Кожухотрубные теплообменники назначение устройство и принцип работы. Область применения аппаратов

Смонтированная и готовая к работе пластинчатая теплообменная установка отличается небольшими габаритами и высоким уровнем производительности. Так, удельная рабочая поверхность такого аппарата может достигать 1,500 м 2 /м 3 .Конструкция таких аппаратов включает набор гофрированных пластин, которые отделяются друг от друга прокладками. Прокладки образуют герметичные каналы. Среда, отдающая тепло течет в пространстве между полостями, а внутри полостей находится среда, которая поглощает тепло или наоборот. Пластины монтируются на штанговой раме и расположены плотно относительно друг друга.

Каждая пластина оснащена следующий набор прокладок:

  • прокладка по периметру, которая ограничивает канал для теплоносителя и два отверстия его входа и выхода;
  • две малые прокладки, которые изолируют два других угловых отверстия для прохода второго теплового носителя.

Таким образом, конструкция имеет четыре раздельных канала для входа и выхода двух сред, участвующих в теплообменных процессах. Данный тип аппаратов способен распределять потоки по всем каналам параллельно или последовательно. Так, при необходимости, каждый поток может проходить по всем каналам или определенным группам.

К достоинствам данного типа аппаратов принято относить интенсивность теплообменного процесса, компактность, а также возможность полного разбора агрегата с целью очистки. К недостаткам причисляют необходимость скрупулезной сборки для сохранения герметичности (как результат большого количества каналов). Кроме того, минусами такой конструкции является склонность к коррозии материалов, из которых изготовлены прокладки и ограниченная тепловая стойкость.

В случаях, когда возможно загрязнение поверхности нагрева одним из теплоносителей, используют агрегаты, конструкция которых состоит из попарно сваренных пластин. Если загрязнение нагреваемой поверхности исключено со стороны обоих теплоносителей, применяются сварные неразборные теплообменные аппараты (как, например, аппарат с волнообразными каналами и перекрестным движением теплоносителей).

Принцип действия пластинчатого теплообменника

Пластинчатый теплообменник для дизельного топлива

Наименование Горячая сторона Холодная сторона
Расход (кг/ч) 37350,00 20000,00
Температура на входе (°C) 45,00 24,00
Температура на выходе (°C) 25,00 42,69
Потеря давления (bar) 0,50 0,10
Теплообмен (кВт) 434
Термодинамические свойства: Дизельное топливо Вода
Удельный вес (кг/м³) 826,00 994,24
2,09 4,18
Теплопроводимость (Вт/м*K) 0,14 0,62
Средняя вязкость (мПа*с) 2,90 0,75
Вязкость у стенки (мПа*с) 3,70 0,72
Подводящий патрубок B4 F3
Отводящий патрубок F4 B3
Исполнение рамы / пластин:
2 х 68 + 0 х 0
Расположение пластин (проход*канал) 1 х 67 + 1 х 68
Количество пластин 272
324,00
Материал пластин 0.5 мм AL-6XN
NITRIL / 140
150,00
16,00 / 22,88 PED 97/23/EC, Kat II, Modul Al
16,00
Тип рамы / Покрытие IS No 5 / Категория C2 RAL5010
DN 150 Фланец St.37PN16
DN 150 Фланец St.37PN16
Объем жидкости (л) 867
Длина рамы (мм) 2110
Макс.число пластин 293

Пластинчатый теплообменник для сырой нефти

Наименование Горячая сторона Холодная сторона
Расход (кг/ч) 8120,69 420000,00
Температура на входе (°C) 125,00 55,00
Температура на выходе (°C) 69,80 75,00
Потеря давления (bar) 53,18 1,13
Теплообмен (кВт) 4930
Термодинамические свойства: Пар Сырая нефть
Удельный вес (кг/м³) 825,00
Удельная теплоемкость (кДж/кг*K) 2,11
Теплопроводимость (Вт/м*K) 0,13
Средняя вязкость (мПа*с) 20,94
Вязкость у стенки (мПа*с) 4,57
Степень загрязнения (м²*K/кВт) 0,1743
Подводящий патрубок F1 F3
Отводящий патрубок F4 F2
Исполнение рамы / пластин:
Расположение пластин (проход*канал) 1 х 67 + 0 х 0
Расположение пластин (проход*канал) 2 х 68 + 0 х 0
Количество пластин 136
Фактическая поверхность нагрева (м²) 91.12
Материал пластин 0.6 мм AL-6XN
Материал прокладки / Макс. темп. (°C) VITON / 160
Макс. расчетная температура (C) 150,00
Макс. рабочее давление /испыт. (bar) 16,00 / 22,88 PED 97/23/EC, Kat III, Modul В+C
Макс. дифференциальное давление (bar) 16,00
Тип рамы / Покрытие IS No 5 / Категория C2 RAL5010
Присоединения на горячей стороне DN 200 Фланец St.37PN16
Присоединения на холодной стороне DN 200 Фланец St.37PN16
Объем жидкости (л) 229
Длина рамы (мм) 1077
Макс.число пластин 136

Пластинчатый теплообменник

Наименование Горячая сторона Холодная сторона Расход (кг/ч) 16000,00 21445,63 Температура на входе (°C) 95,00 25,00 Температура на выходе (°C) 40,00 45,00 Потеря давления (bar) 0,05 0,08 Теплообмен (кВт) 498 Термодинамические свойства: Азеотропная смесь Вода Удельный вес (кг/м³) 961,89 993,72 Удельная теплоемкость (кДж/кг*K) 2,04 4,18 Теплопроводимость (Вт/м*K) 0,66 0,62 Средняя вязкость (мПа*с) 0,30 0,72 Вязкость у стенки (мПа*с) 0,76 0,44 Степень загрязнения (м²*K/кВт) Подводящий патрубок F1 F3 Отводящий патрубок F4 F2 Исполнение рамы / пластин: Расположение пластин (проход*канал) 1 х 29 + 0 х 0 Расположение пластин (проход*канал) 1 х 29 + 0 х 0 Количество пластин 59 Фактическая поверхность нагрева (м²) 5,86 Материал пластин 0.5 мм AL-6XN Материал прокладки / Макс. темп. (°C) VITON / 140 Макс. расчетная температура (C) 150,00 Макс. рабочее давление /испыт. (bar) 10,00 / 14,30 PED 97/23/EC, Kat II, Modul Аl Макс. дифференциальное давление (bar) 10,00 Тип рамы / Покрытие IG No 1 / Категория C2 RAL5010 Присоединения на горячей стороне DN 65 Фланец St.37PN16 Присоединения на холодной стороне DN 65 Фланец St.37PN16 Объем жидкости (л) 17 Длина рамы (мм) 438 Макс.число пластин 58

Пластинчатый теплообменник для пропана

Наименование Горячая сторона Холодная сторона
Расход (кг/ч) 30000,00 139200,00
Температура на входе (°C) 85,00 25,00
Температура на выходе (°C) 30,00 45,00
Потеря давления (bar) 0,10 0,07
Теплообмен (кВт) 3211
Термодинамические свойства: Пропан Вода
Удельный вес (кг/м³) 350,70 993,72
Удельная теплоемкость (кДж/кг*K) 3,45 4,18
Теплопроводимость (Вт/м*K) 0,07 0,62
Средняя вязкость (мПа*с) 0,05 0,72
Вязкость у стенки (мПа*с) 0,07 0,51
Степень загрязнения (м²*K/кВт)
Подводящий патрубок F1 F3
Отводящий патрубок F4 F2
Исполнение рамы / пластин:
Расположение пластин (проход*канал) 1 х 101 + 0 х 0
Расположение пластин (проход*канал) 1 х 102 + 0 х 0
Количество пластин 210
Фактическая поверхность нагрева (м²) 131,10
Материал пластин 0.6 мм AL-6XN
Материал прокладки / Макс. темп. (°C) NITRIL / 140
Макс. расчетная температура (C) 150,00
Макс. рабочее давление /испыт. (bar) 20,00 / 28,60 PED 97/23/EC, Kat IV, Modul G
Макс. дифференциальное давление (bar) 20,00
Тип рамы / Покрытие IS No 5 / Категория C2 RAL5010
Присоединения на горячей стороне DN 200 Фланец AISI 316 PN25 DIN2512
Присоединения на холодной стороне DN 200 Фланец AISI 316 PN16
Объем жидкости (л) 280
Длина рамы (мм) 2107
Макс.число пластин 245

Описание пластинчато-ребристых теплообменных аппаратов

Удельная рабочая поверхность данного аппарата может достигать 2,000 м 2 /м 3. К плюсам таких конструкций принято относить:

  • возможность теплообмена между тремя и более теплоносителями;
  • небольшой вес и объем.

Конструктивно пластинчато-ребристые теплообменники состоят из тонких пластин, между которыми находятся гофрированные листы. Данные листы припаяны к каждой пластине. Таким образом, теплоноситель разбивается на мелкие потоки. Аппарат может состоять из любого числа пластин. Теплоносители могут перемещаться:

  • прямотоком;
  • перекрестным потоком.

Существуют следующие типы ребер:

  • гофрированные (рифленые), образующие волнистую линию вдоль потока;
  • прерывистые ребра, т.е. смещенные относительно друг друга;
  • чешуйчатые ребра, т.е. имеющие прорези, которые отогнуты в одну или разные стороны;
  • шиповидные, т.е. изготовленные из проволоки, которые могут располагаться в шахматном или коридорном порядке.

Пластинчато-ребристые теплообменные аппараты применяют как регенеративные теплообменники.

Блочные графитовые теплообменные аппараты: описание и применение

Теплообменные аппараты , выполненные из графита, характеризуются следующими качествами:

  • высокой стойкостью к коррозии;
  • высоким уровнем проводимости тепла (может достигать до 100 Вт/(м·К)

Благодаря указанным качествам, теплообменники данного типа широко используются в химической промышленности. Наибольшее распространение получили блочные графитовые аппараты, основным элементом которых является графитовый блок в форме параллелепипеда. В блоке есть непересекающиеся отверстия (вертикальные и горизонтальные), которые предназначаются для движения теплоносителей. Конструкция блочного графитового теплообменника может включать в себя один и более блоков. По горизонтальным отверстиям в блоке осуществляется двухходовое движение теплоносителя, которое возможно благодаря боковым металлическим плитам. Теплоноситель, который перемещается по вертикальным отверстиям, совершает один или два хода, что определяется конструкцией крышек (верхней и нижней). В теплообменниках с увеличенными боковыми гранями, теплоноситель, двигающийся вертикально может делать два или четыре хода.

Графитовый теплообменник, пропитанный фенолоальдегидным полимером, кольцевого блочного типа, с поверхностью теплообмена 320 м 2

Графитовый теплообменник кольцевого блочного типа для H2SO4

Технические характеристики:

Охладитель
Наименование Размерность Горячая сторона Холодная сторона
Вход Выход Вход Выход
Среда H2SO4 (94%) Вода
Расход м³/ч 500 552,3
Рабочая тепература °C 70 50 28 40
Физ. Свойства
Плотность г/cм³ 1,7817 1,8011 1
Удельная теплоёмкость ккал/кг °C 0,376 0,367 1
Вязкость 5 11,3 0,73
Теплопроводность ккал/чм°C 0,3014 0,295 0,53
Поглощённое тепло ккал/ч 6628180
Исправленная средняя разность температур °C 25,8
Перепад давления (допуст./расч.) кПа 100/65 100/45
Коэффициент теплопередачи ккал/чм²°C 802,8
Коэффициент загрязнения ккал/чм²°C 5000 2500
Расчётные условия
Расчётное давление бар 5 5
Рсчётная температура °C 100 50
Спецификация / материалы
Требуемая площадь поверхности теплопередачи м² 320
Прокладки, материал тефлон (фторопласт)
Блоки, материал Графит, пропитка фенольно-альдегидным полимером
Размеры (диаметр×длина) мм 1400*5590
Внутренний диаметр канала, осевой / радиальный 20мм/14мм
Кол-во проходов 1 1
Кол-во блоков 14

Графитовый теплообменник для суспензии гидрата двуокиси титана и раствора серной кислоты

Технические характеристики:

Наименование Размерность Горячая сторона Холодная сторона
Вход Выход Вход Выход
Среда Суспензия гидрата двуокиси Титана и 20% H2SO4 Вода
Расход м³/ч 40 95
Рабочая тепература °C 90 70 27 37
Рабочее давление бар 3 3
Поверхность теплообмена м² 56,9
Физические свойства
Плотность кг/м³ 1400 996
Удельная теплоёмкость кДж/кг∙°C 3,55 4,18
Удельная теплопроводность Вт/м∙К 0,38 0,682
Динамическая вязкость сП 2 0,28
Термостойкость к загрязнению Вт/м²∙К 5000 5000
Перепад давления(рассчитанный) бар 0,3 0,35
Теплообмен кВт 1100
Средняя разница температур оС 47,8
Коэффициент теплопередачи Вт/м²∙К 490
Расчетные условия
Расчётное давление бар 5 5
Рсчётная температура °C 150 150
Материалы
Прокладки PTFE
Кожух Углеродистая сталь
Блоки Графит, пропитанный фенольной смолой

Теплопроводы для химической промышленности

Теплопровод является перспективным устройством, применяемым в химической отрасли с целью интенсификации процессов теплообмена. Теплопровод это полностью герметичная труба с любым профилем сечения, выполненная из металла. Корпус трубы футерован пористо-капиллярным материалом (фитилем), стекловолокном, полимерами, пористыми металлами и т.п. Количество подаваемого теплоносителя должно быть достаточным для пропитки фитиля. Предельная рабочая температура колеблется от любой низкой до 2000 °C. В качестве теплоносителя используют:

  • металлы;
  • высококипящие органические жидкости;
  • расплавы солей;
  • воду;
  • аммиак и т.п.

Одна часть трубы расположена в зоне отвода тепла, остальная - в зоне конденсации паров. В первой зоне образуются пары теплоносителя, во второй зоне они конденсируются. Конденсат возвращается в первую зону благодаря действию капиллярных сил фитиля. Большое количество центров парообразования способствует падению перегрева жидкости во время ее кипения. При этом существенно возрастает коэффициент теплоотдачи при испарении (от 5 до 10 раз). Показатель мощности теплопровода определяется капиллярным давлением.

Регенераторы

Регенератор имеет корпус, круглый или прямоугольный в сечении. Данный корпус изготавливается из листового металла или кирпича, в соответствии с температурой, поддерживаемой в процессе работы. Внутрь агрегата помещается тяжелый наполнитель:

  • кирпич;
  • шамот;
  • рифленый металл и т.п.

Регенераторы, как правило, являются парными аппаратами, поэтому через них одновременно протекает холодный и горячий газ. Горячий газ передает тепло насадке, а холодный получает его. Рабочий цикл состоит из двух периодов:

  • разогрев насадки;
  • охлаждение насадки.

Насадка из кирпича может выкладываться в различном порядке:

  • коридорный порядок (образует ряд прямых параллельных каналов);
  • шахматный порядок (образует каналы сложной формы).

Регенераторы могут оснащаться металлическими насадками. Перспективный аппаратом считается регенератор, оснащенный падающим плотным слоем зернистого материала.

Смесительные теплообменные аппараты. Конденсаторы смешения. Барботер. Охладители

Теплообмен веществ (жидкостей, газов, зернистых материалов), при их непосредственном соприкосновении или смешении отличается максимальной степенью интенсивностью. Применение такой технологии диктуется необходимостью технологического процесса. Для смешения жидкостей применяется:

  • емкостной аппарат, оснащенный мешалкой;
  • инжектор (используются также для непрерывного смешения газов).

Нагревание жидкостей может осуществляться посредством конденсации в них пара. Пар вводится сквозь множественные отверстия в трубе, которая изогнута в форме окружности или спирали и находится в нижней секции аппарата. Устройство, обеспечивающее протекания данного технологического процесса, называется барботером.

Охлаждение жидкости до температуры близкой к 0 °C, может осуществляться посредством ввода льда, который способен поглотить при таянии до 335 кДж/кг тепла либо сжиженных нейтральных газов, характеризующихся невысокой температурой испарения. Иногда применяют холодильные смеси, которые поглощают тепло после растворения в воде.

Жидкость может подогреваться посредством контакта с горячим газом и охлаждаться, соответственно, посредством контакта с холодным. Такой процесс обеспечивается скрубберами (вертикальными аппаратами), где навстречу восходящему потоку газа стекает поток охлаждаемой или нагреваемой жидкости. Скруббер можно наполнять различными насадками с целью увеличения поверхности контакта. Насадки разбивают поток жидкости на маленькие струйки.

К группе смесительных теплообменников также относятся конденсаторы смешения, функция которых состоит в конденсации паров посредством их прямого контакта с водой. Конденсаторы смешения могут быть двух типов:

  • прямоточные конденсаторы (пар и жидкость движутся в одном направлении);
  • противоточные конденсаторы (пар и жидкость движутся в противоположных направлениях).

Для увеличения площади контакта пара и жидкости, поток жидкости разбивается на мелкие струйки.

Воздушный охладитель с ребристыми трубами

Многие химические установки генерируют большое количество вторичного тепла, которое не регенерируется в теплообменниках и не может быть повторно использовано в процессах. Данное тепло выводится в окружающую среду и поэтому существует необходимость минимизировать возможные последствия. Для этих целей применяют различные типы охладителей.

Конструкция охладителей с ребристыми трубами состоит из ряда ребристых труб, внутри которых течет охлаждаемая жидкость. Наличие ребер, т.е. ребристость конструкции, значительно увеличивает поверхность охладителя. Ребра охладителя обдувают вентиляторы.

Данный тип охладителей используется в случаях, когда отсутствует возможность забора воды для целей охлаждения: например на месте монтажа химических установок.

Оросительные охладители

Конструкция оросительного охладителя представляет собой ряды последовательно смонтированных змеевиков, внутри которых движется охлаждаемая жидкость. Змеевики постоянно орошаются водой, за счет чего и происходит орошение.

Башенные охладители

Принцип действия башенного охладителя заключается в том, что подогретая вода разбрызгивается в верхней части конструкции, после чего стекает вниз по набивке. В нижней части конструкции за счет естественного подсоса, мимо стекающей воды струится поток воздуха, который поглощает часть тепла воды. Плюс, часть воды испаряется в процессе стекания, результатом чего также является потеря тепла.

К недостаткам конструкции относятся ее гигантские габариты. Так, высота башенного охладителя может достигать 100 м. Несомненным плюсом такого охладителя является функционирование без вспомогательной энергии.

Башенные охладители, оснащенные вентиляторами, работают по аналогии. С той разницей, что воздух нагнетается посредством данного вентилятора. Следует отметить, что конструкция с вентилятором значительно компактнее.


Теплообменник с поверхностью теплообмена 71,40 м²

Техническое описание:

Поз.1: Теплообменник

Температурные данные Сторона A Сторона B
Среда Воздух Дымовые (топочные) газы
Рабочее давление 0.028 бар изб. 0.035 бар изб.
Среда Газ Газ
Расход на входе 17 548.72 кг/ч 34 396.29 кг/ч
Расход на выходе 17 548.72 кг/ч 34 396.29 кг/ч
Температура на входе/выходе -40 / 100 °C 250 / 180 °C
Плотность 1.170 кг/м³ 0.748 кг/м³
Удельная теплоемкость 1.005 кДж/кг.К 1.025 кДж/кг.К
Теплопроводность 0.026 Вт/м.К 0.040 Вт/м.К
Вязкость 0.019 мПа.с 0.026 мПа.с
Скрытая теплота

Работа теплообменника

Описание теплообменника

Габариты

L1: 2200 мм
L2: 1094 мм
L3: 1550 мм
LF: 1094 мм
Вес: 1547 кг
Вес с водой: 3366 кг

Фланцевый погружной теплообменник 660 кВт

Технические характеристики:

380 В, 50 Гц, 2x660 кВт, 126 рабочих и 13 резервных ТЭНа, всего 139 ТЭНа, соединение в треугольник 21 канал по 31,44 кВт. Защита - NEMA тип 4,7

Рабочая среда: Газ регенерации (объемные проценты):
N2 - 85%, водяной пар-1,7%, CO2-12.3%, O2-0.9%, Sox-100 ppm, H2S-150ppm, NH3-200ppm. Присутствуют механические примеси - соли аммония, продукты коррозии.

Перечень документов, поставляемых с оборудованием:

Паспорт на фланцевую погружную нагревательную секцию с инструкцией по монтажу, пуску, останову, транспортированию разгрузке, хранению, сведение о консервации;
Чертеж общего вида секции;

Теплообменные аппараты из меди подходят для химически чистых и не агрессивных сред, например, таких как пресная вода. Этот материал обладает высоким коэффициентом теплопередачи. Недостатком таких теплообменников является довольно высокая стоимость.

Оптимальным решением для очищенных водных сред является латунь. По сравнению с теплообменным оборудованием из меди она дешевле и обладает более высокими характеристиками коррозионной стойкости и прочности. А также стоит отметить, что некоторые латунные сплавы устойчивы к морской воде и высоким температурам. Недостатком материала считается низкие показатели электро- и теплопроводности.

Наиболее распространенным материальным решением в теплообменных аппаратах является сталь. Добавление в состав различных легирующих элементов позволяет улучшить ее механические, физико-химические свойства и расширить диапазон применения. В зависимости от добавленных легирующих элементов сталь может применяться в щелочных, кислотных средах с различными примесями и при высоких рабочих температурах.

Титан и его сплавы качественный материал, с высокими прочностными и теплопроводными характеристиками. Данный материал очень легкий и находит применение в широком диапазоне рабочих температур. Титан и материалы на его основе проявляют хорошую коррозионную стойкость в большинстве сред кислотного или щелочного характера.

Неметаллические материалы применяют в тех случаях, когда требуется проведение теплообменных процессов в особо агрессивных и коррозионно активных средах. Они характеризуется высоким значением коэффициентом теплопроводности и стойкости к наиболее химически активным веществам, что делает их незаменимым материалом применяемым во многих аппаратах. Неметаллические материалы разделяют на два вида органические и неорганические. К органическим относят материалы на основе углерода, такие как графит и пластические массы. В качестве неорганических материалов применяют силикаты и керамику.

  • теплоноситель при протекании которого возможно выделение осадка преимущественно направляется с той стороны, с которой легче осуществить очистку теплопередающей поверхности;
  • теплоноситель оказывающий корродирующее воздействие направляют по трубам, это обусловлено меньшим требованием расхода коррозионностойкого материала;
  • для уменьшения потерь тепла в окружающую среду теплоноситель с высокой температурой направляют по трубам;
  • с целью обеспечения безопасности при использовании теплоносителя с высоким давлением принято пропускать его в трубах;
  • при протекании теплообмена между теплоносителями находящихся в разных агрегатных состояниях (жидкость-пар, газ), принято направлять жидкость в трубы, а пар в межтрубное пространство.

Подробнее о расчете и подборе теплообменного оборудования

Минимальная/максимальная расчетная температура металла для деталей под давлением: -39 / +30 ºС.

Для деталей не под давлением используется материал согласно EN 1993-1-10.
Классификация зоны: не опасная.
Категория коррозионности: ISO 12944-2: C3.

Тип присоединения труб к трубной доске: обварка.

Электрические двигатели

Исполнение: не взрывобезопасное
Класс защиты: IP 55

Частотные преобразователи

Предусмотрены для 50% электрических двигателей.

Вентиляторы

Лопасти изготовлены из усиленного материала алюминий/пластик с ручной регулировкой шага.

Уровень шума

Не превышает 85 ± 2 дБА на расстоянии 1 м и на высоте 1,5 м от поверхности.

Внешняя рециркуляция

Применяется.

Жалюзи

Верхние, входные и рециркуляционные жалюзи с пневматическим приводом.

Змеевик водяного подогревателя

Размещается на отдельной раме. Каждый подогреватель размещен под трубным пучком.

Вибрационные выключатели

Каждый вентилятор укомплектован вибрационным выключателем.

Стальные конструкции

Включают опоры, стержни, водоотводящие камеры. Комплектный пол для рециркуляции не входит в объем поставки.

Сетчатая защита

Сетчатая защита вентиляторов, вращающихся деталей.

Запасные части

Запасные части для сборки и запуска

  • Крепеж для стальных конструкций: 5%
  • Крепеж для крышек плит коллекторов: 2%
  • Крепеж для штуцеров воздушника и дренажа: 1 комплект каждого типа

Запасные части на 2 года эксплуатации (опционально)

  • Ремни: 10% (минимум 1 комплект каждого типа)
  • Подшипники: 10% (минимум 1 шт. каждого типа)
  • Прокладки для воздушника, дренажа: 2 шт. каждого типа
  • Крепеж для воздушника и дренажа: 2 комплекта каждого типа

Специальный инструмент

  • Один датчик уровня для установки шага лопастей вентилятора
  • Один комплект для ремонта оребрения

Техническая документация на русском языке (2 экз. + CD диск)

Для согласования рабочей документации:

  • Чертеж общего вида, включая нагрузки
  • Электрическая схема
  • Спецификация оборудования
  • План тестовых проверок

С оборудованием:

  • Основная документация о тестовых проверках согласно стандартов, кодов и других требований
  • Инструкция по эксплуатации
  • Комплексное описание агрегата

Тестовая и инспекционная документация:

  • План тестовых проверок на каждую позицию
  • Внутрицеховая инспекция
  • Гидростатический тест
  • Сертификаты на материалы
  • Паспорт сосуда давления
  • Инспекция TUV

Отгрузочная информация:

  • Трубный пучок полностью собран и протестирован
  • Змеевик теплофикационной воды полностью собран
  • Жалюзи полностью собраны
  • Водоотводящие камеры отдельными частями
  • Рециркуляционные жалюзи с плитами отдельными частями
  • Вентиляторы в сборе
  • Стальные конструкции отдельными частями
  • Электрические двигатели, осевые вентиляторы, вибрационные выключатели и запасные части в деревянных ящиках
  • Сборка на площадке с помощью крепежа (без сварки)

Объем поставки

Следующее оборудование и проектная документация включены в объем поставки:

  • Температурные и механические расчеты
  • Трубные пучки с заглушками для воздушника и дренажа
  • Вентиляторы в сборе
  • Электрические двигатели
  • Частотные преобразователи (50/% всех вентиляторов)
  • Вибрационные выключатели (100% всех вентиляторов)
  • Водоотводящие камеры
  • Опорные конструкции
  • Платформы обслуживания для опор и лестниц
  • Система внешней рециркуляции
  • Термодатчики на стороне воздуха
  • Жалюзи на рециркуляции/входе/выходе с пневмоприводом
  • Петли для подъема
  • Заземление
  • Поверхностная обработка
  • Запасные части для сборки и запуска
  • Запасные части на 2 года эксплуатации
  • Специальный инструмент
  • Ответные фланцы, крепеж и прокладки

Следующее оборудование не включено в объем поставки:

  • Услуги монтажа
  • Предварительная сборка
  • Анкерные болты
  • Теплоизоляция и огнезащита
  • Опоры для кабелей
  • Защита от града и камней
  • Платформа для доступа к электрическим двигателям
  • Электрические подогреватели
  • Шкаф управления для частотных преобразователей*
  • Материалы для электрического монтажа*
  • Соединения для датчиков давления и температуры*
  • Входные и выходные коллекторы, соединительные трубопроводы и фитинги*

Конструкции современных рекуперативных теплообменных аппаратов поверхностного типа непрерывного действия весьма разнообразны. Рассмотрим наиболее характер­ные.

Кожухотрубчатые теплообменники представля­ют собой аппараты, выполненные из пучков труб, скреплен­ных при помощи трубных решеток (досок) и ограниченных кожухами и крышками с патрубками. Трубное и межтрубное пространства в аппарате разобщены, а каждое из них может быть разделено перегородками на несколько ходов. Перегород­ки предназначены для увеличения скорости и, следовательно, коэффициента теплоотдачи теплоносителей. Теплообменники этого типа предназначаются для теплообмена между различны­ми жидкостями, между жидкостями и паром, между жидкостя­ми и газами. Типовые конструкции кожухотрубчатых теплооб­менников применяются в случаях, когда требуется большая поверхность теплообмена.

При нагреве жидкости паром в большинстве случаев пар вво­дится в межтрубное пространство, а нагреваемая жидкость проте­кает по трубкам. В кожухотрубчатых теплообменниках проходное сечение межтрубного пространства в 2... 3 раза больше проходно­го сечения внутри труб. Поэтому при одинаковых расходах тепло­носителей, имеющих одинаковое агрегатное состояние, скорости теплоносителя в межтрубном пространстве более низкие и коэф­фициенты теплоотдачи на поверхности межтрубного простран­ства невысоки, что снижает коэффициент теплопередачи в аппа­рате. На рис. 4.5 показаны различные типы кожухотрубчатых теп­лообменников.

Теплопередающая поверхность аппаратов может составлять от нескольких сотен квадратных сантиметров до нескольких тысяч квадратных метров. Так, конденсатор современной паровой тур­бины мощностью 300 МВт имеет более 20 тыс. труб с общей по­верхностью теплообмена около 15 тыс. м 2 .

Корпус (кожух) кожухотрубчатого теплообменника представ­ляет собой цилиндр, сваренный из одного или нескольких сталь­ных листов. Кожухи различаются, главным образом, способом со­единения с трубной решеткой и крышками. Толщина стенки ко­жуха определяется максимальным давлением рабочей среды и ди­аметром аппарата, но не меньше 4 мм. К цилиндрическим кром­кам кожуха привариваются фланцы для соединения с крышками или днищами. На наружной поверхности кожуха привариваются патрубки и опоры аппарата.

Трубки кожухотрубчатых аппаратов изготовляют прямыми или изогнутыми (U-образными) диаметром от 12 до 57 мм.

Материал трубок выбирается в зависимости от среды, омыва­ющей ее поверхность. Применяются трубки из стали, латуни и специальных сплавов.

Трубные решетки служат для закрепления в них труб при по­мощи развальцовки, заварки, запайки или сальниковых соедине­ний. Трубные решетки зажимаются болтами между фланцами ко­жуха и крышки или привариваются к кожуху, либо соединяются болтами только с фланцами свободной камеры (см. рис. 4.5).


Рис. 4.5. Типы кожухотрубчатых теплообменников:

а - одноходовый; б - многоходовый; в - пленочный; г - с линзовым компен­сатором; д - с плавающей головкой закрытого типа; е - с плавающей головкой открытого типа; ж - с сальниковым компенсатором; з - с U-образными труб­ками; 1 - кожух; 2 - выходная камера; 3 - трубная решетка; 4 - трубы; 5 - входная камера; 6 - продольная перегородка; 7 - камера; 8 - перегородки в камере; 9 - линзовый компенсатор; 10 - плавающая головка; 11 –сальник; 12 - U-образные трубы; I, II - теплоносители

Крышки кожухотрубчатых аппаратов имеют форму плоских плит, конусов, сфер, а чаще всего выпуклых или вогнутых эллип­сов.

Секционные теплообменники (рис. 4.6) представля­ют собой разновидность трубчатых аппаратов и состоят из несколь­ких последовательно соединенных секций, каждая из которых пред­ставляет собой кожухотрубчатый теплообменник с малым числом труб и кожухом небольшого диаметра.

В секционных теплообменниках при одинаковых расходах жид­костей скорости движения теплоносителей в трубах и межтруб­ном пространстве почти равновелики, что обеспечивает повы­шенные коэффициенты теплопередачи по сравнению с обыч­ными трубчатыми теплообменниками. Простейшим из этого типа является теплообменник «труба в трубе» (в наружную трубу встав­лена труба меньшего диаметра). Все элементы аппарата соедине­ны сваркой.

Рис. 4.6. Секционные теплообменники:

а - водяной подогреватель теплосети; б - типа «труба в трубе»; 1 - линзовый компенсатор; 2 - трубки; 3 - трубная решетка с фланцевым соединением с кожухом; 4 - «калач»; 5 - соединительные патрубки

Недостатками секционных теплообменников являются: высо­кая стоимость единицы поверхности нагрева, так как деление ее на секции вызывает увеличение количества наиболее дорогих эле­ментов аппарата - трубных решеток, фланцевых соединений, переходных камер, компенсаторов и т.д.; значительные гидрав­лические сопротивления вследствие различных поворотов и пере­ходов вызывают повышенный расход электроэнергии на привод прокачивающего теплоноситель насоса.

Кожухи серийных секционных теплообменников изготовляют из труб длиной до 4 м, внутренним диаметром от 50 до 305 мм. Число труб в секции составляет от 4 до 151, поверхность нагрева от 0,75 до 26 м 2 , трубы латунные диаметром 16/14 мм. Отношение поверхно­сти нагрева к объему теплообменника достигает 80 м 2 /м 3 , а удель­ный конструкционный вес составляет 50...80 кг/м 2 поверхности нагрева.

Спиральные теплообменники (рис. 4.7) состоят из двух спиральных каналов прямоугольного сечения, по которым движутся теплоносители I и II. Каналы образуются металлически­ми листами, которые служат поверхностью теплообмена. Внут­ренние концы спиралей соединены разделительной перегородкой. Для обеспечения жесткости конструкции и фиксирования рас­стояния между спиралями приваривают бобышки. С торцов спи­рали закрывают крышками и стягивают болтами.

Горизонтальные спиральные теплообменники применяют для теплообмена между двумя жидкостями. Для теплообмена между конденсирующимся паром и жидкостью используют вертикаль­ные спиральные теплообменники. Такие теплообменники приме­няют в качестве конденсаторов и паровых подогревателей для жид­кости.

Рис. 4.7. Типы спиральных теплообменников:

а - горизонтальный; б - вертикальный; 1, 3 - листы; 2 - разделительная перегородка; 4 - крышки; I, II - теплоносители

К достоинствам спиральных теплообменников можно отнести компактность (большая поверхность теплообмена в единице объ­ема, чем у многоходовых трубчатых теплообменников) при оди­наковых коэффициентах теплопередачи и меньшее гидравличес­кое сопротивление для прохода теплоносителей. К недостаткам - сложность изготовления и ремонта и пригодность работы под из­быточным давлении не свыше 1,0 МПа.

Пластинчатые теплообменники имеют плоские по­верхности теплообмена. Обычно такие теплообменники применя­ют для теплоносителей, коэффициенты теплоотдачи которых оди­наковы.

Недостатками изготовлявшихся до недавнего времени пластин­чатых теплообменников являлись малая герметичность и незначи­тельные перепады давлений между теплоносителями.

В последнее время изготовляют компактные разборные плас­тинчатые теплообменники, состоящие из штампованных метал­лических листов с внешними выступами, расположенными в ко­ридорном или шахматном порядке. Такие конструкции приме­няются для теплообмена между жидкостями и газами и работают при перепадах давлений до 12 МПа. На рис. 4.8 представлено не­сколько конструкций теплообменников такого типа. Благодаря незначительному расстоянию между пластинами (6...8 мм) такие теплообменники весьма компактны. Удельная поверхность нагре­ва F/V составляет 200...300 м 2 /м 3 . Поэтому пластинчатые теплооб­менники в ряде случаев вытесняют трубчатые и спиральные.

Но такой конструкции присущи следующие недостат­ки: трудность чистки внутри каналов, ремонта, частичной заме­ны поверхности теплообмена, а также невозможность изготовле­ния пластинчатых теплообменников из чугуна и хрупких матери­алов и длительная эксплуатация.

В настоящее время в системах теплоснабжения жилищно-ком­мунальных хозяйств и ряда промышленных предприятий в каче­стве подогревателей горячего водоснабжения (ГВС) и отопления устанавливаются пластинчатые теплообменники (рис. 4.8) вместо ранее используемых для этих целей традиционных секционных кожухотрубных подогревателей. Это связано с целым рядом обстоя­тельств и преимуществ:

1. Коэффициент теплопередачи в пластинчатых теплообменни­ках в 3...4 раза больше, чем в кожухотрубных, благодаря специальному гофрированному профилю проточной части пластины, обеспечивающему высокую степень турбулизации потоков тепло­носителей. Соответственно в 3...4 раза поверхность пластинчатых теплообменников меньше, чем кожухотрубных.

Рис. 4.8. Пластинчатый водоводяной теплообменник «Теплотекс»:

а - общий вид; б - схема движения теплоносителей

2. Пластинчатые теплообменники имеют малую металлоем­кость, очень компактны, их можно установить в небольшом по­мещении.

3. В отличие от кожухотрубных они легко разбираются и быстро чистятся. При этом не требуется демонтаж подводящих трубопро­водов.

4. В пластинчатом теплообменнике можно легко и быстро заме­нить пластину или прокладку, а также увеличить его поверхность, если со временем возрастет тепловая нагрузка.

Секционные кожухотрубные теплообменники трудно точно рас­считать на требуемую тепловую производительность и допусти­мые потери напора, так как поверхность одной секции велика и Достигает 28 м 2 (при D y = 300 мм).

Пластинчатые теплообменники набираются из отдельных пла­стин, поверхность нагрева которых, как правило, не превышает одного метра. Это обстоятельство в сочетании с оптимально выб­ранным типом пластины позволяет точно без лишнего запаса выб­рать теплопередающую поверхность теплообменника.

По своим техническим характеристикам теплообменники «Теплотекс» являются разборными и одноходовыми; материал пласти­ны - сталь ALSL 316; толщина пластины - 0,5 ...0,6 мм; матерная прокладки - резина EPDM; максимальная рабочая температуря теплоносителя - 150 °С; рабочее давление - 1... 2,5 МПа; расходы воды в зависимости от типа теплообменника от 2 до 100 кг/с; поверхность - от 1,5 до 373 м 2 .

Ребристые теплообменники применяются в тех случаях, когда коэффициент теплоотдачи для одного из теплоно­сителей значительно ниже, чем для второго. Поверхность теп­лообмена со стороны теплоносителя с низким значением α уве­личивают по сравнению с поверхностью теплообмена со стороны другого теплоносителя. В таких аппаратах поверхность теплообмена имеет на одной стороне ребра различной формы (рис. 4.9). Как видно из рисунка, ребристые теплообменники изготовляют самых различных конструкций. При этом ребра выполняю» поперечными, продольными, в виде игл, спиралей, из витой проволоки и т.д.

Рис. 4.9. Типы ребристых теплообмен­ников:

а - пластинчатый; б - чугунная труба с круглыми ребрами; в - трубка со спираль­ным оребрением; г - чугунная труба с внут­ренним оребрением; д - плавниковое оребрение трубок; е - чугунная труба с двусто­ронним игольчатым оребрением; ж - про­волочное (биспиральное) оребрение трубок; з - продольное оребрение труб; и - много­ребристая трубка

Сейчас мы с вами рассмотрим технические характеристики и принцип работы кожухотрубных теплообенников, а так же расчёт их параметров и особенности выбора при покупке.

Теплообменники обеспечивают процесс обмена теплом между жидкостями, каждая из которых имеет разную температуру. В настоящее время кожухотрубный теплообменник с большим успехом нашел свое применение в различных отраслях промышленности: химической, нефтяной, газовой. При их изготовлении не возникает сложностей, они надежны и имеют возможность развивать большую поверхность теплообмена в одном аппарате.

Получили такое название благодаря наличию кожуха, скрывающего внутренние трубы.

Устройство и принцип действия

Строение: конструкция из пучков труб, закрепленных в трубных досках (решетках) крышек, кожухов и опор.

Принцип, по которому осуществляет свою деятельность кожухотрубчатый теплообменник довольно прост. Он заключается в движении холодного и горячего теплоносителей по разным каналам. Теплообмен происходит именно между стенками этих каналов.

Принцип работы кожухотрубчатого теплообменника

Преимущества и недостатки

Сегодня кожухотрубные теплообменники пользуются спросом у потребителей и не теряют своих позиций на рынке. Это обусловлено немалым количеством достоинств, которыми обладают эти устройства:

  1. Высокая стойкость к . Это помогает им легко переносить перепады давления и выдерживать серьезные нагрузки.
  2. Не нуждаются в чистой среде. Это значит, что они могут работать с некачественной жидкостью, не прошедшей предварительной очистки, в отличие от множества других видов теплообменников, которые способны работать исключительно в не загрязненных средах.
  3. Высокая эффективность.
  4. Износостойкость.
  5. Долговечность. При должном уходе кожухотрубчатые агрегаты будут работать на протяжении многих лет.
  6. Безопасность использования.
  7. Ремонтопригодность.
  8. Работа в агрессивной среде.

Учитывая вышеизложенные преимущества, можно утверждать об их надежности, высокой эффективности и долговечности.


Кожухотрубные теплообменники в промышленности

Несмотря на большое количество отмеченных преимуществ кожухотрубных теплообменников, данные устройства имеют и ряд недостатков:

  • габаритность и значительный вес: для их размещения необходимо помещение значительных размеров, что не всегда является возможным;
  • высокая металлоемкость : это является основной причиной их высокой цены.

Виды и типы кожухотрубных теплообменников

Классифицируются кожухотрубные теплообменники в зависимости от того, в каком направлении двигается теплоноситель .

Выделяют следующие виды по этому критерию:

  • прямоточный;
  • противоточный;
  • перекресточный.

Количество трубок, находящихся в сердце кожуха, напрямую влияет на то, с какой скоростью будет двигаться вещество, а скорость оказывает непосредственное влияние на коэффициент теплопередачи .

Учитывая данные характеристики, кожухотрубные теплообменники бывают следующих типов:

  • c температурным кожуховым компенсатором;
  • c неподвижными трубками;
  • c плавающей головкой;
  • c U-образными трубками.

Модель с U-образными трубками состоит из одной трубной решетки, в которую и вварены данные элементы. Это позволяет округленной части трубки беспрепятственно опираться на поворотные щитки в корпусе, при этом они имеют возможность линейно расширяться, что позволяет их использовать в больших диапазонах температур. Для чистки U-трубок требуется вынимать всю секцию с ними и использовать специальные химические средства.

Расчет параметров

Долгое время кожухотрубные теплообменники считались самыми компактными среди существующих. Однако появились , которые в три раза компактнее кожухотрубных. К тому же, особенности конструкции подобного теплообменника приводят к возникновению температурных напряжений из-за различия температур между трубами и кожухом. Поэтому при выборе подобного агрегата очень важно сделать его грамотный расчет.

Формула расчёта площади кожухотрубчатого теплообменника

F — площадь поверхности теплообмена;
t ср – средняя разность температур между теплоносителями ;
К – коэффициент теплопередачи;
Q — количество теплоты.

Для проведения теплового расчета кожухотрубного теплообменника необходимы следующие показатели:

  • максимальный расход греющей воды;
  • физические характеристики теплоносителя : вязкость, плотность, теплопроводность, конечная температура, теплоемкость воды при средней температуре.

При осуществлении заказа кожухотрубчатого теплообменника важно знать, какими техническими характеристиками он обладает:

  • давление в трубах и кожухе;
  • диаметр кожуха;
  • исполнение (горизонтальное\вертикальное);
  • тип трубных решеток (подвижные\неподвижные);
  • климатическое исполнение.

Самостоятельно сделать грамотный расчет достаточно сложно. Для этого необходимы знания и глубокое понимание всей сути процесса его работы, поэтому лучшим способом станет обращение к специалистам.

Эксплуатация трубчатого теплообменника

Кожухотрубный теплообменник является устройством, которое характеризуется высокой продолжительностью срока службы и хорошими параметрами эксплуатации. Однако, как и любому другому устройству, для качественной и долговременной работы ему необходимо плановое обслуживание. Поскольку в большинстве случаев кожухотрубные теплообменники работают с жидкостью, которая не прошла предварительную очистку, трубки агрегата рано или поздно засоряются и на них образуется осадок и создается препятствие для свободного протекания рабочей жидкости.

Чтобы эффективность работы оборудования не снижалась и не произошла поломка кожухотрубного агрегата, следует систематически проводить его чистку и промывку.

Благодаря этому он сможет осуществлять качественную работу на протяжении длительного времени. По истечению срока действия прибора, рекомендуется осуществить замену его на новый.

Если возникла потребность в ремонте трубчатого теплообменника, то первоначально необходимо произвести диагностику устройства. Это позволит выявить основные проблемы и определит объем предстоящей работы. Самая слабая его часть — это трубки, и, чаще всего, основным поводом ремонта является повреждение трубчатки.

Для диагностики кожухотрубного теплообменника используется метод гидравлических испытаний.

В сложившейся ситуации необходимо произвести замену трубок, а это трудоемкий процесс. Необходимо заглушить вышедшие из строя элементы, в свою очередь это сокращает площадь теплообменной поверхности. Осуществляя ремонтные работы, обязательно нужно учитывать тот факт, что любое, даже малейшее вмешательство, может стать причиной уменьшения теплообмена.

Теперь вы знаете, как устроен кожухотрубный теплообменник, какие есть у него разновидности и особенности.

Кожухотрубные теплообменники – аппарат теплообмена между двумя потоками с нагревом одной среды (жидкой, газообразной) за счет охлаждающего агента. В процессе термического процесса не происходит перемешивания двух сред, они могут менять агрегатное состояние. Горячий и холодный теплоносители движутся в разных каналах, а теплообмен происходит через стенки трубных пучков. Для увеличения теплопередающей поверхности используют оребрение труб, которое выполняется навивкой стальной ленты.

Название аппарат получил от кожуха с расположенными внутри трубками, посредством которых и осуществляется рекуперация. Диапазон рабочих температур аппарата от -60°С до +600°С. В зависимости от назначения он может служить теплообменником, холодильником, конденсаторами или испарителем.

Изделие находит применение в теплотехнике для оборудования систем ГВС. Высокая эффективность теплообменников сокращает расход топлива, затрачиваемого на технологический процесс или теплообеспечение. Кожухотрубные теплообменники всегда занимали лидирующие позиции по востребованности на рынке отопительного оборудования. За последние 15–20 лет появилось много новых аналогов с отличными характеристиками. Однако теплотехники предпочитают использовать эти, проверенные временем, надежные тепловые агрегаты.

Какие существуют виды теплообменников?

Согласно ГОСТ 9929–82 кожухотрубчатые теплообменные изделия выпускаются диаметром от 15,9 см до 300 см и выдерживают давление в диапазоне от вакуума до 160 кгс/см². В длину аппарат может быть от нескольких сантиметров до 8–9 метров.

Поверхность теплообмена может достигать нескольких тысяч квадратных метров.

Изделия выпускаются следующих видов:

Н – с неподвижно встроенными трубчатыми решетками;

К – с температурным компенсатором;

П – с плавающей головкой;

У – с U-образной формой трубчатых элементов;

ПК – комбинированная, оснащена плавающей головкой со встроенным компенсатором.

Кожухотрубчатые теплообменники с неподвижными трубными решетками имеют жесткую конструкцию компонентов. Они наиболее распространены в нефтегазовой отрасли и химической промышленности. Этот вид занимает 75% всего рынка кожухотрубчатых теплообменников. Отличительной особенностью этого вида является то, что теплообменные трубы жестко скреплены с трубными решетками (развальцованы), которые в свою очередь, приварены к внутренней стенке корпуса. В связи с этим исключена возможность взаимных перемещений элементов в распределительной камере.

Для подачи и отвода теплоносителя труб и межтрубного пространства, а также отвода конденсата изделия оборудуются штуцерами или другой трубопроводной арматурой, выходящей наружу теплообменника. Интенсивность теплоотдачи при поперечном перемещении потока выше, поэтому его направляют по зигзагообразной траектории. Для этого устанавливают поперечные перегородки, они не примыкают к внутренней поверхности кожуха, оставляя зазор для перемещения потока. Для сосредоточения потока ближе к пучку труб, специальными пластинами сужают рабочее пространство камеры.

В кожухотрубном теплообменнике с компенсатором на корпусе тепловые удлинения компенсируются продольным сжатием или удлинением гибких вставок и расширителей. Такие аппараты применяются при избыточной деформации компенсатора в пределах 10–15 мм. В такой полужесткой конструкции могут применяться линзовые, сальниковые или сильфонные компенсаторы для компенсации температурных удлинений и перекоса труб.

Более совершенной считается конструкция аппарата с плавающей головкой . Одна из трубных досок крепится жестко, другая решетка свободно перемещается вместе с трубной системой. Плавающей готовкой называют подвижную решетку с крышкой, которой она оснащена. Некоторое удорожание аппарата ввиду увеличения диаметра корпуса и дополнительного днища оправдывается большей надежностью в эксплуатации.

В изделии с U-образными трубами оба конца трубного пучка закреплены на одной трубной решетке, труба изогнута петлей на 180° радиусом 4d или больше. Это позволяет трубам свободно удлиняться в сторону изгиба трубного пучка.

По направлению перемещения среды в аппарате различают одно/многоходовые теплообменники . В одноходовом вещество двигается однократно по кратчайшей траектории от входа к выходу. Наиболее ярким представителем этого вида является водоводяной подогреватель ВВП, применяемый в отопительных системах. Когда лучше применять такой аппарат? Лучше всего там, где не требуется высокая интенсивность процесса теплообмена и где существует небольшая разница между температурой теплоносителя и окружающей среды.

В многоходовых поток перенаправляют с помощью системы продольных и поперечных перегородок в объеме. Оптимальным считается применение теплообменника в тепловых системах с большой скоростью перемещения или низкой теплоотдаче агента. По способу перемещения агента различают прямоточные, противоточные и перекрестноточные изделия.

Для работы теплообменника в агрессивных средах вместо стального пучка труб применяют графитовые или стеклянные трубы, герметизируют корпус сальниками специальных материалов.

По какому принципу работают агрегаты?

Применяемый в функционале принцип рекуперации основывается на раздельном теплообмене без перемешивания продуктов. Теплопередача от более нагретой среды менее нагретой осуществляется через стенки труб, разделяющих два агента. При этом соблюдается принцип противотока, как обеспечивающий оптимальную теплопередачу. Один теплоноситель (жидкость, газ, пар) подается под давлением в пространство между труб, второй циркулирует по трубам и может отличаться агрегатным состоянием от первого.

Далее между жидкими и газообразными веществами происходят теплообменные процессы в штатном режиме. Для увеличения коэффициентов теплоотдачи используются достаточно высокие скорости продуктов. У пара и газа она должна быть 8–25 м/с, для жидких агентов от 1,5 м/с. Для повышения теплоотдачи трубы снабжаются специальными ребрами.

Из чего состоит кожухотрубчатый аппарат?

Главным достоинством кожухотрубчатого теплообменника и причиной популярности является несложная, но очень надежная конструкция. Она состоит из распределительной камеры, оснащенной патрубками, цилиндрического кожуха, трубных решеток и пучка труб. Конструкция дополнена крышками с торцов и опорами для размещения на горизонтальном основании или креплениями при другой ориентации в пространстве.

Для интенсификации теплообмена применяют трубы с наружными ребрами, увеличивающими теплоотдачу. Если требуется снизить теплоотдачу в окружающую среду и повысить теплоаккумулирующие свойства, кожух покрывают теплоизолирующим слоем. Также есть конструкции «труба в трубе». Кожух чаще всего изготавливается из листовой стали толщиной не менее 4 мм. Решетки чаще всего производятся из того же материала и имеют толщину не менее 20 мм. Основным конструкционным элементом является пучок металлических труб, с одной или обеих сторон он крепится к трубным решеткам.

Маркировка изделий

Маркировка теплообменников состоит из последовательности знаков буквенно-цифрового кода. Например, аббревиатура 1400 ТКГ-1,5-0,5 – М1/40Д-6-1-У-И расшифровывается так:

диаметр 1400 мм;

давление внутри труб 1,5 Мпа;

то же, только в пространстве между труб 0,5 Мпа;

тип материала М1;

трубы оребренные диаметром 40 мм;

длина изделия 6 м;

одноходовая конструкция;

используется в умеренном климате;

имеются приспособления для крепления внешней теплоизоляции.

Преимущества и недостатки изделий

Кожухотрубчатые теплообменники имеют ряд достоинств, обеспечивших конкурентные преимущества в своем сегменте теплообменников на рынке теплового оборудования:

1. Они обладают высокой стойкостью к гидроударам в то время, когда другие аналоги такой способностью не обладают.

2. Они могут работать с загрязненными продуктами или в агрессивных средах в отличие от других теплообменников. Например, пластинчатые аналоги работают исключительно на чистом агенте.

3. Простота обслуживания (легко производить механическую очистку), проведения ПТО и высокая ремонтопригодность.

Недостатками изделий этого типа являются:

1. Более низкий по сравнению с пластинчатыми изделиями коэффициент полезного действия, меньшая площадь теплопередающей поверхности.

2. Большие габариторазмеры, следствием чего является повышенная материалоемкость и стоимость аппарата.

3. Значительная зависимость теплоотдачи от скорости перемещаемого агента.

Область применения аппаратов

Кожухотрубчатые аппараты применяются в качестве базисного оборудование для тепловых пунктов и инженерных сетей жилищно-коммунального хозяйства. Индивидуальные тепловые пункты (ИТП) имеют существенные преимущества перед централизованным тепловодоснабжением. Они более эффективно производят энергообеспечение объектов и обеспечение теплового режима зданий, чем теплоцентрали.

Теплообменное оборудование этого типа незаменимо в случаях, когда требуется обеспечить развязку по давлению и температуре теплоносителя во вторичном контуре ГВС от подачи сетевой воды. Это особенно актуально, если отопительная система подключается к теплоснабжающей сети по независимой схеме присоединения. Подобное случается, когда статическое давление, например, отопительных систем присоединенных зданий ввиду неровностей рельефа выше, чем в линии сети. Или наоборот, когда давление в сетевой «обратке» выше, чем в обслуживающей системе отопления.

Теплообменники этого типа применяются в нефтяной, газовой, химической промышленности. Их можно обнаружить в большой теплоэнергетике, где используются теплоносители с высокими параметрами. Разносторонняя сфера применения не ограничивается только этими отраслями. В качестве испарителей используются в ребойлерах, конденсаторах-холодильниках воздушного охлаждения, ректификационных колоннах. Могут также задействоваться для охлаждения сырьевых масс, компонентов или готовой продукции. Они широко применяются в технологических процессах молочного, пивного и других производствах пищевой промышленности.

Кожухотрубчатые теплообменники относятся к наиболее распространенным. Их применяют в промышленности и на транспорте в качестве нагревателей, конденсаторов, охладителей, для различных жидких и газообразных сред. Основными элементами кожухотрубчатого теплообменника являются: кожух (корпус), трубный пучок, камеры-крышки, патрубки, запорная и регулирующая арматура, контрольная аппаратура, опоры, каркас. Кожух аппарата сваривают в виде цилиндра из одного или нескольких, обычно стальных листов. Толщина стенки кожуха определяется максимальным давлением рабочей среды в межтрубном пространстве и диаметром аппарата. Днища камер могут быть сферическими сварными, эллиптическими штампованными и реже - плоскими. Толщина днищ не должна быть меньше толщины корпуса. К цилиндрическим кромкам кожуха приваривают фланцы для соединения с крышками или днищами. В зависимости от расположения аппарата относительно пола помещения (вертикальное, горизонтальное) к корпусу должны быть приварены соответствующие опоры. Предпочтительнее вертикальное расположение корпуса и всего теплообменника, так как в этом случае уменьшается площадь, занимаемая аппаратом, и более удобно расположение его в рабочем помещении.

Трубный пучок теплообменника может быть собран из гладких стальных бесшовных, латунных или медных прямых или U- и W-образных труб диаметром от нескольких миллиметров до 57 мм и длиной от нескольких сантиметров до 6-9 м с диаметром корпуса до 1,4 м и более. Внедряются, особенно в холодильной технике и на транспорте, образцы кожухотрубчатых и секционных теплообменников с низкими накатными продольными, радиальными и спиральными ребрами. Высота продольного ребра не превышает 12-25 мм, а высота выступа катаных труб 1,5-3,0 мм при 600-800 ребрах на 1 м длины. Внешний диаметр труб с низкорадиальными (накатными) ребрами мало отличается от диаметра гладких труб, хотя поверхность теплообмена при этом возрастает в 1,5-2,5 раза. Форма такой поверхности теплообмена обеспечивает высокую тепловую эффективность аппарата при рабочих средах с различными теплофизическими свойствами.

В зависимости от конструкции пучка как гладкие, так и накатные трубы закрепляют в одной или двухтрубных решетках развальцовкой, разбортовкой, сваркой, спайкой или сальниковыми соединениями. Из всех перечисленных способов реже применяют более сложные и дорогостоящие сальниковые уплотнения, допускающие при тепловых удлинениях продольное перемещение труб.

Размещение труб в трубных решетках (рис. 2.2) может быть осуществлено несколькими способами: по сторонам и вершинам правильных шестиугольников (шахматное), по сторонам и вершинам квадратов (коридорное), по концентрическим окружностям и по сторонам и вершинам шестиугольников со смещенной на угол β диагональю. Преимущественно трубы размещаются равномерно на всей площади решетки по сторонам и вершинам правильных шестиугольников. В аппаратах, предназначенных для работы на загрязненных жидкостях, часто принимают прямоугольное размещение труб для облегчения очистки межтрубного пространства.

Рис. 2.2 - Способы закрепления и размещения труб в трубных решетках: а - развальцовкой; б - развальцовкой с отбортовкой; в - развальцовкой в очках с канавками; г и д - приваркой; е - с помощью сальника; 1 - по сторонам и вершинам правильных шестиугольников (треугольников); 2 - по концентрическим окружностям; 3 - по сторонам и вершинам квадратов; 4 - по сторонам и вершинам шестиугольников со смещенной на угол β диагональю

В горизонтальных кожухотрубчатых теплообменниках-конденсаторах с целью уменьшения термического сопротивления на внешней поверхности труб, вызываемого пленкой конденсата, трубы рекомендуется размещать по сторонам и вершинам шестиугольника со смещенной на угол β диагональю, оставляя при этом в межтрубном пространстве свободные проходы для пара.

Некоторые варианты компоновки трубных пучков в корпусе приведены на (рис. 2.3). Если обе решетки пучка из прямых труб зажимаются между верхними и нижними фланцами корпуса и крышек, то такой аппарат будет жесткой конструкции (рис. 2.3, а, б). Теплообменники жесткой конструкции применяются при сравнительно небольшой разности температур между корпусом и трубами (примерно 25-30° С) и при условии изготовления корпуса и труб из материалов с близкими значениями их коэффициентов удлинения. При проектировании аппарата необходимо рассчитывать напряжения, возникающие вследствие тепловых удлинений труб в трубной решетке, особенно в местах соединения труб с решеткой. По этим напряжениям в каждом конкретном случае определяют пригодность или непригодность аппарата жесткой конструкции. Возможные варианты кожухотрубчатых теплообменников нежесткой конструкции показаны также на (рис. 2.3, в, г, д, е).

Рис. 2.3 - Схемы кожухотрубчатых теплообменников: а - с жестким креплением трубных решеток с сегментными перегородками; б - с жестким креплением трубных решеток с кольцевыми перегородками; в - с линзовым компенсатором на корпусе; г - с U-образными трубами; д - с двойными трубами (труба в трубе); е - с «плавающей» камерой закрытого типа; 1 - цилиндрический корпус; 2 - трубы; 3 - трубная решетка; 4 - верхняя и нижняя камеры; 5, 6, 9 - сегментная, кольцевая и продольная перегородки в межтрубном пространстве; 7 - линзовый компенсатор; 8 - перегородка в камере; 10 - внутренняя труба; 11 - наружная труба; 12 - «плавающая» камера

В кожухотрубчатом теплообменнике с линзовым компенсатором на корпусе (рис. 2.3, в) тепловые удлинения компенсируются осевым сжатием или растяжением этого компенсатора. Такие аппараты рекомендуется применять при избыточном давлении в межтрубном пространстве не выше 2,5·10 5 Па и при деформации компенсатора не более чем на 10-15 мм,

В теплообменниках с U-образными (рис. 2.3, г), а также с W-образными трубами оба конца труб закрепляют в одной (чаще в верхней) трубной решетке. Каждая из труб пучка может свободно удлиняться независимо от удлинения других труб и элементов аппарата. При этом в местах соединений труб с трубной решеткой и в соединении трубной решетки с корпусом не возникает никаких напряжений. Эти теплообменники пригодны для работы при высоких давлениях теплоносителей. Однако аппараты с гнутыми трубами не могут быть признаны лучшими из-за трудности изготовления труб с разным радиусом изгиба, сложности замены и неудобства очистки гнутых труб.

Кроме того, в условиях эксплуатации при равномерном распределении теплоносителя на входе в трубы будет неодинаковая температура этого теплоносителя на выходе из них вследствие разных площадей поверхностей теплообмена этих труб.

В кожухотрубчатых теплообменниках с двойными трубами (рис. 2.3, д) каждый элемент состоит из двух труб: наружной - с закрытым нижним концом и внутренней - с открытым концом. Верхний конец внутренней трубы меньшего диаметра закрепляют развальцовкой или сваркой в верхней трубной решетке, а трубу большего диаметра - в нижней трубной решетке. При таких условиях монтажа каждый из элементов, состоящий из двух труб, может свободно удлиняться без возникновения тепловых напряжений. Нагреваемая среда движется по внутренней трубе, затем по кольцевому каналу между наружной и внутренней трубами. Тепловой поток от греющей к нагреваемой среде передается сквозь стенку внешней трубы. Кроме того, в процессе переноса теплоты участвует и поверхность внутренней трубы, потому что температура нагреваемой среды в кольцевом канале выше температуры той же среды во внутренней трубе.

В кожухотрубчатом теплообменнике с «плавающей» камерой закрытого типа (рис. 2.3, е) трубный пучок собирается из прямых труб, соединенных двумя трубными решетками. Верхнюю решетку зажимают между верхним фланцем корпуса и фланцем верхней камеры. Нижняя трубная решетка не соединяется с корпусом, она вместе с нижней камерой внутритрубного пространства свободно может перемещаться вдоль оси теплообменника. Эти теплообменники более совершенны, чем другие аппараты нежесткой конструкции. Некоторое удорожание аппарата из-за увеличения диаметра корпуса в зоне «плавающей» камеры и из-за необходимости изготовления дополнительной крышки оправдывается простотой и надежностью в эксплуатации. Аппараты могут быть вертикального и горизонтального исполнения.

Другие типы теплообменников с компенсацией тепловых удлинений, как, например, с сильфонным компенсатором на верхнем патрубке, отводящим (подводящим) теплоноситель из внутритрубного пространства, с сальниковым уплотнением верхнего патрубка или трубной решетки и т. п. ввиду сложности изготовления, малой надежности в эксплуатации и низких допускаемых давлений теплоносителей в перспективе будут применяться только в исключительных случаях.

Трубное и межтрубное пространства теплообменников разобщены и образуют два контура для циркуляции двух теплоносителей. Но в случае необходимости во внутритрубный контур можно подавать не одну, а две и даже три нагреваемые среды, разделив при этом эти потоки перегородками, размещенными в крышках аппаратов.

Практически при конструировании таких аппаратов можно обосновать и обеспечить оптимальную скорость только одного теплоносителя, проходящего по внутритрубному контуру, изменяя при этом расположение труб в трубной решетке и число ходов по трубам. Многоходовые аппараты создают путем установки соответствующих перегородок в верхней и нижней камерах теплообменника.

Скорость потока в межтрубном пространстве определяется условиями размещения труб в трубной решетке. Обычно живое сечение для прохода теплоносителя в межтрубном пространстве в 2-3 раза больше живого сечения труб, поэтому при равных объемных расходах обеих сред скорость потока в межтрубном пространстве в 2-3 раза меньше, чем в трубах. В случае необходимости в межтрубном пространстве могут быть установлены сегментные или кольцевые перегородки, уменьшающие живое сечение и придающие жесткость трубному пучку. Естественно, при этом в межтрубном пространстве будет возрастать скорость потока, организуется продольно-поперечное омывание пучка труб, улучшатся условия теплообмена.

В водо-водяных или вообще жидкостно-жидкостных теплообменниках рабочую среду с меньшим расходом в единицу времени (или с большей вязкостью) целесообразно направлять во внутритрубный контур, хотя в некоторых случаях могут быть и отступления от этого принципа, например в аппаратах для охлаждения масла (рис. 2.3, б).

В парожидкостных теплообменниках , особенно при повышенных параметрах пара, наблюдается большая разность между температурами стенок труб и корпуса. Поэтому для таких случаев нагрева жидкости чаще всего используются аппараты нежесткой конструкции, за исключением конденсаторов пара, работающих под вакуумом. Пар обычно проходит в межтрубном пространстве сверху вниз, а жидкость - внутри труб. Конденсат удаляется из нижней части корпуса через конденсатоотводчик. Обязательным условием, обеспечивающим нормальную работу парожидкостного теплообменника, является отвод неконденсирующихся газов из верхней части межтрубного пространства и из нижнего объема над поверхностью конденсата. В противном случае будут ухудшаться условия теплообмена на внешней поверхности труб, резко уменьшится тепловая производительность аппарата.

В комплексных промышленных теплоэнергетических установках применяют конденсаторы, которые выполняют вспомогательную роль в данном процессе. Выбор типа и конструкции конденсатора зависит от давления, при котором протекает процесс фазового перехода, и от необходимости сохранения конденсата. В этой связи следует рассматривать поверхностные и смесительные конденсаторы.

Поверхностные кожухотрубчатые конденсаторы жесткой конструкции горизонтального типа компактны, удобны для размещения в сочетании с другим оборудованием, но в то же время они дороже смесительных. Расположение труб в решетке поверхностных конденсаторов осуществляется по варианту, показанному на рис. 2.2 (4) или рис. 2.2 (1). По ходу воды в трубах конденсаторы выполняются двух- и четырехходовыми. Пар конденсируется в межтрубном пространстве, в котором предусматривают свободные проходы для пара к нижним рядам труб. Такой способ конденсации пара обеспечивает чистоту конденсата, который может служить питательной средой для парогенераторов. В этих конденсаторах можно поддерживать давление от 5000 до 3000 Па.

Большое количество разнообразных кожухотрубчатых теплообменных аппаратов изготавливается серийно специализированными заводами, поэтому во многих случаях представляется возможным выбрать теплообменник, соответствующий расчетным характеристикам, по каталогу.