Наиболее широко распространены в электроприводах асинхронные электродвигатели трехфазного переменного тока с короткозамкнутым ротором. Асинхронные электродвигатели потребляют около 60 % всей вырабатываемой электрической энергии. Асинхронные электродвигатели выпускаются в различном конструктивном исполнении в зависимости от назначения и условий применения. Обычной является конструкция электродвигателя для установки его в горизонтальном положении. Имеются конструктивные исполнения для расположения их вертикально. Такие двигатели, как правило, изготавливаются с фланцем для крепления к вертикальной стенке приводимого в движение механизма. Выпускаются электродвигатели во встраиваемом исполнении, которые монтируются внутри станка или другого приводимого в движение объекта и являются его неотъемлемой частью.

    В промышленности наиболее широко применяются асинхронные электродвигатели единой серии 4А, обладающие небольшой металлоемкостью и высокими механическими характеристиками.

    Серия 4А является массовой серией асинхронных двигателей, рассчитанных на применение в различных областях промышленности. Она охватывает диапазон номинальных мощностей от 0,06 до 400 кВт. Серия выпускается в основном модифицированном и специализированном исполнении.

    Двигатели в основном исполнении - это трехфазные двигатели с короткозамкнутым ротором, имеющие степень защиты I Р 44 или I Р 23.

    Модифицированные и специализированные исполнения асинхронных двигателей серии 4А выполнены на базе их основного исполнения, например: двигатели с повышенным пусковым моментом (4АР); повышенным номинальным скольжением (4АС), многоскоростные (со ступенчатым регулированием частоты вращения); с частотой питания 60 Гц; а также исполнений: тропического, химостойкого, сельскохозяйственного, влагоморозостойкого, пылезащищенного и рудничного.

    В серии 4А принята следующая система обозначений:

    х х х х х х х

    1 2 3 4 5 6 7 8 ,

    где 1 – наименование серии (4А); 2 – исполнение по способу защиты: буква Н – исполнение 23, отсутствие буквы означает исполнение 44; 3 – исполнение по материалу станины (статора) и щитов: А – станина и щиты алюминиевые, х – станина алюминиевая, щиты чугунные (или обратное сочетание материалов); отсутствие буквы – станина (статора) и щитов: А – станина и щиты алюминиевые, х – станина алюминиевая, щиты чугунные (или обратное сочетание материалов); отсутствие буквы – станина и щиты чугунные или стальные; 4 – высота оси вращения, мм (две или три цифры); 5 – установочный размер по длине станины: буквы S, M и L (меньший, средний или большой); 6 – длина сердечника: А – меньшая, В – большая при условии сохранения установочного размера; отсутствие буквы означает, что при данном установочном размере (S, M и L ) выполняется только одна длина сердечника; 7 – число полюсов (одна или две цифры); 8 – климатическое исполнение и категория размещения по ГОСТ 15150.

    Необходимо также учитывать климатические факторы, так как не всякое электрооборудование может надежно работать в различных климатических районах. Поэтому на все виды электрооборудования установлены требования, определяющие климатическое исполнение икатегорию размещения по ГОСТ15150 – 69, а также определены условия транспортирования, хранения и эксплуатации в части воздействия климатических факторов в отдельных микроклиматических районах.

    Оборудование и изделия, предназначенные для эксплуатации в одном или нескольких микроклиматических районах (например, на суше, реках, море), выпускают в следующих климатических исполнениях: У – умеренный, УХЛ – умеренный и холодный; ТВ – тропический влажный; ТС – тропический сухой; Т – тропический (сухой и влажный); О – общеклиматическое исполнение. Исполнения ТВ, ТС, Т могут быть обозначены общим термином – Т. Все эти исполнения могут обозначаться буквами латинского алфавита, принятыми в некоторых зарубежных странах: N , NF , TH , T , U соответственно вышеперечисленным исполнениям.

    Категории размещения оборудования и изделий при эксплуатации в воздушной среде обозначаются цифрами и могут иметь укрупненные (1, 2, 3, 4, 5) или дополнительные (1.1, 2.1, 3.1, 4.1, 4.2, 5.1) характеристики. Например: 1 – для эксплуатации на открытом воздухе (воздействие совокупности климатических факторов); 4 – для эксплуатации в помещениях (объемах) с искусственно регулируемыми климатическими условиями; 1.1 – для хранения в помещениях категории 4 и т.д.

    Буквы и цифры, обозначающие климатическое исполнение и категорию размещения, вводят в условное обозначение типа (марки) оборудования и изделие после всех обозначений, относящихся к их модификации, например взрывозащищенный электродвигатель серии В типа В200 – 4 в климатическом исполнении У с категорией размещения 2 – 5 обозначают: В200 – 4 У2 – 5.

    Электродвигатели серии 4АМ являются модернизацией серии 4А. Модернизация позволила снизить уровень шума, повысить значение некоторых основных параметров, уменьшить массу. Обозначение типов двигателей серии 4АМ аналогично обозначению серии 4А со степенью защиты I Р 44 и дополнено буквой М (модернизированный).

    Асинхронные двигатели общего назначения серии АИ являются новой унифицированной серией асинхронных двигателей, отвечающих перспективному уровню развития мирового электромашиностроения. Электродвигатели этой серии должны полностью заменить серию двигателей 4А, ее модификации и серию А4М.

    Двигатели серии АИ в отличие от серии 4А имеют: улучшенные пусковые характеристики, повышенные показатели надежности, улучшенные виброакустические характеристики, сниженный расход активных материалов, сниженную массу двигателя. Степень защиты электродвигателей серии АИ – I Р 44 и I Р 23.

    Структура обозначения типоразмеров асинхронных двигателей серии АИ аналогична серии 4А и отличается первыми тремя буквами: буквы АИ обозначают вид двигателя новой серии стран Интерэлектро.

    Значительно реже применяется модификация асинхронных электродвигателей с фазным ротором с трехфазной обмоткой, выполняемой подобно статорной, с тем же числом полюсов. Обмотка соединяется звездой или треугольником; три конца обмотки выводятся на три изолированных контактных кольца, вращающихся вместе с валом машины. Через щетки, укрепленные на неподвижной части машины и скользящие по контактным кольцам, в ротор включается трехфазный пусковой или регулировочный реостат, т.е. в каждую фазу ротора вводится активное сопротивление. Асинхронные двигатели с фазным ротором применяются там, где требуется плавное регулирование скорости приводимого в движение механизма, а также при частых пусках двигателя под нагрузкой.

    Электродвигатели (а также аппараты) классифицируются по степеням защиты их оболочек (табл. 5.1).

    Для производств, имеющих специфическую среду, выпускаются электродвигатели в специальном конструктивном исполнении. Так, для привода производственных механизмов во взрывоопасных зонах обычно применяются взрывозащищенные электродвигатели. По виду и способу устройства взрывозащиты эти электродвигатели разделяются на взрывонепроницаемые, продуваемые под избыточным давлением и повышенной надежности против взрыва (защита вида «е»).

    Таблица 5.1

    Исполнение электродвигателя (аппарата)

    Обозначение степени защиты оболочек

    по ГОСТ 14254 –96

    Открытое

    Защищенное

    Брызгозащищенное

    Каплезащищенное

    Закрытое

    Обдуваемое

    Продуваемое

    Пылезащищенное

    Водозащищенное

    I Р 00

    I Р 10, I Р 20, I Р 30, I Р 40, I Р 11, I Р 21, I Р 31, I Р 41,

    I Р 12, I Р 22, I Р 32, I Р 42, I Р 13, I Р 23, I Р 33, I Р 43,

    I Р 34, I Р 44

    I Р 34, I Р 44, I Р 54

    I Р 01, I Р 11, I Р 21, I Р 31, I Р 41, I Р 51, I Р 12, I Р 22,

    I Р 32, I Р 42, I Р 13, I Р 23, I Р 33, I Р 43

    I Р 54, I Р 55 и др.

    I Р 54 (с обдувом)

    I Р 34, I Р 44, I Р 54 (с устройством для охлаждения)

    I Р 50, I Р 51, I Р 54, I Р 55, I Р 56, I Р 65, I Р 66, I Р 67,

    I Р 68

    I Р 55, I Р 65, I Р 56, I Р 66

    Наибольшее распространение получили взрывонепроницаемые электродвигатели. Широко используются электродвигатели, продуваемые под избыточным давлением. Они выпускаются на большие мощности (свыше 100 кВт) и предназначены для привода крупных насосных, компрессорных и других специальных установок.

    Взрывозащита и надежность в работе взрывозащищенных электродвигателей во многом зависят от свойств используемых в них материалов. Эти материалы делятся на конструкционные , активные и изоляционные .

    К конструкционным относятся материалы, из которых изготовляются механические детали и части электродвигателя (корпус, вал, подшипниковые щиты и т.д). К некоторым конструкционным материалам предъявляются специфические требования по обеспечению взрывозащиты. Например, вентилятор принудительного воздушного охлаждения (центробежный, установлен на валу, имеет направляющий кожух) выполняется из неискрящего материала ЦАМ–4–1, что исключает искрообразование при ударах его о стальной кожух и воспламенение взрывоопасной среды.

    К активным относятся токопроводящие материалы или те, в которых протекают электрические процессы (например, листовая электротехническая сталь для изготовления сердечников статора и ротора, алюминий и т.п).

    К изоляционным относятся материалы, предназначенные для электрической изоляции токопроводящих частей двигателей. Изоляционные материалы прежде всего должны обеспечить надежную работу электродвигателя в различных условиях эксплуатации. От них зависят и технико-экономические показатели электродвигателя. Для взрывозащищенных электродвигателей изоляция обмоток должна быть не ниже класса В (по ГОСТ 8865–70), например, микалента, микафолий, слюдинит, стеклоткань, стеклотекстолит и т.д.

    Взрывозащита взрывонепроницаемых электродвигателей обеспечивается тремя факторами: взрывонепроникновением, взрывоустойчивостью и температурным режимом оболочки. Взрывонепроникновение достигается созданием взрывонепроницаемых зазоров в местах сочленения отдельных частей оболочки. К таким местам относятся сочленения: подшипниковых щитов с корпусом и валом, корпуса присоединительной коробки вводов с корпусом двигателя, крышки коробки вводов с корпусом двигателя, крышки коробки вводов с корпусом коробки и др. Все сочленения выполняются с минимальными зазорами, указанными в ГОСТ 22782.6–81 . На рис. 5.1 показаны взрывонепроницаемые зазоры оболочки электродвигателя. На чертежах они обычно обозначаются словом «взрыв».

    Рис. 5.1. Схематическое устройство взрывозащищенного электродвигателя:

    1 ,4 – крышки подшипника;2 – корпус;3 – подшипниковый щит;5 – вводная коробка;6 – взрывонепроницаемые зазоры, обозначаемые словом «взрыв»

    Особое внимание уделяется обеспечению взрывонепроникновения присоединительной коробки. Это достигается путем применения сальникового уплотнения или заливки затвердевающей изолирующей массой места ввода в нее кабеля. Для ввода кабеля или проводов в трубе применяют муфты с трубной резьбой.

    Взрывоустойчивость обеспечивается высокой механической прочностью корпуса электродвигателя, подшипниковых щитов, коробки вводного устройства и ее крышки. Эти части, а также крепежные элементы должны выдерживать без повреждения и остаточной деформации гидравлические испытания избыточным давлением, равным полуторакратному давлению, которое возникает вследствие воспламенения взрывоопасной смеси при нормальных условиях, но не менее 310 5 Па.

    Температурный режим оболочки электродвигателя обеспечивается тем, что температура наружных поверхностей в рабочем режиме не должна превышать значений, указанных в табл. 2.12.

    Взрывонепроницаемые электродвигатели изготавливаются для работы в категориях взрывоопасной смесей от IIА до IIС (от 1 до 4) и группах взрывоопасных смесей от Т1 до Т5 (от А до Д). Взрывонепроницаемые электродвигатели являются преимущественно электродвигателями с короткозамкнутым ротором.

    Отечественные серии и типы взрывонепроницаемых электродвигателей приведены в табл. 5.2.

    Таблица 5.2

    Мощность, кВт

    U н, В

    Маркировка

    взрывозащиты

    Состояние производства

    Примечание

    Серийное

    Привод насосов, вентиляторов, лебедок

    центрифуг

    Привод насосов

    Привод вентиляторов

    Вертикальный

    (с фазным ротором)

    Привод механизмов, требующих плавного пуска

    Привод вертикальных нефтяных насосов

    Привод насосов, компрессоров, нагнетателей и других быстроходных механизмов

    Частота оборотов 1500 – 3000 об/мин

    Окончание табл. 5.2

    Серия или тип электродвигателя

    Мощность, кВт

    U н, В

    Маркировка

    взрывозащиты

    Состояние производства

    Примечание

    Серийное

    Привод подъемно-транспортных и других механизмов в химической, нефтяной и газовой промышленности и других случаях

    1ExdIIBT4

    1ExdIIBT4*

    Привод механизмов в химической, газовой, нефтеперерабатывающей и других отраслях

    * Первые имеют вводное устройство с видом взрывозащиты «е», а корпус –с видом взрывозащиты d , т.е. для взрывоопасных зон B-Ia(2),B-Iг(2), B-Iб(2), B-IIa(22). Вторые (под чертой) – вводное устройство и корпус имеют защиту вида d , т.е. для взрывоопасных зон – В-I(1), B-II(21).

    Электродвигатели серии ВАО всех маркировок по взрывозащите (от В1Г до В4Д включительно) имеют одинаковые установочные и монтажные размеры, стандартизированную шкалу мощностей, что обеспечивает их взаимозаменяемость, упрощает проектирование и монтаж во взрывоопасных зонах.

    Серия электродвигателей ВАО включает основное исполнение и модификации. В полном обозначении электродвигателя основного исполнения, например ВАО 21–4, цифра 2 указывает на второй габарит (т.е. на условный наружный диаметр листов статора), 1 – на условную длину (первую или вторую) пакета статора, 4 – на число полюсов. Модификации серии ВАО имеют следующие обозначения: ВАОК (с фазным ротором), ВАОТ (конвейерные), ВАОЛ (лебедочные), ВАОМ (для местной вентиляции), ВАОА (для запорной арматуры) и т.д.

    В настоящее время налажен серийный выпуск новых взрывонепроницаемых электродвигателей серии В, 2В, ВА, АИМ и др. Они предназначены для применения во взрывоопасных зонах классов В – I и В – II, а также В – Iа и В – Iг.

    Взрывозащита электродвигателей, продуваемых под избыточным давлением, основана на непроникновении взрывоопасной среды во внутреннюю полость электродвигателя. Это достигается продувкой внутренней полости электродвигателя и воздуходувов (в пределах границ взрывоопасной зоны) чистым воздухом или инертным газом и созданием в них избыточного давления не менее 100 Па. Электродвигатели могут иметь замкнутую или разомкнутую системы вентиляции. В первом случае циркулирует один и тот же объем воздуха, охлаждаемого двумя водяными воздухоохладителями. Имеется трубопровод для отвода воздуха при продувке электродвигателя перед пуском. В разомкнутой системе воздух (см. рис. 2.4) забирается вне взрывоопасной зоны, проходит в фильтрах очистку от пыли, затем прогоняется по воздуховодам и полости электродвигателя и выбрасывается наружу (выбрасывать отработавший воздух во взрывоопасную зону не рекомендуется).

    Дополнительными мерами по этому виду взрывозащиты являются: нормирование температуры оболочки (она такая же, как и у взрывонепроницаемых электродвигателей); автоматическое отключение или подача сигнала и блокировка.

    При падении статического давления внутри оболочки ниже 100 Па в зонах В–I и В–II должно произойти автоматическое отключение электродвигателя, а в зонах В–Iа и В–IIа допускается автоматическая подача сигнала опасности. Для этого применяются мембранные сигнализаторы давления СПДМ, которые устанавливаются за пределами взрывоопасной зоны.

    Блокировка предупреждает включение электродвигателя до того, как через его оболочку совместно со всеми элементами (трубопроводами, воздухоохладителями и т.д.) системы вентиляции не будут продуты чистый воздух или инертный газ. Объем газов должен быть не менее пятикратной емкости оболочки и всей системы вентиляции. Эта блокировка выполняется при помощи реле времени, включающего электродвигатель только тогда, когда вентилятор осуществит продувку. Время выдержки реле времени определяется по формуле

     в  /Q , (5.1)

    где V 1 – объем воздуховодов, м 3 ; V 2 – объем электродвигателя (вычисляется по габаритным размерам), м 3 ; Q - производительность вентилятора подпитки или продувки, м 3 /с.

    Электродвигатели в этом исполнении являются крупными машинами и применяются для привода насосов, вентиляторов, компрессоров и других общепромышленных механизмов во взрывоопасных зонах всех классов (за исключением зоны В-Iг), которые могут содержать взрывоопасные смеси всех категорий и групп. Некоторые данные отечественных типов и серий таких электродвигателей приводятся в табл. 5.3.

    Таблица 5.3

    Электродвигатели повышенной надежности против взрыва при нормальном режиме работы не могут быть причиной взрыва: у них отсутствует открытое искрение, дуги или опасные температуры. Дополнительными факторами, обеспечивающими этот вид взрывозащиты, являются: снижение допустимой температуры изолированных обмоток на 10 С (по сравнению с допустимыми), применение электроизоляционных материалов высокого качества (степень защиты оболочки не ниже IP 33 или IP 54). Выпуск таких электродвигателей ограничен серией А десятого и одиннадцатого габаритов мощностью 55-320 кВт, напряжением 380/660 В и 3000 В в исполнениях НОА, НОБ, НОГ.

    Электродвигатели повышенной надежности против взрыва могут применяться во взрывоопасных зонах всех классов (за исключением зон класса В-I и В-II) и всех категорий взрывоопасных смесей при соответствии ее группы.

    Электродвигатели обычно поставляются комплектно с технологическим оборудованием (насосами, компрессорами, вентиляторами и т.д.). Если же они поставлены некомплектно, их выбирают по роду тока, напряжению и номинальным данным, приводимым в заводских каталогах.

    Выбор электродвигателей по роду тока и напряжению несложен: род тока и напряжение определены условиями электроснабжения, мощностью самих электродвигателей и необходимостью регулирования частоты вращения.

    Важной задачей при выборе электродвигателя является определение условий, в которых он будет работать. Во многих случаях окружающая среда содержит большое количество влаги, пыли, газов, паров, химических веществ. Поэтому степень защиты оболочки электродвигателя должна соответствовать окружающей среде. При выборе электродвигателя для взрывоопасных зон, кроме того, учитывают класс зоны, уровень и вид взрывозащиты, категорию и группу взрывоопасной смеси. Для пожароопасных зон также учитывают ее класс.

    Тип асинхронного электродвигателя во многом определяется условиями пуска рабочего механизма, а также режимом работы. Режим работы электродвигателя определяется характером его загрузки и временем, в течение которого он может работать, не нагреваясь выше установленной температуры.

    При длительном режиме работы выбор электродвигателей достаточно прост. Если нагрузка механизма постоянна (насосы, вентиляторы, компрессоры, различного ряда транспортеры), исходят из условия

    Р н = Р мех, (5.2)

    где Р н – номинальная мощность (по каталогу) электродвигателя, кВт; Р мех – номинальная мощность рабочего механизма, кВт.

    Мощность Р мех определяется по параметрам производственного механизма и эксплуатационным характеристикам в соответствии с технологическим процессом.

    Мощность электродвигателя насоса

    Р мех.н = [Q (H + H ) k з ]/ 102 н п , (5.3)

    где Q – производительность насоса, м 3 /с;  - плотность перекачиваемой жидкости, кг/м 3 ; Н – высота напора, равная сумме высот всасывания и нагнетания, м; Н – падение напора в магистралях, м; k 3 – коэффициент запаса (рекомендуется принимать при электродвигателях мощностью до 50 кВт равным 1,2; от 50 до 350 кВт – 1,15; свыше 350 кВт – 1,1);  н – КПД насоса, равный 0,45 – 0,85 (большая цифра относится к большей мощности);  н – КПД передачи: ременной 0,85 – 0,9; клиноременной 0,97 – 0,98; при непосредственном соединении с помощью муфты – 1.

    Мощность электродвигателя вентилятора

    Р мех.в = QH c k з / 1000 в п, (5.4)

    где Q – производительность вентилятора, м 3 /с; Н с – давление, развиваемое вентилятором, Па; k 3 – коэффициент запаса, принимаемый для электродвигателя до 1 кВт равным 2; от 1 до 2 кВт – 1,5; от 2 до 5 кВт – 1,25; свыше 5 кВт – 1,1 (1,15);  в – КПД вентилятора (0,5-0,8).

    Мощность электродвигателя компрессора

    Р мех.к = QA / 1000 к п, (5.5)

    где Q – производительность компрессора, м 3 /с; А – работа, затрачиваемая на сжатие 1м 3 газа до определенного давления, Дж;  к – КПД компрессора (0,5 – 0,7).

    Приводя в движение производственный механизм, электродвигатель совершает полезную работу по преодолению сил сопротивления, обусловленных силами трения в передачах и движущихся частях механизма, а также полезной нагрузкой на его рабочем органе.

    Количество полезной работы, совершаемое в единицу времени (в секунду), называется полезной мощностью. Потребляемая мощность Р i для асинхронного электродвигателя равна

    P i = 10 –3
    U л I л cos, (5.6)

    где U л – линейное напряжение, питающее обмотки статора, В; I л – линейный ток потребления, А; cos - коэффициент мощности электродвигателя.

    Желательно, чтобы каждый электродвигатель работал с возможно большей нагрузкой, развивая возможно большую полезную мощность. Однако увеличение нагрузки электродвигателя сопровождается увеличением температуры его частей. Наиболее чувствительной к повышению температуры элементов является изоляция обмоток электродвигателя. Чем выше рабочая температура, тем быстрее стареет и разрушается изоляция.

    Приведенные на щитке электродвигателя номинальные значения мощности Р ном, тока I ном и скорости вращения n ном соответствуют номинальной нагрузке на валу, при которой электродвигатель, работая в номинальном режиме, при температуре окружающей среды + 35 С имеет максимально допустимую температуру.