Температура горения дров в печи: как выбрать дрова для эффективного и экономичного отапливания дома. Температура горения разных пород дерева в печи по цельсию

Воспламенение древесины возможно лишь при нагреве её внешних слоев до температур активного пиролиза (см. рис. 95), в том числе и при лучистом нагреве (см. рис. 164), когда горючая смесь продуктов пиролиза (летучих) и воздуха становится способной загореться от внешнего источника воспламенения (огня, искры, горелки и т. п.). Если внешнего источника воспламенения нет, то воспламенение становится возможным в режиме самовоспламенения, когда какой-то участок древесины, перегреваясь, не просто выделяет летучие, а обугливается. При этом активный древесный уголь может начать взаимодействовать с воздухом (тлеть) с самозагоранием и в конце концов за счёт своей высокой температуры воспламеняет горючую смесь над поверхностью древесины. Таким образом самовоспламенение древесины происходит за счёт тления возникающего древесного угля. А тлеющий древесный уголь, как все знают, возникает в первую очередь на ворсинках древесины в виде угольков (рис. 95). Поэтому защита древесины от самовозгорания (например, на полке бани, где нет источников воспламенения, но есть высокие температуры) прежде всего должна подразумевать защиту от воспламенения ворсинок древесины.

Древесина всегда имеет ворсинки: структурные неровности и неровности обработки. Структурные неровности - следствие капиллярно-пористого строения древесины. При срезе часть волокон отдирается, а часть перерезается прямо по клеткам. Поэтому на поверхности древесины всегда имеются возвышения, канавки, углубления и идущие вглубь каналы, когда видимые глазом, а когда нет. Но всегда видна структура древесины, всегда видно, что разные участки по-разному впитывают краски и воду. Неровности обработки - результат некачественной механической обработки древесины (распиливания, обстругивания, шлифования и т. п.). Все эти неровности в быту называются заусеницами. По ГОСТ 7016-82 все неровности чётко классифицированы (риски, кинематическая волнистость, неровности разрушения, неровности упругого восстановления по годичным слоям, неровности прессования и т. п.) и называются шероховатостью древесины. Шероховатость измеряется по ГОСТ 15612-85 с учётом наличия отдельных оторванных волокон (ворсистости) и пучков волокон (мшистости) по размеру высот неровностей над поверхностью.

Для снижения шероховатости древесину обстругивают, шлифуют, а затем обжигают кратковременным, но мощным действием газовой горелки. Заусеницы сгорают, не воспламеняя древесину, поскольку она не успевает прогреться до температур активного пиролиза. Возможные, образовавшиеся при обжиге сажистые налёты, удаляют протиркой жёстким войлоком. Заусеницы на поверхности древесины, конечно, остаются, но очень мелкие.

Чтобы сделать древесину ещё более инертной к огневому воздействию, её пропитывают водными солями с последующим высушиванием. Ясно, что если все поры в древесине (и в ворсинках тоже) забиты негорючей солью, то древесина становится более теплоёмкой (труднее прогревается) и более теплопроводной (лучше отводится тепло от начинающего воспламеняться уголька). Соли в поверхностный слой надо ввести много, не менее 20 кг на 1 м² древесины. Усиление эффекта будет достигнуто при выборе в качестве солей кристаллогидратов (бура, углекислый натрий - хозяйственная (кристаллическая) сода, медный или железный купоросы ит. п.), которые при нагревании разлагаются с выделением воды, испаряющейся и тем самым охлаждающей готовую вспыхнуть древесину. Лучше, если соль будет разлагаться с поглощением теплоты и выделением газов, отдувающих воздух от древесины или обрывающих цепи химических реакций воспламенения продуктов пиролиза. Ещё лучше, если разлагающаяся соль к тому же будет давать легкоплавкие окислы и закрывать расплавом все поры древесины. Так что пропиточных составов и принципов их работы может быть очень много.

Если работа ответственная, делается под заказ, то пропиточный состав следует выбирать промышленный (пусть даже изготовленный из отходов производства), но аттестованный по ГОСТ 16363-76 (см. раздел 5.7.16), предоставив заказчику формальный сертификат. Беда, правда, в том, что сертификатам в нашей стране сейчас верить опасно, и полагаться можно только на авторитет фирмы (если продукция не поддельная). Поэтому для собственных нужд можно закупить на химбазе сами соли, лучше всего фосфорнокислого аммония и/или сернокислого аммония. Огнезащитное количество этих солей составит 20-80 кг на 1 м³ древесины (СНиП I-А. 12-55). Эти соли можно растворять в растворе жидкого стекла (натриевого или калиевого), а также с антисептическими солями типа фтористого натрия, хлористого цинка, медного купороса и т. п.

Пропитав водным раствором солей и высушив древесину можно покрыть огнезащитной краской, которая не должна глубоко впитываться в древесину, а создавать на поверхности желательно негорючую плёнку, закрывающую неровности древесины. К таким краскам относятся силикатные, масляные с обязательным добавлением эффективных антипиренов, хлорвиниловые, кремнийорганические и др. Количество краски должно составлять не менее 0,5-0,8 кг на 1 м² поверхности древесины. Из подручных средств в качестве краски можно использовать раствор жидкого стекла («конторского» клея для бумаги) с добавлением мелкого наполнителя (литопона, мела, окиси титана) так, чтобы порошок забивал поры и оставался на поверхности в виде слоя склеенных силикатом (или иным лаком) частиц.

Поверх краски (или вместо неё) можно нанести огнезащитное покрытие (обмазку) типа штукатурки, но содержащее специфические компоненты: волокнистые наполнители, газообразующие вещества, водовыделяющие кристаллогидраты, легкоплавкие окислы. К наиболее дешёвым образцам относится широкоизвестная суперфосфатная обмазка СФО (дисперсия суперфосфата в воде), известково-глиносолевая обмазка ИГСО (смесь известкового теста - гашёной извести с глиной и поваренной солью). Более продвинутыми являются вспучивающиеся покрытия, например, ВПД по дереву (аналог ВПМ-2 по металлу). В качестве обмазки можно использовать обычные известково-алебастровые, известково-цементные и цементно-песчаные штукатурки, которые должны плотно прилегать к поверхности древесины так, чтобы все неровности поверхности древесины были замазаны и имели надёжный тепловой контакт с штукатуркой. Такие обмазки и штукатурки предупреждают возгорание древесины по крайней мере от пламени короткого замыкания проводов силового питания оборудования за время срабатывания автоматических выключателей или 3-х минутного воздействия пламени паяльной лампы, хотя вспучивающиеся обмазки могут обеспечить огнестойкость даже на уровне EI45 и могут выдержать действие электрической и газовой сварки.

В рядовых банях надёжная огнезащита древесины в области печного узла встречается редко. Чаще всего деревянная стена обивается листом металла по асбесту. Огнестойкость такой защиты невелика из-за высокой теплопроводности асбеста. Повысить эффективность такой стандартной защиты можно укладкой первого слоя асбеста в мокром виде на силикатноглиняном растворе, плотно прилегающем ко всем неровностям поверхности древесины.

Все эти методы защиты могут затруднить самовоспламенение древесины, но при длительном воздействии огня древесина всё равно может вспыхнуть, поскольку пиролиз древесины предотвратить невозможно никакими способами. Затруднить сгорание древесины может ограничение доступа воздуха к поверхности древесины (с появлением дымления), ограничение передачи тепла из зоны пламени к древесине, а также пропитка древесины очень большим количеством солей и антипиренов (до 200 кг на 1 м³ древесины). Причём задача как раз и состоит в том, чтобы дым (появление которого предотвратить невозможно) не перерождался в пламя.

Пожарная опасность древесины определяется закономерностями ее термического разложения под действием внешних тепловых потоков, которое начинается при температуре 110˚С. Дальнейший нагрев сопровождается удалением из древесины свободной и связанной влаги. Этот процесс завершается при температуре 180˚С, после чего начинается разложение наименее термостойких компонентов с выделением СО 2 и Н 2 О. При температуре ~250˚С происходит пиролиз древесины с выделением газообразных продуктов: СО, СН 2 , Н 2, СО 2, Н 2 О. Выделяющаяся газовая смесь является горючей и способна воспламеняться от источника зажигания. При более высоких температурах процесс термического разложения древесины ускоряется. Основная масса горючих газов, содержащая до 25% водорода и до 40% горючих углеводородов, выделяется в температурном интервале от 350 до 450˚С.

Одним из важных факторов, определяющих пожарную опасность древесины, является ее способность к воспламенению и распространению горения при нагревании на воздухе.

Горения древесина происходит в виде пламенного горения и тления. В условиях пожара основное количество тепла выделяется в период пламенного горения (до 60%) и ~40% - в период тления.

Показатели пожарной опасности некоторых видов древесины приведены в таблице 4.

Таблица 4 - Показатели пожарной опасности различных видов древесины

Температурные показатели пожарной опасности древесины – температуры воспламенения и самовоспламенения – определяются закономерностями ее термического разложения. Значения этих показателей для разных пород древесины, как видно из таблицы 2, находятся в достаточно узком температурном интервале.

Сухая древесина всех пород является легковоспламеняемым (В3) сильногорючим (Г4) материалом с высокой дымообразующей способностью (Д3). По токсичности продуктов горения древесина относятся к группе высокоопасных материалов (Т3). Линейная скорость распространения пламени по поверхности составляет 1-10 мм/с. Эта скорость существенно зависит от ряда факторов: породы древесины, ее влажности, величины падающего теплового потока, ориентации горящей поверхности. Скорость тления также не является постоянной величиной – для различных пород древесины она колеблется в пределах 0,6 – 1,0 мм/мин.

В строительстве широко используется отделочные материалы на основе древесины: древесно-стружечные плиты, древесно-волокнистые плиты, деревянные панели, рейки, фанера. Все эти материалы являются горючими. Модифицированные панели, рейки, фанера. Все эти материалы являются горючими. Модификация древесины полимерами, как правило, повышает ее пожарную опасность.

В таблице 5 приведены характеристики горючести некоторых строительных материалов на основе древесины.

Таблица 5 - Горючесть древесных материалов

Распространения пламени по поверхности древесины

Экспериментальные исследования распространения пламени по поверхности древесных материалов с применением разных методов испытания показали, что не только условия внешнего теплового воздействия, но и разновидность древесины сказывается на характеристиках распространения пламени.

Влияние разновидности древесины в некоторой степени прослеживается при рассмотрении значений так называемого индекса распространения пламени (ИРП).

ИРП согласно ГОСТ 12.1.044-89 является комплексным показателем, поскольку при его расчете, помимо скорости распространения пламени на отдельных участках поверхности образца и предельного расстояния распространения, использует также данные о максимальной температуре отходящих дымовых газов и времени ее достижения. Материалы с ИРП≤20 относят к медленно распространяющим пламя, с ИРП˃20 – к быстро распространяющим пламя. Все разновидности древесины относятся к последней группе материалов. Их индекс превышает 55.

В таблице 4 представлены значения ИРП необработанных образцов древесины толщиной 19-25 мм.

Хотя большинство видов древесины относится к 3, наиболее опасному, классу по способности распространять пламя по поверхности потолочных конструкций при пожаре, некоторые образцы хвойных пород, как следует из таблицы 6, имеют более низкие значения ИРП и относятся ко 2 классу.

Таблица 6 - Значение ИРП и класс по способности распространять пламя

Вид древесины

Класс по способности распространять пламя

Красный кедр

Желтый кедр

Ель белая

Ель серебристая

Сосна белая

Сосна Lodgepole

Лиственница

Увеличение теплового потока к поверхности древесины вызывает существенное повышение скорости распространения пламени. Прекращения процесс возможно, если тепловой поток от собственного пламени станет меньше критического для данного материала.

Испытания отделочных строительных материалов на основе древесины в условиях, моделирующих развитие реального пожара, показали достаточно высокие скорости распространения пламени по ним (таблица 7).

Таблица 7 - Скорость распространения пламени по облицовкам из древесных материалов

Дымообразующая способность и токсичность продуктов горения древесины

Выделение дыма токсичных газов представляет доминирующую опасность при пожаре. Она проявляется в токсическом и раздражающем действии продуктов сгорания, а также в ухудшении видимости в задымленной среде. Ухудшение видимости затрудняет эвакуацию людей из опасной зоны, что, в свою очередь, повышает риск их отравления продуктами сгорания. Ситуация при пожаре осложняется еще и тем, что дымовые газы быстро распространяются в пространстве и проникает в помещения, удаленные от очага пожара. Концентрация выделяющегося дыма и его природа зависят от структурных особенностей и химического состава горючего материла, условий горения.

В дымовых газах, образующихся при сгорании древесины, обнаружено более 200 соединений – продуктов неполного сгорания. Максимальное значение оптической плотности при горении каждой из разновидностей древесины сложным образом зависит от плотности внешнего теплового потока. Коэффициент дымообразования при разложении и тлеющем горении древесины разных видов зависит от плотности внешнего теплового потока (рисунок 14).

1 – ель; 2 – сосна подмосковная;3 - сосна тхонгкарибэ; 4 – ильим карагач; 5 – акация кеолай; 6 – каштан; 7 – акация; 8- эвкалипт бачдан.

Рисунок 14 - Характеристика дымообразования.

Аналогичный экстремальный характер кривых для зависимости показателя токсичности продуктов горения древесины от плотности внешнего теплового потока (рисунок 15). В режиме тлеющего горения древесины ели выход СО в 70-240 раз превышает выход СО при пламенном горении.

В режиме тления в диапазоне температур 450-550 ˚С все разновидности древесины проявляют себя как высокоопасные по токсичности продуктов сгорания и относятся к группе Т3. С увеличением интенсивности теплового воздействия до 60-65 кВт/м 2 (что соответствует температуре 700-750 ˚С) по токсичности продуктов горения древесина разных видов переходит в группу умеренно опасных материалов Т2.

1- липа; 2 – береза; 3 – ильим карагач;4 – дуб; 5 – осина; 6 – сосна; 7 – ель.

Рисунок 15 - Токсичность продуктов горения от температуры теплового воздействия.

При горении древесины происходит достаточно интенсивное дымообразование. Наибольшее количество дыма выделяется при горении древесных материалов в режиме тления (таблица 8).

Таблица 8 - Дымообразующая способность древесных материалов при испытаниях в режиме тления

4 Мероприятия по пожарной безопасности при строительстве деревянных зданий

Дрова являются классическим и самым распространенным вариантом твердого топлива. При сжигании древесины образуется тепловая энергия, которая используется для отопления различных помещений. Эффективность сгорания всецело зависит от температуры горения дров, а вот она в свою очередь зависит от породы древесины, их влажности и условий сжигания. Каждая разновидность древесины может использоваться для выполнения разных целей и задач. Одни используют для приготовления пищи на мангале или печке, другие для обогрева пространства (в камине или буржуйке).

Горение древесины: основные этапы

Горение – это изотермическое явление, проще говоря, реакция, при которой идет выделение тепла. У каждой породы дерева свое КПД тепла. Чтобы измерить температуру горения дерева в печи используют специальный термометр – пирометр. Все другие приборы и термометры для этой цели не годятся, сколько бы вы не старались.

Определить температуру сгорания можно и по цвету пламени используемой породы. Если порода загорается темно-красным пламенем, значит это низкотемпературное горение. Белое пламя указывает на высокую температуру горения. Но самое оптимальное пламя все же должно быть желтого цвета. Таким пламенем горит обычно сухая береза.

Весь процесс горения дерева заключается в нескольких важных этапах, которые взаимосвязаны между собой.

Этапы горения древесины:

  1. Разогрев. При температуре 120 – 150 градусов дерево обугливается, в результате образуется уголь, который затем сам воспламеняется.
  2. Возгорание дымовых газов. Дальнейший разогрев способен привести к термическому разложению и газы вспыхивают, охватывая всю зону. Дерево при этом горит светло-желтым пламенем.
  3. Воспламенение. Его температура составляет 450 – 620 градусов. Для успешного воспламенения требуется хорошая тяга в определенном количестве.
  4. Горение. Оно состоит из двух фаз: процесса тления и горение пламенем. Горит огонь в том случае, пока для него создаются и поддерживаются определенные условия: пока есть само несгоревшее топливо, продолжает поступать кислород и сохраняется нужная температура.
  5. Затухание. Если хоть одно из условий не соблюдается, процесс горения прекращается и огонь тухнет.


Самыми качественными дровами являются твердые лиственные породы, они имеют высокую теплопроводность и обладают длительным горением. К таким породам можно отнести дуб, бук, березу, акацию. Бук так же отличается приятным ароматом и его используют для копчения. А вот если разжечь в доме грушу, яблоню или вишню, то их приятный запах заполнит все помещение. Способность березовых дров разгораться даже в свежесрубленном виде очень высока, поэтому они являются самым выгодным и востребованным топливом.

Температура горения древесины: факторы, способствующие процессу

Каждый владелец частного дома, где есть печь или камин, знает, что от теплопроводности дров будет зависеть и их КПД. Так же за качество горения дров отвечает и еще один важный показатель. Таким показателем является температура горения дров. У каждой породы дерева она различна. Чем больше будет происходить увеличение градусов, тем система обогрева будет нагреваться быстрее, а вот вода в трубах или кирпичная кладка сохранит тепло дольше.

Существует разный каменный уголь, в котором присутствует большее или меньшее содержание золы. Так же есть отличия и у разных пород древесины. Например, отличаются они температурой, которая выделяется в процессе горения и составом продуктов, оставшихся после сгорания дров.

Чтобы выбрать качественную и добротную древесину, нужно знать некоторые важные факторы, которые отвечают за лучшее горение дерева. От этих факторов будет зависеть не только качество возгорания костра, но и температура пламени и самого процесса сгорания.

Факторы, которые способствуют процессу горения:

  • Сорт древесины;
  • Влажность дерева;
  • Количество воздуха, поступающего в топку.


Так же породы дерева отличаются: плотностью, структурой, а так же составом смол и его количеством. Все эти факторы прямым образом так же влияют на теплопроводность, характер пламени, температуру воспламенения и сгорания разных пород. Например: тополь загорается высоким и очень ярким пламенем, однако максимальная его температура горения может составлять только 500 градусов Цельсию, а это вовсе не достаточно для обогрева. А вот при сгорании таких пород как: бук, ясень или граб выделяется температура более 1000 градусов, что способствует отличному отоплению.

Жаропроизводительность дров: таблица основных пород

Рассматривая разные породы дерева, в итоге, можно заметить некоторые различия: одни из них очень ярко и отлично горят, при этом ощущается сильное тепло, а другие просто еле-еле тлеют, оставляя за собой практически никакого жара. Дело здесь вовсе не в их сухости или влажности, а в их структуре и составе, а так же строении дерева.

Однако стоит обратить свое внимание и на то, что влажное дерево очень плохо возгорается и горит, при этом остается большое количество золы, что плохо сказывается на дымоходе, они сильно засоряются.

Самая высокая жаропроизводительность у дуба, бука, березы, лиственницы или граба, однако эти породы являются самыми нерентабельными и дорогими. Поэтому их применяют очень редко и то в виде стружки или опилок. Самая низкая теплоотдача – у тополя, ольхи и осины. Существует таблица, в которой указаны основные породы и их жаропроизводительность.

Таблица некоторых основных пород и их теплоотдача:

  • Ясень, бук – 87%;
  • Граб – 85%;
  • Дуб – 75, 70%;
  • Лиственница – 72%;
  • Береза – 68%;
  • Пихта – 63%;
  • Липа – 55%;
  • Сосна – 52%;
  • Осина – 51%;
  • Тополь – 39%.

Хвойные породы имеют низкую температуру горения, поэтому их лучше использовать для загорания открытого огня (костра). Однако древесина сосны загорается очень быстро и способна долго тлеть, так как в ее состав входит огромное количество смол, поэтому эта порода способна длительное время сохранять тепло. Но все же для отопления хвойную породу лучше не использовать, так как при ее сгорании образуется много дымовых газов, которые оседают в виде сажи на дымоходе и его приходится чистить, так как он быстро засоряется.

Полное и неполное сгорание: что выделяется при горении древесины

Гореть может не только дерево, но и его продукты (ДСП, ДВП, МДФ), а так же металл. Однако температура горения у всех продуктов разная. Например: температура горения стали составляет 2000 градусов, алюминиевой фольги – 350, а дерево начинает воспламеняться уже при 120 – 150.


При сгорании древесины в конечном итоге образуется дым, где твердым веществом является сажа. Весь состав продуктов сгорания всецело зависит от составляющих дерева. Древесина в основном состоит из самых главных составляющих: водорода, азота, кислорода и углерода.

Если сгорел 1 кг древесины, то продуктов сгорания в газообразном состоянии выделиться где-то 7,5 – 8,0 м кубических. В дальнейшем они гореть уже не способны, кроме окиси углерода.

Продукты сгорания дерева:

  • Азот;
  • Окись углерода;
  • Углекислый газ;
  • Пары воды;
  • Сернистый газ.

Горение по характеру может быть полным или неполным. Но оба они происходят с образованием дыма. При неполном горении некоторые продукты сгорания еще могут гореть в дальнейшем (сажа, окись углерода, углеводороды). А вот если произошло полное сгорание, то тогда продукты, которые образовались в дальнейшем, гореть не способны (сернистый и углекислый газы, пары воды).

Возгорание древесины и защита

Горение представляет собой процесс термического разложения древесины, состоящий из пламенной фазы и тления, при котором происходит движение кислорода в толщу древесины.

Горение может происходить только в том случае, когда имеется достаточный приток кислорода, а сама теплота сгорания не рассеивается, а идет на прогрев новых смежных

участков древесины до температуры воспламенения. Температура воспламенения, т. е. момент вспышки горючих газов для различных пород древесины колеблется в сравнительно небольших пределах - от 250 до 300°. Длительный нагрев древесины при температуре 120-150° сопровождается медленным и постепенным обугливанием, с образованием при этом самовоспламеняющегося на воздухе угля, весьма опасного для незащищенных деревянных элементов.

Воспламеняемость древесины связана с ее объемным весом, влажностью, мощностью внешнего источника нагрева, формой сечения деревянного элемента, скоростью воздушного потока (тяги), положением элемента в тепловом потоке (горизонтальное, вертикальное) и т, п. Решающее значение для процесса горения имеет калорийность материала. Сухая и легкая древесина воспламеняется быстрее, чем плотная (дуб и т. п.). Мокрая древесина труднее воспламеняется, так как до воспламенения необходимо израсходовать дополнительное количество теплоты на испарение воды. Замедляющим фактором также является повышенная теплопроводность мокрой древесины; загоревшийся поверхностный слой ее скорее охлаждается. Круглые и массивные элементы горят хуже, чем с прямоугольным профилем и с малым сечением, с острыми ребрами и относительно развитой боковой поверхностью. Не струганная поверхность элементов, подобная рыхлой древесине, воспламеняется быстрее, чем гладкая.

Хорошие результаты дает пропитка древесины в горячих и холодных ваннах. Для такой пропитки применяется аммофос- белый кристаллический порошок, представляющий собой аммониальные соли фосфорной кислоты, сернокислый аммоний (технический), диаммонийсфат (технический), не вызывающие коррозии стали.

Для получения раствора, обладающего одновременно огнезащитными и антисептическими свойствами, в состав добавляется фтористый натрий.

Более простым, но менее эффективным средством огнезащиты деревянных элементов является поверхностная их пропитка путем погружения на 2-3 часа в водный раствор солей (фосфорнокислый, сернокислый аммоний и т. п.) или поверхностная двух трех кратная обработка (краскопультом или кистью) водными огнезащитными растворами того же состава. При этом раствор проникает на глубину 1 - 1,5 мм.

Наконец, еще одним и также простым средством является окраска поверхностей деревянных элементов специальными огнезащитными силикатными и другими красками или обмазка огнезащитным составом (суперфосфатом и др.).

Все огнезащитные окраски и обмазки частично задерживают возгорание. При высоких температурах древесина под покровом краски или обмазки подвергается сухой перегонке, с выделением продуктов разложения - горючих газов, выходящих наружу, с последующим выпучиванием и разрывом покрова. При этом горение газовых струй происходит в значительном отдалении от поверхности древесины при уменьшенном подогревающем действии пламени и замедленной скорости и распаде древесины. Огнезащитное действие окраски и обмазки объясняется также теплоизолирующим действием их покрова, который у некоторых красок способен при действии высоких температур значительно увеличиваться в объеме, образуя пену или пузыри, отдаляющие начало сухой перегонки дерева.

Полуфабрикаты и строительные изделия

Полуфабрикаты и строительные изделия изготовляют из хвойных и лиственных пород с влажностью не выше 12% для чистого пола и 15% -для других деталей.

В зависимости от вида обработки к этой группе материалов из древесины относят: строганные бруски, строганные и шпунтовые доски для настила чистых полов, паркет, фанеру, профильные материалы - плинтусы, галтели, перильные поручни, наличники и др.

Шпунтовые доски в отличие от обычной обрезной доски имеют с одной стороны кромки шпунт (выемку), а с другой - гребень, входящий в шпунт соседней доски. Шпунт и гребень, с помощью которых доски плотно подгоняют, могут иметь различную форму - прямоугольную, треугольную, трапецеидальную и сегментную. Шпунтованные доски используют для настилки пола, устройства перегородок и других работ.

Профильные материалы - плинтусы и галтели - используют для заделки углов между стеной и полом, поручни - для устройства лестничных перил и наличники - для обшивки оконных и дверных проемов.

Паркет выпускают в виде паркетных досок, наборного и штучного паркета с влажностью древесины 8±2%. Паркетные доски состоят из двух слоев: верхнего - лицевого покрытия из паркетных планок толщиной 6-8 мм и нижнего - в виде реечного основания толщиной 18-19 мм. Планки паркета изготовляют из высококачественной древесины: дуба, бука, ясеня, сосны, лиственницы, клена, вяза и некоторых других пород.

Основанием для паркетных досок служит древесина различных пород дерева, в том числе кедра, сосны, ели, пихты, а также обработанная антисептиками древесина березы, ольхи, осины и т. п. Планки лицевого слоя паркетных досок склеивают с основанием водостойкими синтетическими клеями. Паркетные доски имеют с одной стороны кромки - паз, а с другой - гребень для плотного соединения при укладке досок в паркетный пол. Они имеют следующие преимущества по сравнению со штучным паркетом: меньший расход древесины ценных пород, более прочная наклейка паркетных планок, более высокая степень механизации производства и более высокая скорость настилки пола.

Наборный паркет представляет собой набор паркетных планок (13 твердых пород дерева: дуб, бук и др., наклеенных лицевой стороной на бумагу в определенном порядке). После укладки наборного паркета на подготовленное основание пола бумагу вместе с клеем снимают и соответствующим образом отделывают паркетный пол.

Штучный паркет состоит из планок твердых пород дерева определенного размера и формы.

Фанера - листы, получаемые склеиванием трех или более тонких слоев древесного шпона со взаимно перпендикулярным расположением волокон древесины. Фанерный шпон изготовляют на специальных лущильных станках путем срезания слоя древесины в виде непрерывной широкой ленты с последующим раскроем ее на форматные листы. Фанера бывает обычной (клееной), декоративной и бакелизированной. В зависимости от вида применяемого клея различают клееную фанеру марки ФСФ, обладающую повышенной водостойкостью - склеенную водостойкими фенолформальдегидными клеями; средней водостойкости марки ФК и ФБК - склеенную карбамидными или альбуминоказеиновыми клеями; ограниченной водостойкости марки ФБ - склеенную белковыми клеями. Для получения клееных видов фанеры широко используют древесину сосны, ели, пихты, ольхи, дуба, березы и бука.

Изготовление клееной фанеры состоит в основном из следующих технологических операций: пропаривания деревянных кряжей в горячей воде и лущения их для получения шпона, раскроя шпона на листы заданного формата, сушки и промазки клеем, укладки слоев шпона и прессования на горячих прессах в фанеру, выравнивания кромок фанеры путем обрезки, сушки и складирования. Клееную фанеру выпускают размерами 725X1230 мм при толщине от 1,5 до 12 мм. Клееная фанера, получаемая на основе синтетических клеев, достаточно водостойка, долговечна и широко применяется для обшивки наружных стен, кровельных работ, изготовления несущих и ограждающих конструкций (фанера ФСФ); для устройства внутренних перегородок в заводском домостроении и обшивки стен внутри помещений (фанера ФБ) и т. п.

Древесина сегодня по-прежнему остается одним из востребованных строительных материалов. Но при легкости обработки, прочности, относительно небольшой массе материала, прекрасных влагозащитных, теплозащитных и экологических качествах древесина, являясь материалом органического происхождения, нуждается в дополнительной защите от огня и биологической среды, что обеспечивают огнезащитные материалы. Сегодня защита древесины обеспечивается многочисленными средствами, которые позволяют не только продлить срок службы конструкций из дерева, сохранить их внешний вид, но и во многом повышают безопасности их использования.

Свойства древесины с точки зрения воздействия огня.

Древесина в воздушно-сухом состоянии относится к сгораемым материалам - она воспламеняется и распространяет огонь. Однако из-за того, что при горении на поверхности древесины образуется уголь, горящий медленнее и с теплопроводностью в 4 раза ниже, чем у самой древесины, скорость потери рабочего сечения деревянной конструкции (ДК) не превышает 0,8 мм в минуту. Поэтому ДК противостоят обрушению при пожаре в течение более продолжительного времени, чем стальные, которые могут не выдержать нагрузок из-за снижения прочности при нагревании. Наряду с этим огнестойкость стальных конструкций падает и из-за того, что при нагревании они сильно удлиняются. Так, если нагреть стальную балку длиной 15 м до 500°С, то она удлиняется на 90 мм, что приводит к возникновению разрушающих напряжений в конструкциях здания. Древесина при нагревании деформируется в 3-4 раза меньше.

Воспламенение древесины от открытого огня может происходить при температуре около 210°С и сопровождается повышением температуры.

При отсутствии открытого источника теплоты (пламени, искр) воспламенение может произойти при быстром (1-2 минуты) нагревании древесины до температуры свыше 330°С. При длительном воздействии теплоты температура воспламенения древесины снижается до 150-170°С. Это обстоятельство необходимо учитывать при размещении деревянных конструкций вблизи нагревающихся предметов (отопительных приборов, дымоходов). В этих случаях требуется обеспечить такие условия контакта древесины с ними, чтобы установившаяся температура ее не превышала 150°С.

Основным условием для продолжения и развития самостоятельного горения зажженного деревянного изделия является превышение количества теплоты, аккумулированной поверхностными слоями его, над количеством теплоты, отдаваемой в пространство. Другими словами, для поддержания и распространения горения необходимо, чтобы температура соседних участков конструкций поддерживалась выше точки воспламенения древесины.