Общие сведения об электроустановках

Страница 2 из 56

Глава I ОБЩИЕ СВЕДЕНИЯ ОБ ЭЛЕКТРОУСТАНОВКАХ
§ 1. Основные понятия и определения

Электроустановками называют установки, в которых производится, преобразуется, распределяется и потребляется электроэнергия.
Электроустановки разделяют по назначению, роду тока и напряжению.
По назначению, как это видно из самого определения, электроустановки разделяют на генерирующие (вырабатывающие электроэнергию), потребительские (потребляющие электроэнергию) и преобразовательно-распределительные (для передачи, преобразования электроэнергии в удобный для потребителей вид и распределения ее между ними).
По роду тока выделяют электроустановки постоянного и переменного тока.
По напряжению различают электроустановки напряжением до 1000 В и выше 1000 В. Электроустановки напряжением до 1000 В обычно разделяют на силовые и осветительные.
Электроэнергию вырабатывают электрические генераторы, устанавливаемые на электрических станциях. В зависимости от вида энергии, из которой вырабатывается электроэнергия, электрические станции делят на две группы: тепловые электростанции (ТЭС) и гидроэлектростанции (ГЭС). На мощных районных тепловых электростанциях (ГРЭС) вырабатывается преимущественно электрическая энергия. На них устанавливают мощные агрегаты с конденсационными паровыми турбинами, отработанный пар в которых поступает в специальные аппараты «конденсаторы», где он охлаждается и конденсируется. Поэтому такие тепловые электростанции принято также называть конденсационными электростанциями (КЭС).
В местах, где кроме электроэнергии требуется большое количество тепловой энергии (промышленные центры, отдельные крупные предприятия), строят теплоэлектроцентрали (ТЭЦ). На них устанавливают агрегаты с теплофикационными турбинами, позволяющими отбирать часть пара для обеспечения потребителей тепловой энергией.
Тепловые электростанции могут работать на угле, мазуте и газе. В отдельную группу выделяют атомные электростанции (АЭС), которые используют ядерное топливо.
Потребительские электроустановки - это множество приемников электроэнергии, устанавливаемых у потребителей электроэнергии. При этом потребителями электроэнергии являются все отрасли народного хозяйства (промышленность, транспорт, сельское хозяйство и др.). а также культурно-бытовые здания, больницы, научные учреждения и учебные заведения. Приемники электроэнергии разнообразны. К ним относят: электрические двигатели, служащие приводом разнообразного станочного оборудования и электрического транспорта; электротехнологическое оборудование (сварочные машины и аппараты, электрические печи, электролизеры, станки для электроискровой обработки металлов и др.); электробытовые приборы (электрические плиты, полотеры, пылесосы, стиральные машины, радиоприемники, телевизоры и др.); электромедицинские приборы и аппараты (рентгеновские аппараты, аппараты для электротерапии и электродиагностики и др.); приборы и установки для научных учреждений (электронные микроскопы и осциллографы, радиотелескопы, синхрофазотроны) и, наконец, множество разнообразных электрических источников света.
Для передачи и распределения электроэнергии служат Электрические сети, связывающие электрические станции между собой и с потребителями электроэнергии.
В электрические сети входят линии электропередачи, распределительные сети и электропроводки. Линии электропередачи связывают электростанции между собой и с центрами питания потребителей электроэнергии. В распределительных сетях происходит распределение электроэнергии между отдельными потребителями и ее преобразование. Поэтому распределительные сети характеризуются большой разветвленностью и включают в себя множество электрических подстанций и распределительных устройств. На электрических подстанциях осуществляется преобразование электрической энергии по напряжению (повышение или понижение напряжения) или по роду тока (преобразование переменного тока в постоянный и наоборот).
Распределительные устройства (РУ) служат для распределения проходящей через них электроэнергии между отдельными потребителями и содержат всегда сборные шины, к которым подводится питание со множеством ответвлений для питания отдельных потребителей.
Электропроводки обычно используют для распределения электроэнергии между отдельными электроприемниками в установках напряжением до 1000 В.
В отличие от других видов продукции электрическая энергия отличается единством и непрерывностью процессов ее производства, транспортирования (передачи) и потребления. Это отличие электроэнергии определяет и коренные отличия предприятий, производящих и реализующих электроэнергию, а также и тепловую энергию (поскольку выработка тепловой энергии на ТЭЦ осуществляется в основном тем же оборудованием и в то же время, как и электроэнергия).



Рис. 1. Схематичное изображение участка электрической системы: 1 - гидроэлектростанция. 2 - гидрогенератор, 3 - силовой трансформатор. 4 - выключатель, 5 - привод выключателя, 6 - трансформатор тока, 7- линия электропередачи, 8 - город, 9 - щит управления гидроэлектростанции, ; 0 - ключ управления, 11 - реле автоматизации,- 12 -реле защиты, 13 - амперметр, 14 и 15 - устройства Телемеханики, 16 - диспетчерский щит

Основным промышленным предприятием в электроэнергетике является энергетическая система (энергосистема), представляющая совокупность электростанций, электрических и тепловых сетей и потребителей электроэнергии, связанных между собой в одно целое общностью режима и непрерывностью процесса производства и распределения электрической и тепловой энергии. Электрическая часть энергосистемы называется электрической системой.
Любая электроустановка должна быть управляема и, следовательно, должна иметь кроме элементов, выполняющих энергетические функции (производство, передача, преобразование и потребление электроэнергии), элементы, осуществляющие информационные функции (управление, защита, измерение).
На рис. 1 схематично показан участок электрической системы, где изображены основные элементы, необходимые для производства, преобразования и передачи электроэнергии. Электроэнергия, вырабатываемая на гидроэлектростанции 1 по линии электропередачи 7, передается в город 8.
Для энергетических преобразований служит первичное оборудование: гидрогенератор 2, преобразующий механическую энергию в электрическую, силовой трансформатор 5, преобразующий электрическую энергию в электрическую более высокого напряжения, что необходимо для передачи ее с минимальными потерями по линии электропередачи 7, и высоковольтный выключатель 4.
Для контроля за состоянием первичного оборудования и управления им служат вторичные аппараты и приборы: привод высоковольтного выключателя 5, связанный с ним кинематически и управляемый со щита управления дистанционно воздействием на ключ управления 10 или автоматически от реле защиты 12 и автоматики 11, измерительный прибор (амперметр) 13, подключенный ко вторичной обмотке трансформатора тока 6, первичная обмотка которого включена в первичную цепь; устройство телемеханики, один полукомплект 14 которого установлен на щите управления 9 гидроэлектростанции, а другой полукомплект 15 - на диспетчерском щите 16.
Все вторичные приборы и аппараты предназначены для информационных преобразований, входят преимущественно во вторичные цепи, в начале которых находится первичный преобразователь (на рисунке трансформатор тока 6), непосредственно связанный с первичной цепью и получающий от нее нужную информацию, а в конце - элемент непосредственного управления (на рисунке привод 5 высоковольтного выключателя), через который осуществляется непосредственное воздействие на управляемую первичную цепь.
Поскольку измерительные трансформаторы и приводы первичных аппаратов территориально размещают в распределительных устройствах, их описание приведено в разделе, посвященном распределительным устройствам.

§ 2. Напряжения электротехнических установок

Для обеспечения нормальных условий работы электроприемников, их взаимозаменяемости, а также согласования по уровню напряжения всех звеньев электрической системы, начиная от генераторов электрических станций и кончая электроприемниками, напряжение, на которое изготовляется электротехническое оборудование, узаконено Государственным стандартом (ГОСТ 721- 62), согласно которому установлены следующие номинальные напряжения;
на зажимах генераторов постоянного тока -115, 230 и 460 В; на зажимах генераторов переменного тока частотой 50 Гц между фазными проводами (линейное напряжение) - 230, 400, 690, 3150, 6300, 10500, 21 000 В;
на зажимах трансформаторов трехфазного тока частотой 50 Гц между фазными проводами (линейное напряжение) у первичных обмоток -0,220; 0,380; 0,660; 3 и 3,15; 6 и 6,3; 10 и 10,5; 20 и 21; 35; 110; 150; 220;330; 500; 750 В, у вторичных обмоток - 0,230; 0,400; 0,690; 3,15 И 3,3; 6,3 и €,6; 10,5 и 11; 21 и 22; 38,5; 121; 165; 242; 347; 525; 787 кВ (напряжения 3,15; 6,3; 21 кВ для первичных обмоток трансформаторов относятся к повышающим и понижающим трансформаторам, присоединяемым непосредственно к шинам генераторного напряжения электростанций или к выводам генераторов);
приемников электроэнергии постоянного тока - 6, 12, 24, 36, 48, 60, 110, 220, 440 В;
приемников электроэнергии трехфазного тока частотой 50 Гц: между фазными проводами (линейное напряжение)-36, 220, 380, 660, 3000, 6000, 10000, 20000, 35 000, i 10 000, 220000, 150000, 330000, 500000 и 750000 В; между фазным И нулевым проводом-127, 220, 380 В;
приемников электрической энергии однофазного тока частотой 50 Гц - 12, 24, 36, 127, 220, 380 В.

§ 3. Изображение электроустановок на чертежах

Виды и типы схем. Для изображения электроустановок на чертежах используют такие общеизвестные средства, как строительные чертежи с планами и разрезами; отдельные изделия изображаются по нормалям и ГОСТам для машиностроения. Но этих изобразительных средств недостаточно для того, чтобы понять принцип работы и устройства, монтировать и эксплуатировать большинство электроустановок и изделий. Поэтому основным средством для изображения электроустановок на чертежах является схема.
Схемы служат для наглядного представления на чертежах элементов электроустановки и связи между ними. Наряду с электрическими элементами, образующими электрические цепи, в ряде случаев в электроустановки входят гидравлические, пневматические и механические элементы, образующие соответственно гидравлические, пневматические и кинематические цепи.
ГОСТ 2701-68 предусматривает следующие виды схем: электрические, гидравлические, пневматические и кинематические.
В зависимости от назначения схемы подразделяют на следующие типы: структурные, функциональные, принципиальные (полные), соединений (монтажные), подключений, общие и расположения.
Структурные схемы определяют основные функциональные части изделия, их назначение и взаимосвязь. Эти схемы разрабатывают при проектировании изделий (установок) на стадиях, предшествующих разработке схем других типов, и используют их при эксплуатации для общего ознакомления с изделием (установкой).
Функциональные схемы разъясняют определенные процессы, протекающие в определенных функциональных цепях изделия (установки) или в изделии в целом. Функциональные схемы используют для изучения принципов работы изделия, а также при его наладке. Структурные и функциональные схемы представляют изделие в виде отдельных блоков, изображаемых прямоугольниками, которые расположены в определенной последовательности и соединены стрелками, определяющими связи между этими блоками. Каждый блок может состоять из множества элементов, не отображаемых на указанных схемах, но в целом предназначенный для определенного преобразования, например: выпрямитель, усилитель, преобразователь постоянного напряжения в переменное (инвертор), преобразователь частоты и т. и. Функциональные схемы обычно более подробные, чем структурные. Блочное изображение этих схем определяет то, что в литературе их часто называют блок-схемами.
Принципиальная (полная) схема определяет полный состав элементов и связей между ними, дает детальное представление о принципе работы изделия (установки), служит основанием для разработки других конструкторских документов и используется для изучения принципов работы изделия, а также при ее наладке. Если в состав изделия (установки) входят устройства, имеющие принципиальные схемы, то такие устройства в схеме изделия следует рассматривать как элементы. В этом случае принцип действия изделия определяется совокупностью его принципиальной схемы и принципиальных схем указанных устройств.
Схема соединений (монтажная) показывает соединения составных частей изделия (установки) и определяет провода, жгуты, кабели и трубопроводы, которыми осуществляются эти соединения, а также места их присоединения и ввода (зажимы, разъемы, проходные изоляторы и др.). Ими пользуются при осуществлении присоединений (монтаже), а также при наладке изделия.
Схема подключения (ранее называлась схемой внешних соединений) показывает внешние подключения изделия.
Общая схема определяет составные части комплекса и соединения их на месте эксплуатации.
Схема расположения определяет относительное расположение составных частей изделия (установки), а при необходимости также проводов, жгутов, кабелей и т. и.
Как указано ранее, при составлении схем отдельные элементы изделия и связи между ними должны быть наглядными. При этом используют следующие условные графические обозначения, устанавливаемые ГОСТами:
ГОСТ 2.721-74. Обозначения общего применения.
ГОСТ 2.722-68. Машины электрические.
ГОСТ 2.723-68. Катушки индуктивности, дроссели, трансформаторы и магнитные усилители.
ГОСТ 2.724-68. Электромагниты.
ГОСТ 2.725-68. Устройства коммутирующие.
ГОСТ 2.726-68. Токосъемники.
ГОСТ 2.727-68. Разрядники, предохранители.
ГОСТ 2.728-68. Резисторы, конденсаторы.
ГОСТ 2.729-68. Приборы электроизмерительные.
ГОСТ 2.730-68. Приборы полупроводниковые.
ГОСТ 2.731-68. Приборы электровакуумные.
ГОСТ 2.732-68. Источники света.
ГОСТ 2.738-68. Элементы телефонной аппаратуры.
ГОСТ 2.741-68. Приборы акустические.
ГОСТ 2.742-68. Источники тока электротехнические.
ГОСТ 2.745-68. Электронагреватели, устройства и установки электротермические.
ГОСТ 2.750-68. Род тока и напряжения, виды соединения обмоток, формы импульсов.
ГОСТ 2.751-68. Линии электрической связи, провода, кабели, шины и их соединения.
Размеры условных графических изображений устанавливает ГОСТ 2.747-68. Правила выполнения электрических, кинематических, а также гидравлических и пневматических схем определены ГОСТ 2.702-69, 2. 703-68 и 2.704-68.
Обозначения электрооборудования и проводок на планах (при необходимости и на разрезах) зданий, территорий и отдельных помещений установлены ГОСТ 7621-55.



Рис. 2. Условные обозначения электростанций и подстанций:
а - общее, б - открытая установка, в - закрытая установка. г - передвижная установка
На рис. 2 в верхнем ряду показаны условные обозначения электростанций а в нижнем - подстанций: общее (рис. 2, а), открытая установка (рис. 2, б), закрытая установка (рис. 2, в), передвижная установка (рис. 2, г) (заштрихованы обозначения действующих сооружений). На рис. 3 приведены обозначения электрических сетей и конструктивных элементов для электропроводок, а на рис. 4 - обозначения светильников и установочных электроприборов.
Обычно рядом с графическим обозначением дают поясняющую надпись, указывающую на порядковый номер соответствующего оборудования, его вид, иногда некоторые параметры. Например: П - пускатель, 2ШР - распределительный шкаф, обозначение у светильника 3/60 говорит, что в нем три лампы по 60 Вт каждая и т. и.
Кроме того, Государственным стандартом установлены также условные графические обозначения электростанций и подстанций в схемах электроснабжения (ГОСТ 2.748-68), обозначения основных величин и условные изображения приборов в схемах автоматизации производственных процессов (ГОСТ 3925-59). Особое место занимает ГОСТ 9099-59. Система маркировки цепей в электрических установках (вопросы маркировки рассматриваются ниже).
Все схемы электроустановок можно подразделить на две группы! первичные (силовые) и вторичной коммутации (цепей управления, сигнализации, блокировки, защиты и автоматики).
Схемы вторичной коммутации обычно сложней первичных схем, к которым они относятся. Из всех схем наиболее распространены в электроустановках три: принципиальные (полные), соединения (монтажные) и подключения.
Принципиальные схемы вторичной коммутации выполняют отдельными цепями, причем каждая цепь начинается у одного полюса источника постоянного тока (или у одной из фаз источника переменного тока) и заканчивается у другого полюса источника постоянного тока (или у другой фазы, или у нулевого провода источника переменного тока).

Рис. 3. Обозначения на планах электрических сетей и конструктивных элементов электропроводок: а - линий силовых распределительных сетей: переменного тока напряжением до 500 В, постоянного тока, вторичных цепей, переменного тока напряжением выше 500 В, и - линий сетей освещения: рабочего, аварийного, охранного, напряжением 36 В и ниже, в-изменений уровня прокладки: линия уходит вниз, линия приходит сверху, линия разветвляется вверх и вниз, г - кабельных проводок: кабеля, прокладываемого открыто, кабельного канала, кабельной траншеи, кабельного блока, д - конструктивных элементов: распределительного шкафа, патрубка для прохода через перекрытие. конструкции для крепления кабеля и трубы, крепления троса
Указанные цепи могут быть размещены горизонтально (первая цепь вверху) или вертикально (первая цепь слева) одна за другой в той последовательности, в которой происходит их работа.



Рис. 4. Обозначения на планах светильников и установочных электроприборов: а - штепсельная розетка, б- выключатели: однополюсный, двухполюсный, трехполюсный, переключатель, в- патроны: потолочный подвес с нормальным патроном, стенной, г - люстра с лампами накаливания, д - электроконструкций: распределительный шкаф, групповой щиток рабочего освещения, групповой щиток аварийного освещения
Коммутирующие элементы изображают на схемах, как правило, в отключенном состоянии, т. е. при отсутствии тока во всех цепях и внешних сил, воздействующих на подвижные контакты. Переключатели, не имеющие отключенного положения, показывают на схемах в одном из фиксированных положений, принятом за исходное. Принципиальные схемы вторичной коммутации могут сопровождаться даже на том же листе принципиальными схемами первичных цепей, к которым они относятся (последние часто называют поясняющими схемами). Принципиальная схема может быть для всей установки и давать полное представление о ее работе, а может быть для одного из ее изделий, например, станции управления, щитка сигнализации, вторичной коммутации ячейки распределительного устройства и т. и. Принципиальная схема установки вторичной коммутации, кроме указанной выше поясняющей схемы первичных цепей, сопровождается перечнем элементов, диаграммами ключей управления, поясняющими надписями. Кроме того, на ней даются ссылки на другие схемы (монтажные, подключения, принципиальные схемы устройств, входящих в Данную установку).
Маркировка в электрических установках. Маркировка - это совокупность условных обозначений (цифровых, буквенных или буквенно-цифровых), присваиваемых электротехническим устройствам, относящимся к ним изделиям, оборудованию, аппаратам, приборам, сборкам зажимов и электрическим цепям и наносимых на них и на схемах этих устройств. Правила выполнения электрических схем (ГОСТ 2.702-69) требуют, чтобы система обозначения цепей на схемах соответствовала ГОСТ 9099-59 или другим действующим в отраслях нормативно-техническим документам. Следует отметить, что ГОСТ 9099-59 устанавливает систему маркировки только управления, контроля и защиты, т. е. вторичной коммутации электроустановок и не предусматривает маркировку выводов аппаратов, труб, кабелей, протяжных и ответвительных коробок, опор и других элементов.
Если учесть, что изделия разных заводов имеют различную маркировку, то понятно, какие трудности связаны с маркировкой электроустановок, когда все эти изделии поступают на монтажную площадку.
Поэтому при проектировании электроустановок вводят так называемую генеральную маркировку, выполняемую по определенным правилам, причем в ряде случаен наряду с этой маркировкой на схемах наносят и маркировку изделий. При этом необходимо соблюдать условие, чтобы маркировка одних и тех же элементов была одинакова в схемах всех типов (принципиальной, соединений, подключений и др.).
Объектами маркировки являются: в принципиальных схемах - электрические машины, комплектные устройства, аппараты и приборы, участки электрических цепей; в схемах соединения, кроме этого,- сборки зажимов и зажимы аппаратов; в схемах подключения- комплектные устройства, электрические машины, отдельно стоящие аппараты и приборы, внешние проводники, присоединяемые к зажимам оборудования, и сами зажимы.
Каждый элемент схемы должен иметь позиционное обозначение, представляющее собой сокращенное название элемента, а при необходимости функциональное его назначение. Например, выключатель обозначают буквой В, а если имеется еще аварийный выключатель, его обозначают ВА. Кроме того, позиционное обозначение может содержать цифровую часть. Цифры после буквенной части указывают порядковый номер элемента, а до буквенной части -номер присоединения (привода, линии и т. и.), к которому этот элемент относится. Например, если схема приведена для установки, содержащей несколько приводов, и в каждом несколько контакторов, то позиционное обозначение, например, 2КЛ1 относится к первому линейному контактору привода 2. Позиционные обозначения на схемах вторичной коммутации с горизонтальным расположением цепей даются над графическим изображением элементов, а при вертикальном расположении цепей - справа.
Для опознавания проводников, соединяющих элементы схемы, производят их маркировку. Каждому участку цепи присваивают номер. При переходе через контакт, резистор, предохранитель, обмотку номер меняется. Очевидно, тем самым обеспечивается и маркировка выводов соответствующих элементов. Однако, поскольку в изделиях (аппаратах, приборах и т. и.) имеет место заводская маркировка выводов, в ряде случаев целесообразно на схемах показывать и ее. Заводскую маркировку выводов пишут в скобках.
Большое значение имеет унификация систем маркировки, когда в любых схемах для одних и тех же цепей применяют постоянные номера, например: для плюса - 1, 101, 201; для минуса - 2, 102, 202.; для цепей управления постоянного тока- 103-199, 3-99, 203-299; для цепей аварийной сигнализации - 701-710 и т. д.
Применение схем, не предусмотренных стандартами. Если для сложных электроустановок объем сведений, необходимых для их наладки и эксплуатации, не может быть передан установленными типами схем, стандарт допускает разработку других схем.
В частности, для наладчиков и эксплуатационного персонала полезны так называемые принципиально-монтажные схемы, выполняемые так же, как и принципиальные, но включающие дополнительно сведения из монтажных схем (схем соединения) и схем подключения (заводскую маркировку выводов изделий, зажимов, сборок зажимов, кабелей, труб и т. и.).

Электроснабжение потребителей включает в свою систему использование технологических процессов через различные типы электроустановок и токоприемников.

В соответствии с правилами устройства электроустановок (ПУЭ), электроустановка включает в свой состав машины, коммутирующие устройства и аппараты, воздушные (ВЛ) и кабельные (КЛ) линии электропередачи. В состав электроустановки входит различное оборудование, использованное для осуществления помощи, необходимой для преобразования, накопления, различных способов передачи и упорядоченного распределения электрической энергии, и для преобразования электроэнергии в любой другой тип энергии, например, в тепловую или кинетическую.

Различия типов электроустановок

По правилам устройства, электроустановки существуют нескольких типов и делятся на установки, в зависимости от уровня напряжения, до или выше 1 кВ, зависит от величины тока замыкания (500 А — малый ток замыкания, более 500 А — большие токи замыкания).

В зависимости от напряжения, например, для крупного металлургического предприятия, целесообразно иметь электроустановки с рациональным числом трансформаций. Это могут быть электроустановки, величина напряжения которых составляет: высокое напряжение: 500; 220; 110; 35; 10; 6; 3, низкое напряжение: 0,5; 0,38, 0,22 кВ. Использование рациональных напряжений позволяет достичь значительной величины экономии потерь электроэнергии.

Различия типов электроустановок в зависимости от нейтрали



Электроустановки, рассчитанные на напряжение менее 1 кВ, используют в своей конструкции глухо-заземленную или изолированную нейтраль. Оборудование в электроустановке, которое осуществляет работу на постоянном токе, используют нулевую точку, относящуюся к глухо-заземленному или изолированному типу.

Изолированная нейтраль позволяет использовать электроустановки в условиях, обязывающих к применению повышенных требований по электробезопасности, с обязательным контролем за целостностью изоляции и предохранительных элементов. С требованием быстро обеспечить поиск замыкания на «землю», со своевременным предотвращением аварии и автоматическим выводом в отключенное состояние поврежденного элемента или участка электроустановки.

  1. Изолированная нейтраль используется в электроустановках напряжением до 35 кВ.
  2. Для электроустановок высокого напряжения до 35 кВ и иногда 110 кВ, используется нейтраль, подключенная посредством реактивного сопротивление, это действие призвано компенсировать токи утечки и емкостные токи.
  3. Электроустановки со значением высокого напряжения от 110 кВ и более, используется в сети с глухозаземленной нейтралью.

Типы электроустановок в зависимости от частоты

В зависимости от частоты тока электроустановки (электроприемники), различаются следующих типов:

  1. Электроприемники и электроустановки промышленной частоты со стандартным значением 50 Гц.
  2. С высокой частотой от 10 кГц и частотой повышенной величины до 10 к Гц, применяются в основном для металлургических предприятий.
  3. Пониженной частоты до 50 кГц.

Основные виды электроустановок

Существует 5 основных видов самых распространенных электроустановок:

  1. Силовые установки, оборудование, предназначенное для промышленного назначения. Электроустановки предназначены для компрессорных, вентиляционных, насосных агрегатов и других целей, отличаются постоянством токов нагрузки в самых широких пределах величины мощности. Эти установки отличаются симметричной нагрузкой и равномерно распределенной по всем фазам. Категория надежности этого типа электроустановок – 1.
  2. Установки для преобразования тока переменного в постоянный ток , от частоты, числа фаз, величин напряжения, и для инвертирования. Категория надежности, в основном из недоотпуска энергии относит электроустановки к II категории.
  3. Установки для электротермических операций: дугового действия, индукционного, диэлектрического нагрева, электронно-лучевого и других видов нагрева. Электротермические установки всех видов, за исключением дуговых печей относятся к категории – 2. Дуговые печи относят к категории надежности электропитания — 1.
  4. Установки, применяемые для электросварочных работ. Нагрузка этого вида установок носит неравномерный график, по надежности питания принадлежит к 3 категории надежности.
  5. Электроосветительные установки имеют однофазную нагрузку. Симметричность распределения нагрузки (несимметрия от 5 до 10%) достигается при использовании незначительной мощности электроосветительных приборов, путем равномерного распределения по фазам.

Типы электроустановок в зависимости от конструктивных особенностей помещений использования

Электроустановки по конструктивному типу подразделяются на открытые, находящиеся вне помещения, защищенные от атмосферных выпадений осадков навесом и на закрытые, располагаемые внутри помещения.

По виду используемого помещения электроустановки делятся на сухие и влажные, и установки, расположенные в сырых, а также в особо сырых помещениях. Помещения с повышенной температурой (жаркие) и с высоким содержанием пыли, которая в свою очередь подразделяется на пыль токопроводящую и не токопроводящую. Особо опасными считаются помещения, содержащие химически активную и, в том числе, органическую среду с содержанием агрессивных видов пара, газа, жидкости, разъедающей оборудования плесенью.

Взрывозащищенные электроустановки

К взрывозащищенному оборудованию относится особый вид электроустановок, работающих в опасной среде. Взрывозащита достигается использованием конструктивного электрооборудования, предназначенного для защиты от взрыва или применением схемного расположения решения взрывозащиты.

Конструктивные взрывозащищенные элементы должны выдерживать как нормальный рабочий режим, так и режим, который происходит в случае аварийного отключения: КЗ, или замыкания на «землю».

Для достижения улучшенных условий противодействия взрыву применяется: взрывозащищенный трудногорючий материал, а также такие элементы, как уплотнительные кольца, трубный ввод, Ех-компоненты (кнопочный или концевой выключатель, амперметр и т. д.), устанавливаются полностью или частично внутри оболочек электрооборудования. Материалы, предназначенные для изготовления кабельных оболочек, не должны иметь в своей конструкции более 7,5% магния.

Для защиты кабеля используют специальные кабеля с масляным (о), а также кварцевым (g) наполнением внешней оболочки силового кабеля, взрывозащищенная оболочка кабеля (d), заполнение, а в некоторых случаях продувка кабельной оболочки происходит с использованием избыточного давления, герметизация выполняется при помощи полимерной смолы (компаунда), защиты типа (е) и (n), особый тип взрывоозащиты (s).

Взрывозащищенное оборудование электроустановок характеризуется повышенными показателями надежности, способными оказать противодействие взрыву.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

Электрической системой называют электрическую часть энергосистемы. В её состав входят трансформаторы, приемники электрической энергии, электрические генераторы, линии электропередачи, аппаратура защиты, управления и регулирования. Электроустановкой называют элемент электрической системы, в котором передаётся, производится, распределяется, преобразуется, а также потребляется электрическая энергия. Электрические генераторы с вспомогательным устройствами, линии электропередачи, электрические подстанции, все это относится к электроустановкам.

ЛЭП (линия электропередачи) – это электроустановка, заключающаяся из проводников тока и различных вспомогательных устройств и предназначена для передачи электрической энергии на расстояние. Различают воздушные, кабельные и всякие различные линии электропередачи по конструктивному исполнению. Электрической сетью называют совокупность электрических подстанций и линий электропередачи. Электроустановки, расположенные в помещениях носят название закрытых, находящиеся, а на открытом воздухе – открытых. Так же электроустановки бывают передвижные и стационарные. К первым относятся передвижные электростанции, а ко вторым – электросети различных зданий. В зависимости от напряжения определяют электроустановки напряжением до 1000 В и выше 1000 В.

Приёмниками электрической энергии называют устройства, в которых электрическая энергия преобразуется в другие виды энергии – электроприёмники. К ним относятся электрические лампы, электродвигатели, а также электронагревательные приборы (паяльники, кипятильники). По надежности электроснабжения электроприемники делят на 3 категории. Нарушения электроснабжения, которые могут повлечь за собой опасность для жизни людей, нанести тем самым значительный ущерб народному хозяйству, массовый брак, повреждения оборудования, выход из строя особо важных элементов городского хозяйства, сложного технологического процесса, эти электроприемники относятся к первой категории. Их электроснабжение обеспечивается от разных независимых двух источников питания – главного и резервного, в случаи отказа главного источника питания, автоматически подключается резервный.

Остановка механизмов и промышленного транспорта, нарушение нормальной деятельности существенного числа городских жителей, простоям рабочих, перерыв в электроснабжении которых связан с массовым срывом производства продукции, такие электроприёмники относят ко второй категории. Простой в электроснабжении этих электроприемников не должен превышать количества времени, необходимого для включения резервного питания выездной оперативной службы или дежурным персоналом.

К третьей категории принадлежат все остальные приемники электрической энергии, не подходящие под определения первой и второй категорий, так например приемники электрической энергии вспомогательных цехов. Перерыв снабжения таких электроприёмников источником питания, допускается на время ремонта или же замены поврежденного элемента системы электропитания, не больше чем на сутки.

Заводом-изготовителем предназначен каждый электроприёмник для работы при номинальном режиме. Таким режимом эксплуатации называют такой режим, при котором значение мощности, напряжения и силы тока, указанные в техпаспорте электроприемника, совпадают со значениями этих же характеристик и величин при работе электроприёмника. От назначения и исполнения электроустановок, в зависимости от значения электрического напряжения, при котором они работают, к их монтажу, эксплуатации и ремонту предъявляют различные требования. Обслуживание электроприемников, монтаж, эксплуатацию и ремонт электроустановок выполняют в строгом соответствии с требованиями ПУЭ «Правила устройства электроустановок», ПТЭ «Правила технической эксплуатации электроустановок потребителей», ПТБ «Правила техники безопасности при эксплуатации электроустановок потребителей», СНиП «Строительных норм и правил».