Угарный газ. Осторожно! Угарный газ в доме

Здравствуйте, Мария. Спасибо за доверие нашим специалистам и ресурсу в целом.

Появление угарного газа в квартирах верхних этажей – явление достаточно распространенное по нескольким причинам (если не принимать во внимание теорию заговора):

  • При неисправности дымоходов и подключенного к ним оборудования(газовые колонки, котлы отопления).
  • При неправильной работе газового оборудования.
  • Угарный газ попадает из вентиляционной системы.
  • Продукты горения (в составе которых большой процент угарного газа) попадают в помещение из вне.

Попробуем разобраться.

1 Вы указали, что в квартире была газовая колонка. Вопрос первый, а куда она была подключена?

Дело в том, что в жилых домах с центральным отоплением дымоходы не предусмотрены проектом. Как правило, в квартирах пятиэтажных домов есть две вытяжки: одна на кухне, а одна в санузле (если он совмещенный; если раздельный, то два вент. отверстия объединяются в одну шахту). Все вытяжки предназначены для работы естественной вентиляции. Мы это упомянули для того, чтобы вы понимали: если вы вывели отвод продуктов горения в вентиляцию (на кухне), то и соседи снизу могли (и скорее всего сделали) подключить отопительные приборы таким же образом.

Теперь представьте, все квартиры по стояку (а по факту достаточно и половины квартир) включили отопительные установки и вытяжки: сечение вентканала не рассчитано на такую пропускную способность, загрязненный воздух не успевает выходить и его продавливает в верхние квартиры. Почему страдают верхние квартиры? Виной тому конструкция вентиляционной системы в пятиэтажках (практически полное отсутствие канала спутника) и неправильное подключение газовых приборов.

2 Вы написали, что перекрыли вытяжку. Вопрос второй: в кухне и в санузле или только в кухне? А что с отверстием, к которой была подключена колонка?

Для того, чтобы узнать, попадает ли к вам воздух из вентсистемы, наклейте на верхнюю часть вытяжного отверстия полоски бумаги. Если их свободные концы будут втягиваться в шахту – то вытяжная вентиляция работает нормально.

Важно: делайте это при закрытых окнах, дверях – в общем, без притока воздуха. Опыт покажет, как ведет себя вентсистема в повседневной жизни, а не в идеальных условиях. Если при закрытых окнах полоски бумаги останутся на месте или (куда хуже) будут откланяться в сторону жилища, то вполне возможно угарный газ все же попадает в помещение из вентиляции (не закрытого отверстия). Если вы обнаружили, что из вентиляции дует, попробуйте открыть окна. Если помогло, то в вашей квартире отсутствует приток воздуха, что стало причиной появления обратной тяги. Решить данную проблему можно установкой стеновых и оконных клапанов.

3 Вопрос третий: Есть ли зависимость отравлений от времени года?

Есть предположение, что скорее всего отравления угарным газом происходят во время отопительного сезона. Причиной может быть нарушена обособленность вентканала на вашем стояке. Другими словами, дымоходный и вентиляционный канал или два вентканала соединяются.

Угарный газ, окись углерода (СО) представляет собой бесцветный газ без запаха и вкуса, который является немного менее плотным, чем воздух. Он токсичен для гемоглобинных животных (включая человека), если его концентрации выше примерно 35 частей на миллион, хотя он также производится в обычном метаболизме животных в небольших количествах, и, как полагают, имеет некоторые нормальные биологические функции. В атмосфере, он пространственно переменный и быстрораспадающийся, и имеет определенную роль в формировании озона на уровне земли. Окись углерода состоит из одного атома углерода и одного атома кислорода, связанных тройной связью, которая состоит из двух ковалентных связей, а также одной дативной ковалентной связи. Это самый простой оксид углерода. Он является изоэлектроном с цианидом аниона, нитрозоний катионом и молекулярным азотом. В координационных комплексах, лиганд монооксида углерода называется карбонилом.

История

Аристотель (384-322 до н.э.) впервые описал процесс сжигания углей, который приводит к образованию токсичных паров. В древности существовал способ казни – закрывать преступника в ванной комнате с тлеющими углями. Однако, на тот момент механизм смерти был непонятен. Греческий врач Гален (129-199 гг. н.э.) предположил, что имело место изменение состава воздуха, который причинял человеку вред при вдыхании. В 1776 году французский химик де Лассон произвел СО путем нагревания оксида цинка с коксом, однако ученый пришел к ошибочному выводу, что газообразный продукт был водородом, поскольку он горел синим пламенем. Газ был идентифицирован как соединение, содержащее углерод и кислород, шотландским химиком Уильямом Камберлендом Круикшанком в 1800 году. Его токсичность на собаках была тщательно исследована Клодом Бернаром около 1846 года. Во время Второй мировой войны, газовая смесь, включающая окись углерода, использовалась для поддержания механических транспортных средств, работающих в некоторых частях мира, где было мало бензина и дизельного топлива. Внешний (с некоторыми исключениями) древесный уголь или газогенераторы газа, полученного из древесины, были установлены, и смесь атмосферного азота, окиси углерода и небольших количеств других газов, образующихся при газификации, поступала в газовый смеситель. Газовая смесь, полученная в результате этого процесса, известна как древесный газ. Окись углерода также использовалась в больших масштабах во время Холокоста в некоторых немецких нацистских лагерях смерти, наиболее явно – в газовых фургонах в Хелмно и в программе умерщвления Т4 «эвтаназия».

Источники

Окись углерода образуется в ходе частичного окисления углеродсодержащих соединений; она образуется, когда не хватает кислорода для образования двуокиси углерода (CO2), например, при работе с плитой или двигателем внутреннего сгорания, в замкнутом пространстве. В присутствии кислорода, включая его концентрации в атмосфере, монооксид углерода горит голубым пламенем, производя углекислый газ. Каменноугольный газ, который широко использовался до 1960-х годов для внутреннего освещения, приготовления пищи и нагревания, содержал окись углерода как значительное топливное составляющее. Некоторые процессы в современной технологии, такие как выплавка чугуна, до сих пор производят окись углерода в качестве побочного продукта. Во всем мире наиболее крупными источниками окиси углерода являются естественные источники, из-за фотохимических реакций в тропосфере, которые генерируют около 5 × 1012 кг окиси углерода в год. Другие природные источники СО включают вулканы, лесные пожары и другие формы сгорания. В биологии, окись углерода естественным образом вырабатывается под действием гемоксигеназы 1 и 2 на гем от распада гемоглобина. Этот процесс производит определенное количество карбоксигемоглобина у нормальных людей, даже если они не вдыхают окись углерода. После первого доклада о том, что окись углерода является нормальным нейромедиатором в 1993 году, а также одним из трех газов, которые естественным образом модулируют воспалительные реакции в организме (два других – оксид азота и сероводород), окись углерода получила большое внимание ученых в качестве биологического регулятора. Во многих тканях, все три газа, действуют как противовоспалительные средства, вазодилататоры и промоторы неоваскулярного роста. Продолжаются клинические испытания небольших количеств окиси углерода в качестве лекарственного средства. Тем не менее, чрезмерное количества монооксида углерода вызывает отравление угарным газом.

Молекулярные свойства

Окись углерода имеет молекулярную массу 28,0, что делает его немного легче, чем воздух, чья средняя молекулярная масса составляет 28,8. Согласно закону идеального газа, СО, следовательно, имеет меньшую плотность, чем воздух. Длина связи между атомом углерода и атомом кислорода составляет 112,8 пм. Эта длина связи согласуется с тройной связью, как в молекулярном азоте (N2), который имеет аналогичную длину связи и почти такую же молекулярную массу. Двойные связи углерод-кислород значительно длиннее, например, 120,8 м у формальдегида. Точка кипения (82 К) и температура плавления (68 K) очень похожи на N2 (77 К и 63 К, соответственно). Энергия диссоциации связи 1072 кДж / моль сильнее, чем у N2 (942 кДж / моль) и представляет собой наиболее сильную из известных химическую связь. Основное состояние электрона окиси углерода является синглетным , так как здесь нет неспаренных электронов.

Связующий и дипольный момент

Углерод и кислород вместе имеют, в общей сложности, 10 электронов в валентной оболочке. Следуя правилу октета для углерода и кислорода, два атома образуют тройную связь, с шестью общими электронами в трех связывающих молекулярных орбиталях, а не обычную двойную связь, как у органических карбонильных соединений. Так как четыре из общих электронов поступают из атома кислорода и только два из углерода, одна связующая орбиталь занята двумя электронами из атомов кислорода, образуя дативную или дипольную связь. Это приводит к C ← O поляризации молекулы, с небольшим отрицательным зарядом на углероде и небольшим положительным зарядом на кислороде. Две других связывающих орбитали занимают каждая один электрон из углерода и один из кислорода, образуя (полярные) ковалентные связи с обратной C → O поляризацией, так как кислород является более электроотрицательным, чем углерод. В свободной окиси углерода, чистый отрицательный заряд δ- остается в конце углерода, и молекула имеет небольшой дипольный момент 0,122 D. Таким образом, молекула асимметрична: кислород имеет больше плотности электронов, чем углерод, а также небольшой положительный заряд, по сравнению с углеродом, который является отрицательным. В противоположность этому, изоэлектронная молекула диазота не имеет дипольного момента. Если окись углерода действует в качестве лиганда, полярность диполя может меняться с чистым отрицательным зарядом на конце кислорода, в зависимости от структуры координационного комплекса.

Полярность связи и состояние окисления

Теоретические и экспериментальные исследования показывают, что, несмотря на большую электроотрицательность кислорода, дипольный момент исходит из более отрицательного конца углерода к более положительному концу кислорода. Эти три связи представляют собой фактически полярные ковалентные связи, которые сильно поляризованы. Рассчитанная поляризация к атому кислорода составляет 71% для σ-связи и 77% для обоих π -связей. Степень окисления углерода в окись углерода в каждой из этих структур составляет +2. Она рассчитывается так: все связующие электроны считаются принадлежащими к более электроотрицательным атомам кислорода. Только два несвязывающих электрона на углероде относятся к углероду. При таком подсчете, углерод имеет только два валентных электрона в молекуле по сравнению с четырьмя в свободном атоме.

Биологические и физиологические свойства

Токсичность

Отравление угарным газом является наиболее распространенным типом смертельного отравления воздуха во многих странах. Окись углерода представляет собой бесцветное вещество, не имеющее запаха и вкуса, но очень токсичное. Оно соединяется с гемоглобином с получением карбоксигемоглобина, который «узурпирует» участок в гемоглобине, который обычно переносит кислород, но неэффективен для доставки кислорода к тканям организма. Столь низкие концентрации, как 667 частей на миллион, могут вызвать преобразования до 50% гемоглобина в организме в карбоксигемоглобин. 50% уровень карбоксигемоглобина может привести к судорогам, коме и смерти. В Соединенных Штатах, Министерство труда ограничивает долгосрочные уровни воздействия окиси углерода на рабочем месте до 50 частей на миллион. В течение короткого периода времени, поглощение окиси углерода является накопительным, так как период его полувыведения составляет около 5 часов на свежем воздухе. Наиболее распространенные симптомы отравления угарным газом могут быть похожи на другие виды отравлений и инфекций, и включают такие симптомы, как головная боль, тошнота, рвота, головокружение, усталость и чувство слабости. Пострадавшие семьи часто считают, что они являются жертвами пищевого отравления. Младенцы могут быть раздражительными и плохо питаться. Неврологические симптомы включают спутанность сознания, дезориентацию, нарушение зрения, обмороки (потерю сознания) и судороги. Некоторые описания отравления угарным газом включают геморрагию сетчатки глаза, а также аномальный вишнево-красный оттенок крови. В большинстве клинических диагнозов, эти признаки наблюдаются редко. Одна из трудностей, связанных с полезностью этого «вишневого» эффекта, связана с тем, что она корректирует, или маскирует, в обратном случае нездоровый внешний вид, так как главный эффект удаления венозного гемоглобина связан с тем, что задушенный человек кажется более нормальным, или мертвый человек кажется живым, подобно эффекту красных красителей в составе для бальзамирования. Такой эффект окрашивания в бескислородной CO-отравленной ткани связан с коммерческим использованием монооксида углерода при окрашивании мяса. Оксид углерода также связывается с другими молекулами, такими как миоглобин и митохондриальная цитохромоксидаза. Воздействие окиси углерода может привести к значительному повреждению сердца и центральной нервной системы, особенно в бледном шаре, часто это связано с длительными хроническими патологическими состояниями. Окись углерода может иметь серьезные неблагоприятные последствия для плода беременной женщины.

Нормальная физиология человека

Окись углерода вырабатывается естественным образом в организме человека в качестве сигнальной молекулы. Таким образом, окись углерода может иметь физиологическую роль в организме в качестве нейротрансмиттера или релаксанта кровеносных сосудов. Из-за роли окиси углерода в организме, нарушения в её метаболизме связаны с различными заболеваниями, в том числе нейродегенерацией, гипертонией, сердечной недостаточностью и воспалениями.

    CO функционирует в качестве эндогенной сигнальной молекулы.

    СО модулирует функции сердечно-сосудистой системы

    CO ингибирует агрегацию и адгезию тромбоцитов

    CO может играть определенную роль в качестве потенциального терапевтического средства

Микробиология

Окись углерода является питательной средой для метаногенных архей, строительным блоком для ацетилкофермента А. Это тема для новой области биоорганометаллической химии. Экстремофильные микроорганизмы могут, таким образом, метаболизировать окись углерода в таких местах, как тепловые жерла вулканов. У бактерий, окись углерода производится путем восстановления двуокиси углерода ферментом дегидрогеназы монооксида углерода, Fe-Ni-S-содержащего белка. CooA представляет собой рецепторный белок окиси углерода. Сфера его биологической активности до сих пор неизвестна. Он может быть частью сигнального пути у бактерий и архей. Его распространенность у млекопитающих не установлена.

Распространенность

Окись углерода встречается в различных природных и искусственных средах.

Окись углерода присутствует в небольших количествах в атмосфере, главным образом, как продукт вулканической активности, но также является продуктом естественных и техногенных пожаров (например, лесные пожары, сжигание растительных остатков, а также сжигание сахарного тростника). Сжигание ископаемого топлива также способствует образованию окиси углерода. Окись углерода встречается в растворенном виде в расплавленных вулканических породах при высоких давлениях в мантии Земли. Поскольку природные источники окиси углерода переменны, чрезвычайно трудно точно измерить природные выбросы газа. Окись углерода является быстрораспадающимся парниковым газом, а также проявляет косвенное радиационное воздействие путем повышения концентрации метана и тропосферного озона в результате химических реакций с другими компонентами атмосферы (например, гидроксильный радикал, ОН), что, в противном случае, разрушило бы их. В результате естественных процессов в атмосфере, он, в конечном счете, окисляется до двуокиси углерода. Окись углерода является одновременно недолговечной в атмосфере (сохраняется в среднем около двух месяцев) и имеет пространственно переменную концентрацию. В атмосфере Венеры, окись углерода создается в результате фотодиссоциации двуокиси углерода электромагнитным излучением с длиной волны короче 169 нм. Из-за своей длительной жизнеспособности в средней тропосфере, окись углерода также используется в качестве трассера транспорта для струй вредных веществ.

Загрязнение городов

Окись углерода является временным загрязняющим веществом в атмосфере в некоторых городских районах, главным образом, из выхлопных труб двигателей внутреннего сгорания (в том числе транспортных средств, портативных и резервных генераторов, газонокосилок, моечных машин и т.д.), а также от неполного сгорания различных других видов топлива (включая дрова, уголь, древесный уголь, нефть, парафин, пропан, природный газ и мусор). Большие загрязнения CO могут наблюдаться из космоса над городами.

Роль в формировании приземного озона

Окись углерода, наряду с альдегидами, является частью серии циклов химических реакций, которые образуют фотохимический смог. Он вступает в реакцию с гидроксильным радикалом ( ОН) с получением радикального интермедиата HOCO, который быстро передает радикальный водород О2 с образованием перекисного радикала (НО2 ) и диоксида углерода (CO2). Перекисной радикал затем вступает в реакцию с оксидом азота (NO) с образованием диоксида азота (NO2) и гидроксильного радикала. NO 2 дает O (3P) через фотолиз, тем самым образуя O3 после реакции с O2. Так как гидроксильный радикал образуется в процессе образования NO2, баланс последовательности химических реакций, начиная с окиси углерода, приводит к образованию озона: CO + 2O2 + hν → CO2 + O3 (Где hν относится к фотону света, поглощаемому молекулой NO2 в последовательности) Хотя создание NO2 является важным шагом, приводящим к образованию озона низкого уровня, это также увеличивает количество озона другим, несколько взаимоисключающим, образом, за счет уменьшения количества NO, которое доступно для реакции с озоном.

Загрязнение воздуха внутри помещений

В закрытых средах, концентрация окиси углерода может легко увеличиться до летального уровня. В среднем, в Соединенных Штатах ежегодно от неавтомобильных потребительских товаров, производящих окись углерода, умирает 170 человек. Тем не менее, в соответствии с данными Департамента здравоохранения Флориды, «ежегодно более 500 американцев умирают от случайного воздействия окиси углерода и еще тысячи человек в США требуют неотложной медицинской помощи при несмертельном отравлении угарным газом». Эти продукты включают в себя неисправные топливные приборы сжигания, такие как печи, кухонные плиты, водонагреватели и газовые и керосиновые комнатные обогреватели; оборудование с механическим приводом, такое как портативные генераторы; камины; и древесный уголь, который сжигается в домах и других закрытых помещениях. Американская ассоциация центров контроля отравлений (AAPCC) сообщила о 15769 случаях отравления угарным газом, которые привели к 39 смертям в 2007 году. В 2005 году, CPSC сообщила о 94 смертях, связанных с отравлением моноксидом углерода от генератора. Сорок семь из этих смертей имели место во время перебоев в подаче электроэнергии из-за суровых погодных условий, в том числе, из-за урагана Катрина. Тем не менее, люди умирают от отравления угарным газом, производимым непродовольственными товарами, такими как автомобили, оставленные работающими в гаражах, прилегающих к дому. Центры по контролю и профилактике заболеваний сообщают, что ежегодно несколько тысяч человек обращаются в больницу скорой помощи при отравлении угарным газом.

Наличие в крови

Окись углерода поглощается через дыхание и попадает в кровоток через газообмен в легких. Она также производится в ходе метаболизма гемоглобина и поступает в кровь из тканей, и, таким образом, присутствует во всех нормальных тканях, даже если она не попадает в организм при дыхании. Нормальные уровни окиси углерода, циркулирующие в крови, составляют от 0% до 3%, и выше у курильщиков. Уровни окиси углерода нельзя оценить с помощью физического осмотра. Лабораторные испытания требуют наличия образца крови (артериальной или венозной) и лабораторного анализа на СО-оксиметр. Кроме того, неинвазивный карбоксигемоглобин (SPCO) с импульсной СО-оксиметрией является более эффективным по сравнению с инвазивными методами.

Астрофизика

За пределами Земли, окись углерода является второй наиболее распространенной молекулой в межзвездной среде, после молекулярного водорода. Из-за своей асимметрии, молекула окиси углерода производит гораздо более яркие спектральные линии, чем молекула водорода, благодаря чему СО гораздо легче обнаружить. Межзвёздный CO был впервые обнаружен с помощью радиотелескопов в 1970 году. В настоящее время он является наиболее часто используемым индикатором молекулярного газа в межзвездной среде галактик, а молекулярный водород может быть обнаружен только с помощью ультрафиолетового света, что требует наличия космических телескопов. Наблюдения за окисью углерода обеспечивают большую часть информации о молекулярных облаках, в которых образуется большинство звезд. Beta Pictoris, вторая по яркости звезда в созвездии Pictor, демонстрирует избыток инфракрасного излучения по сравнению с нормальными звездами ее типа, что обусловлено большим количеством пыли и газа (в том числе окиси углерода) вблизи звезды.

Производство

Было разработано множество методов для производства окиси углерода.

Промышленное производство

Основным промышленным источником CO является генераторный газ, смесь, содержащая, в основном, окись углерода и азот, образовавшийся при сгорании углерода в воздухе при высокой температуре, когда имеется избыток углерода. В печи, воздух пропускают через слой кокса. Первоначально произведенный СО2 уравновешивается с оставшимся горячим углем с получением СО. Реакция СО2 с углеродом с получением CO описывается как реакция Будуара. При температуре выше 800°C, CO является преобладающим продуктом:

    СО2 + С → 2 CO (ΔH = 170 кДж / моль)

Другой источник «водяной газ», смесь водорода и монооксида углерода, полученного с помощью эндотермической реакции пара и углерода:

    H2O + C → Н2 + СО (ΔH = +131 кДж / моль)

Другие подобные «синтетические газы» могут быть получены из природного газа и других видов топлива. Оксид углерода также является побочным продуктом восстановления руд оксида металла с углеродом:

    MO + C → M + CO

Окись углерода также получают путем прямого окисления углерода в ограниченном количестве кислорода или воздуха.

    2C (s) + O 2 → 2СО (g)

Поскольку СО представляет собой газ, восстановительный процесс может управляться путем нагревания, используя положительную (благоприятную) энтропию реакции. Диаграмма Эллингама показывает, что образованию СО отдается предпочтение по сравнению с СО2 при высоких температурах.

Подготовка в лаборатории

Окись углерода удобно получать в лаборатории путем дегидратации муравьиной кислоты или щавелевой кислоты, например, с помощью концентрированной серной кислоты. Еще одним способом является нагревание однородной смеси порошкообразного металлического цинка и карбоната кальция, который высвобождает CO и оставляет оксид цинка и оксид кальция:

    Zn + CaCO3 → ZnO + CaO + CO

Нитрат серебра и иодоформ также дают окись углерода:

    CHI3 + 3AgNO3 + H2O → 3HNO3 + CO + 3AgI

Координационная химия

Большинство металлов образуют координационные комплексы, содержащие ковалентно присоединенную окись углерода. Только металлы в низших степенях окисления будут соединяться с лигандами окиси углерода. Это связано с тем, что необходима достаточная плотность электронов, чтобы облегчить обратное пожертвование от металлической DXZ-орбитали, к π * молекулярной орбитали из СО. Неподеленная пара на атоме углерода в СО также жертвует электронную плотность в dx²-y² на металле для формирования сигма-связи. Это пожертвование электрона также проявляется цис-эффектом, или лабилизацией СО лигандов в цис-положении. Карбонил никеля, например, образуется путем прямого сочетания окиси углерода и металлического никеля:

    Ni + 4 CO → Ni (CO) 4 (1 бар, 55 ° C)

По этой причине, никель в трубке или ее части не должен вступать в длительный контакт с окисью углерода. Карбонил никеля легко разлагается обратно до Ni и СО при контакте с горячими поверхностями, и этот метод используется для промышленной очистки никеля в процессе Монда. В карбониле никеля и других карбонилах, электронная пара на углероде взаимодействует с металлом; окись углерода жертвует электронную пару металлу. В таких ситуациях, окись углерода называется карбонильным лигандом. Одним из наиболее важных карбонил металлов является пентакарбонил железа, Fe (CO) 5. Многие комплексы металл-CO получают путем декарбонилирования органических растворителей, а не из СО. Например, трихлорид иридия и трифенилфосфин реагируют в кипящем 2-метоксиэтаноле или ДМФ, с получением IrCl (CO) (PPh3) 2. Карбонилы металлов в координационной химии обычно изучаются с помощью инфракрасной спектроскопии.

Органическая химия и химия основных групп элементов

В присутствии сильных кислот и воды, окись углерода вступает в реакцию с алкенами с образованием карбоновых кислот в процессе, известном как реакции Коха-Хаафа. В реакции Гаттермана-Коха, арены преобразуются в бензальдегидные производные в присутствии AlCl3 и HCl. Литийорганические соединения (например, бутиллитий) вступают в реакцию с окисью углерода, но эти реакции мало научно применимы. Несмотря на то, что CO реагирует с карбокатионами и карбанионами, он относительно нереакционноспособен к органическим соединениям без вмешательства металлических катализаторов. С реагентами из основной группы, СО проходит несколько примечательных реакций. Хлорирование СО является промышленным процессом, приводящим к образованию важного соединения фосгена. С бораном, СО образует аддукт, H3BCO, который является изоэлектронным с катионом ацилия +. СО вступает в реакцию с натрием, создавая продукты, полученные из связи С-С. Соединения циклогексагегексон или триквиноил (C6O6) и циклопентанепентон или лейконовая кислота (C5O5), которые до сих пор получали лишь в следовых количествах, можно рассматривать как полимеры окиси углерода. При давлении более 5 ГПа, окись углерода превращается в твердый полимер углерода и кислорода. Это метастабильное вещество при атмосферном давлении, но оно является мощным взрывчатым веществом.

Использование

Химическая промышленность

Окись углерода представляет собой промышленный газ, который имеет множество применений в производстве сыпучих химических веществ. Большие количества альдегидов получают путем реакции гидроформилирования алкенов, окиси углерода и Н2. Гидроформилирование в процессе Шелла дает возможность создавать предшественники моющих средств. Фосген, пригодный для получения изоцианатов, поликарбонатов и полиуретанов, производится путем пропускания очищенного монооксида углерода и газообразного хлора через слой пористого активированного угля, который служит в качестве катализатора. Мировое производство этого соединения в 1989 году оценивалось в 2,74 млн тонн.

    CO + Cl2 → COCl2

Метанол получают путем гидрогенизации окиси углерода. В родственной реакции, гидрирование окиси углерода связано с образованием связи С-С, как в процессе Фишера-Тропша, где окись углерода гидрогенизируется до жидких углеводородных топлив. Эта технология позволяет преобразовывать уголь или биомассы в дизельное топливо. В процессе Монсанто, окись углерода и метанол реагируют в присутствии катализатора на основе родия и однородной иодистоводородной кислоты с образованием уксусной кислоты. Этот процесс отвечает за большую часть промышленного производства уксусной кислоты. В промышленных масштабах, чистая окись углерода используется для очистки никеля в процессе Монда.

Окраска мяса

Окись углерода используется в модифицированных атмосферных системах упаковки в США, в основном, при упаковке свежих мясных продуктов, таких как говядина, свинина и рыба, чтобы сохранять их свежий внешний вид. Окись углерода соединяется с миоглобином с образованием карбоксимиоглобина, ярко-вишнево-красного пигмента. Карбоксимиоглобин является более стабильным, чем окисленная форма миоглобина, оксимиоглобин, который может окислиться до коричневого пигмента метмиоглобина. Этот стабильный красный цвет может сохраняться гораздо дольше, чем обычное упакованное мясо. Типичные уровни окиси углерода, используемые в установках, использующих этот процесс, составляют от 0,4% до 0,5%. Эта технология впервые признана «в целом безопасной» (GRAS) Управлением по контролю за продуктами и лекарствами США (FDA) в 2002 году для использования в качестве вторичной упаковочной системы, и не требует маркировки. В 2004 году FDA одобрило CO в качестве основного метода упаковки, заявив, что CO не скрывает запаха порчи. Несмотря на это постановление, остается спорным вопрос о том, маскирует ли этот метод порчу продуктов. В 2007 году, в Палате представителей США был предложен законопроект, предлагающий называть модифицированный процесс упаковки с использованием окиси углерода цветовой добавкой, но законопроект не был принят. Такой процесс упаковки запрещен во многих других странах, включая Японию, Сингапур и страны Европейского Союза.

Медицина

В биологии, окись углерода естественным образом вырабатывается под действием гемоксигеназы 1 и 2 на гем от распада гемоглобина. Этот процесс производит определенное количество карбоксигемоглобина у нормальных людей, даже если они не вдыхают окись углерода. После первого доклада о том, что окись углерода является нормальным нейромедиатором в 1993 году, а также одним из трех газов, которые естественным образом модулируют воспалительные реакции в организме (два других – оксид азота и сероводород), окись углерода получила большое клиническое внимание как биологический регулятор. Во многих тканях, все три газа, как известно, действуют как противовоспалительные средства, вазодилататоры и усилители неоваскулярного роста. Тем не менее, эти вопросы являются сложными, поскольку неоваскулярный рост не всегда полезен, так как он играет определенную роль в росте опухоли, а также в развитии влажной макулодистрофии, заболевания, риск которого увеличивается от 4 до 6 раз при курении (главный источник окиси углерода в крови, в несколько раз больше, чем естественное производство). Существует теория, что в некоторых синапсах нервных клеток, когда откладываются долгосрочные воспоминания, принимающая клетка вырабатывает окись углерода, которая обратно передается к передающей камере, заставляющей её передаваться более легко в будущем. Некоторые такие нервные клетки, как было показано, содержат гуанилатциклазу, фермент, который активируется окисью углерода. Во многих лабораториях по всему миру были проведены исследования с участием монооксида углерода относительно его противовоспалительных и цитопротекторных свойств. Эти свойства могут быть использованы для предотвращения развития ряда патологических состояний, в том числе, ишемического реперфузионного повреждения, отторжения трансплантата, атеросклероза, тяжелого сепсиса, тяжелой малярии или аутоиммунных заболеваний. Были проведены клинические испытания с участием людей, однако их результаты еще не были выпущены.

Трагический случай в Борисове, где отравление угарным газом стало причиной гибели шести человек, вынудил задуматься о безопасной эксплуатации бытовых приборов даже самых легкомысленных граждан. Большинство из нас скептически относится к визитам соответствующих специалистов, считая подобный контроль мероприятием «для галочки». В век технического процесса как-то не верится, что человеческая жизнь может зависеть от самых простых и будничных вещей. Оказалось, может, и не только своя собственная, но и жизнь соседа.

Следствию еще предстоит ответить на ряд вопросов, но специалисты уже сегодня уверены, что именно неправильная работа дымоходов и вентиляции привела к страшной развязке в Борисове. Не зря отголоском этой беды стали повальные внеплановые проверки жилищного фонда во всех городах Беларуси. И результаты этого вынужденного мониторинга оказались совсем не утешительными. К примеру, только в Октябрьском районе Гродно специалистами ЧПТУП «Гродненский областной комбинат противопожарных работ» собственникам жилья выдано 49 предписаний. Известны случаи, когда в небольших районных центрах, таких как Ошмяны, приостанавливалась эксплуатация бытовых газовых приборов в нескольких десятках квартир. Так ли обоснована обеспокоенность специалистов, или принципиальная позиция объясняется высоким общественным резонансом чрезвычайного происшествия?

Чтобы осознать опасность беспечного отношения к работе газового оборудования, достаточно вспомнить краткий курс химии. Угарный газ (СО) — один из наиболее токсичных продуктов горения, входящих в состав дыма. Попадая в кровеносную систему, он связывается с гемоглобином, который, как известно, «транспортирует» кислород по всему организму, обеспечивая процесс дыхания. Новое соединение, карбоксигемоглобин, блокирует передачу кислорода, в результате чего наступает удушье. Главная опасность угарного газа в том, что он не имеет запаха и цвета и при этом даже небольшой его концентрации достаточно, чтобы вызвать необратимые последствия. Уже после нескольких вдохов появляются первые симптомы отравления: головная боль, удушье, стук в висках, головокружение, тошнота, рвота, зрительные и слуховые галлюцинации. При концентрации СО во вдыхаемом воздухе всего 1 % после нескольких вдохов наступают судороги и двигательный паралич. Человек теряет сознание и умирает через 2 - 3 минуты.

Самое неприятное, что карбоксигемоглобин — очень устойчивое соединение. Угарный газ, попав в организм, практически парализует всю дыхательную систему. И оказать первую помощь пострадавшему довольно сложно. Вынести на свежий воздух, освободить от стесняющей дыхание одежды, дать понюхать нашатырный спирт, напоить крепким чаем или кофе, при необходимости сделать искусственное дыхание — вот, пожалуй, и весь набор первых спасательных действий. В основном остается уповать на быстрый приезд медиков и их профессиональные действия. Эффективное лечение возможно только в условиях стационара. Да и то только в том случае, если концентрация угарного газа еще недостаточно сильная.

Таким образом, единственный эффективный способ избежать трагедии — выполнение всех требований безопасной эксплуатации газовых котлов и проточных водонагревателей. И здесь даже самые, казалось бы, несущественные претензии специалистов полностью оправданы.

Согласно пункту 43 Правил пользования газом в быту, дымовые и вентиляционные каналы обязательно проверяются при вводе оборудования в эксплуатацию, а затем перед каждым отопительным сезоном. А вот дымовые каналы от газовых колонок, если они изготовлены из кирпича, проверяются и чистятся как минимум раз в три месяца.

В эффективном действии вентиляции необходимо убедиться после каждого ремонта. К слову, большинство нарушений, выявленных в ходе последних проверок, касаются именно изменений в той или иной степени конструкций дымоходов. Специалисты предполагают, что и в Борисове немалую роль сыграли последствия недавнего ремонта дома, в результате которого ухудшилась эффективность системы вентиляции. Мало того, на конце дымоходов были оборудованы дефлекторы (зонты), что категорически недопустимо. Все это в комплексе вполне могло привести к «опрокидыванию» тяги, когда продукты сгорания поступают не наружу, а, наоборот, внутрь. При этом, возможно, автоматика аварийного отключения не сработала, и люди даже не могли осознать смертельной опасности.

К слову, владельцы квартир иногда сами блокируют автоматику, если котел часто отключается «сам по себе». Не желая разбираться в причинах подобных капризов чувствительного оборудования, люди идут по пути наименьшего сопротивления и, по сути, сами себе подписывают приговор.

Сейчас модно менять дизайн квартир. Но одно дело переклеить обои или обновить мебель, и другое — затронуть спроектированные по всем требованиям системы безопасности. Так, изменение формы сечения вентиляционного канала с круглого на квадратное приводит к уменьшению площади воздухообмена и, как следствие, к ухудшению аэродинамических свойств. Кроме того, при строительных работах в вентиляцию могут попасть куски штукатурки, кирпичей, блоков. Закон физики прост: площадь сечения канала дымохода должна быть не меньше площади сечения дымоходного патрубка котла, но не более чем в 1,3 раза.

Ухудшить тягу могут не только посторонние предметы, но и налет сажи, обледенение в период перепада температур и т. д. Поэтому специалисты советуют относиться к проверке вентиляции, как к чистке зубов, — делать ее регулярно перед каждым включением и выключением прибора.

Иногда безалаберность собственников квартир доходит до такой степени, что видна невооруженным глазом на вентиляционной решетке: она бывает напрочь забита пылью, оседающей на липком слое жировых отложений. О каком воздухообмене в таком случае может идти речь?

В бытовых условиях проще всего проверить тягу, приложив к вентиляционной решетке листик бумаги. Он должен плотно прилипнуть к ней под силой отходящего воздуха. Если этого не произошло, нужно бить тревогу. Ни в коем случае не следует использовать в качестве индикатора зажженную спичку, поскольку в отверстии могут скопиться горючие газы, и такая проверка может закончиться взрывом.

При малейших сомнениях нужно обращаться в диспетчерскую ЖКХ. Согласно белорусскому законодательству за техобслуживание зданий, в том числе и вентиляционных каналов, отвечает коммунальная служба. Хотя, как правило, обслуживающие жилфонд предприятия заключают договор со специализированными организациями, имеющими в своем составе специально обученных сотрудников, вооруженных соответствующим оборудованием. Наверное, стоит все-таки лучше довериться профессионалам, чем пытаться самостоятельно устранить проблему. Тем более что эта опасность не имеет ни цвета, ни запаха.

Отравление продуктами горения – основная причина (80% всех случаев) гибели людей на пожарах. Свыше 60% из них приходится на отравление угарным газом.

Что такое угарный газ и чем он опасен

Давайте попробуем разобраться и вспомнить знания из физики и химии.

Угарный газ (окись углерода, или монооксид углерода, химическая формула СО) – газообразное соединение, образующееся при горении любого вида. Что происходит при попадании этого вещества в организм? После попадания в дыхательные пути молекулы угарного газа сразу оказываются в крови и связываются с молекулами гемоглобина. Образуется совершенно новое вещество – карбоксигемоглобин, который препятствует транспортировке кислорода. По этой причине очень быстро развивается кислородная недостаточность.

Самая главная опасность – угарный газ невидим и никак не ощутим, он не имеет ни запаха, ни цвета, то есть причина недомогания не очевидна, ее не всегда удается обнаружить сразу. Монооксид углерода невозможно никак почувствовать, именно поэтому второе его название – тихий убийца.

Почувствовав усталость, упадок сил и головокружение, человек допускает роковую ошибку – решает прилечь. И, даже если понимает потом причину и необходимость выхода на воздух, предпринять ничего уже, как правило, не в состоянии. Многих могли бы спасти знания симптомов отравления СО – зная их, возможно вовремя заподозрить причину недомогания и принять необходимые меры к спасению.

Симптомы и признаки

Тяжесть поражения зависит от нескольких факторов:

  • состояние здоровья и физиологические особенности человека. Ослабленные, имеющие хронические заболевания, особенно сопровождающиеся анемией, пожилые, беременные и дети более чувствительны к воздействию СО;
  • длительность воздействия соединения СО на организм;
  • концентрация окиси углерода во вдыхаемом воздухе;
  • физическая активность во время отравления. Чем выше активность, тем быстрее наступает отравление.

Степени тяжести

(Инфографика доступна по кнопке скачать после статьи)

Легкая степень тяжести характеризуется следующими симптомами:

  • общая слабость;
  • головные боли, преимущественно в лобной и височной областях;
  • стук в висках;
  • шум в ушах;
  • головокружение;
  • нарушение зрения – мерцание, точки перед глазами;
  • непродуктивный, т.е. сухой кашель;
  • учащенное дыхание;
  • нехватка воздуха, одышка;
  • слезотечение;
  • тошнота;
  • гиперемия (покраснение) кожных покровов и слизистых оболочек;
  • тахикардия;
  • повышение артериального давления.

Симптомы средней степени тяжести – это сохранение всех симптомов предыдущей стадии и их более тяжелая форма:

  • затуманенность сознания, возможны потери сознания на короткое время;
  • рвота;
  • галлюцинации, как зрительные, так и слуховые;
  • нарушение со стороны вестибулярного аппарата, нескоординированные движения;
  • боли в груди давящего характера.

Тяжелая степень отравления характеризуется следующими симптомами:

  • паралич;
  • долговременная потеря сознания, кома;
  • судороги;
  • расширение зрачков;
  • непроизвольное опорожнение мочевого пузыря и кишечника;
  • учащение пульса до 130 ударов в минуту, но при этом прощупывается он слабо;
  • цианоз (посинение) кожных покровов и слизистых оболочек;
  • нарушения дыхания – оно становится поверхностным и прерывистым.

Нетипичные формы

Их две – обморочная и эйфорическая.

Симптомы обморочной формы:

  • бледность кожных покровов и слизистых оболочек;
  • снижение артериального давления;
  • потеря сознания.

Симптомы эйфорической формы:

  • психомоторное возбуждение;
  • нарушение психических функций: бред, галлюцинации, смех, странности в поведении;
  • потеря сознания;
  • дыхательная и сердечная недостаточность.

Первая помощь пострадавшим

Только цифры

  • Легкая степень отравления наступает уже при концентрации угарного газа 0,08% – возникает головная боль, головокружение, удушье, общая слабость.
  • Повышение концентрации СО до 0,32% вызывает двигательный паралич и обморок. Примерно через полчаса наступает смерть.
  • При концентрации СО 1,2% и выше развивается молниеносная форма отравления – за пару вздохов человек получает смертельную дозу, летальный исход наступает максимум через 3 минуты.
  • В выхлопных газах легкового автомобиля содержится от 1,5 до 3% угарного газа. Вопреки расхожему мнению, отравиться при работающем двигателе можно не только в закрытых помещениях, но и на открытом воздухе.
  • Около двух с половиной тысяч человек в России ежегодно госпитализируется с различной степенью тяжести отравления угарным газом.

Окись углерода (угарный газ) // Вредные вещества в промышленности. Справочник для химиков, инженеров и врачей / Под ред. Н. В. Лазарева и И. Д. Гадаскиной. - 7-е изд. - Л.: Химия, 1977. - Т. 3. - С. 240-253. - 608 с.

Концентрация угарного газа и симптомы отравления

Меры профилактики

Для того, чтобы минимизировать риски отравления угарным газом, достаточно соблюдать следующие правила:

  • эксплуатировать печи и камины в соответствии с правилами, регулярно проверять работу вентиляционной системы и своевременно , а кладку печей и каминов доверять только профессионалам;
  • не находиться длительное время вблизи оживленных трасс;
  • всегда отключать двигатель машины в закрытом гараже. Для того, чтобы концентрация угарного газа стала смертельной, достаточно лишь пяти минут работы двигателя – помните об этом;
  • при длительном нахождении в салоне автомобиля, а тем более сне в машине – всегда отключать двигатель;
  • возьмите за правило – при возникновении симптомов, по которым можно заподозрить отравление угарным газом, как можно скорее обеспечьте приток свежего воздуха, открыв окна, а лучше покиньте помещение. Не ложитесь, почувствовав головокружение, тошноту, слабость.

Помните – угарный газ коварен, он действует быстро и незаметно, поэтому жизнь и здоровье зависят от быстроты принятых мер. Берегите себя и своих близких!

Многие газообразные вещества, существующие в природе и получаемые при производствах, являются сильными отравляющими соединениями. Известно, что хлор использовался как биологическое оружие, пары брома обладают сильно разъедающим действием на кожу, сероводород вызывает отравление и так далее.

Одним из таких веществ является и монооксид углерода или угарный газ, формула которого имеет свои особенности в структуре. О нем и пойдет речь дальше.

Химическая формула угарного газа

Эмпирический вид формулы рассматриваемого соединения следующий: СО. Однако такая форма дает характеристику лишь о качественном и количественном составе, но не затрагивает особенности строения и порядок соединения атомов в молекуле. А он отличается от такового во всех прочих подобных газах.

Именно эта особенность влияет на проявляемые соединением физические и химические свойства. Какая же это структура?

Строение молекулы

Во-первых, по эмпирической формуле видно, что валентность углерода в соединении равна II. Так же, как и у кислорода. Следовательно, каждый из них может сформировать по две формула угарного газа СО это наглядно подтверждает.

Так и происходит. Между атомом углерода и кислорода по механизму обобществления неспаренных электронов происходит образование двойной ковалентной полярной связи. Таким образом, угарного газа принимает вид С=О.

Однако на этом особенности молекулы не заканчиваются. По донорно-акцепторному механизму в молекуле происходит формирование третьей, дативной или семиполярной связи. Чем это объясняется? Так как после образования по обменному порядку у кислорода остается две пары электронов, а у атома углерода - пустая орбиталь, то последний выступает в роли акцептора одной из пар первого. Другими словами, пара электронов кислорода размещается на свободной орбитали углерода и происходит образование связи.

Так, углерод - акцептор, кислород - донор. Поэтому формула угарного газа в химии принимает следующий вид: С≡О. Такая структуризация сообщает молекуле дополнительную химическую стабильность и инертность в проявляемых свойствах при обычных условиях.

Итак, связи в молекуле монооксида углерода:

  • две ковалентные полярные, образованные по обменному механизму за счет обобществления неспаренных электронов;
  • одна дативная, сформированная по донорно-акцепторному взаимодействию между парой электронов и свободной орбиталью;
  • всего связей в молекуле - три.

Физические свойства

Есть ряд характеристик, которыми, как и любое другое соединение, обладает угарный газ. Формула вещества четко дает понять, что кристаллическая решетка молекулярная, состояние при обычных условиях газообразное. Отсюда вытекают следующие физические параметры.

  1. С≡О - угарный газ (формула), плотность - 1,164 кг/м 3 .
  2. Температура кипения и плавления соответственно: 191/205 0 С.
  3. Растворяется в: воде (незначительно), эфире, бензоле, спирте, хлороформе.
  4. Не имеет вкуса и запаха.
  5. Бесцветен.

С биологической точки зрения крайне опасен для всех живых существ, кроме определенных видов бактерий.

Химические свойства

С точки зрения химической активности, одно из самых инертных веществ при обычных условиях - это угарный газ. Формула, в которой отражены все связи в молекуле, подтверждает это. Именно из-за такой прочной структуры данное соединение при стандартных показателях окружающей среды практически не вступает ни в какие взаимодействия.

Однако следует хотя бы немного нагреть систему, как дативная связь в молекуле рушится, как и ковалентные. Тогда монооксид углерода начинает проявлять активные восстановительные свойства, причем достаточно сильные. Так, он способен взаимодействовать с:

  • кислородом;
  • хлором;
  • щелочами (расплавы);
  • с оксидами и солями металлов;
  • с серой;
  • незначительно с водой;
  • с аммиаком;
  • с водородом.

Поэтому, как уже оговаривалось выше, свойства, которые проявляет угарный газ, формула его во многом объясняет.

Нахождение в природе

Основной источник СО в атмосфере Земли - лесные пожары. Ведь главный способ образования данного газа естественным путем - это неполное сгорание различного вида топлива, в основном органической природы.

Антропогенные источники загрязнения воздуха монооксидом углерода так же немаловажны и дают по массовой доле такой же процент, как и природные. К ним относятся:

  • дым от работы фабрик и заводов, металлургических комплексов и прочих промышленных предприятий;
  • выхлопные газы из двигателей внутреннего сгорания.

В природных условиях угарный газ легко окисляется кислородом воздуха и парами воды до углекислого газа. На этом основана первая помощь при отравлении этим соединением.

Получение

Стоит указать одну особенность. Угарный газ (формула), углекислый газ (строение молекулы) соответственно выглядят так: С≡О и О=С=О. Разница на один атом кислорода. Поэтому промышленный способ получения монооксида основан на реакции между диоксидом и углем: СО 2 + С = 2СО. Это самый простой и распространенный способ синтеза данного соединения.

В лаборатории используют различные органические соединения, соли металлов и комплексные вещества, так как выход продукта не ожидают слишком большим.

Качественный реагент на наличие в воздухе или растворе угарного газа - хлорид палладия. При их взаимодействии формируется чистый металл, который вызывает потемнение раствора или поверхности бумаги.

Биологическое действие на организм

Как уже оговаривалось выше, угарный газ - это очень ядовитый бесцветный, опасный и смертоносный вредитель для человеческого организма. Да и не только именно человеческого, а вообще любого живого. Растения, которые находятся под воздействием выхлопных газов автомобилей, гибнут очень быстро.

В чем же именно заключается биологическое воздействие монооксида углерода на внутреннюю среду животных существ? Все дело в формировании прочных комплексных соединений белка крови гемоглобина и рассматриваемого газа. То есть вместо кислорода захватываются молекулы яда. Клеточное дыхание мгновенно блокируется, газообмен становится невозможным в нормальном его течении.

В результате происходит постепенная блокировка всех молекул гемоглобина и, как следствие, смерть. Достаточно поражения всего на 80%, чтобы исход отравления стал летальным. Для этого концентрация угарного газа в воздухе должна составлять 0,1 %.

Первыми признаками, по которым можно определить наступление отравления этим соединением, являются:

  • головная боль;
  • головокружение;
  • потеря сознания.

Первая помощь - выйти на свежий воздух, где угарный газ под влиянием кислорода превратится в углекислый, то есть обезвредится. Случаи смертей от действия рассматриваемого вещества очень часты, особенно в домах с Ведь при сгорании дров, угля и другого вида топлива в качестве побочного продукта обязательно образуется этот газ. Соблюдение правил техники безопасности крайне важно для сохранения жизни и здоровья человека.

Также много случаев отравления в гаражных помещениях, где собрано много работающих двигателей автомобилей, но недостаточно подведен приток свежего воздуха. Смерть при превышении допустимой концентрации наступает уже через час. Ощутить присутствие газа физически невозможно, ведь ни запаха, ни цвета у него нет.

Использование в промышленности

Кроме того, монооксид углерода применяют:

  • для обработки мясных и рыбных продуктов, что позволяет придать им свежий вид;
  • для синтезов некоторых органических соединений;
  • как компонент генераторного газа.

Поэтому это вещество является не только вредоносным и опасным, но еще и весьма полезным для человека и его хозяйственной деятельности.